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Abstract. We continue here the study begun in earlier papers on implemen-
tation of comparative probability by states. Let A be a von Neumann algebra
on a Hilbert space H and let P(A) denote the projections of A. A comparative
probability (CP) on A (or more correctly on P(A)) is a preorder � on P(A)
satisfying:

0 � P∀P ∈ P(A) with Q � 0 for some Q ∈ P(A).
If P,Q ∈ P(A), then either P � Q or Q � P .
If P , Q and R are all in P(A) and P ⊥ R, Q ⊥ R, then P � Q⇔ P+R �
Q+R.

A state ω on A is said to implement a CP � on A if for P,Q ∈ P(A),
P � Q ⇔ ω(P ) ≤ ω(Q). In this paper, we examine the conditions for imple-
mentability of a CP on a general von Neumann algebra (as opposed to only
type I factors). A crucial tool used here, as well as in earlier results, is the
interval topology generated on P(A) by �. A CP � will be termed continu-
ous in a given topology on A if the interval topology generated by � is weaker
than the topology induced on P(A) by the given topology. We show that uni-
form continuity of a comparative probability is necessary and sufficient if the
von Neumann algebra has no finite direct summand. For implementation by
normal states, weak continuity is sufficient and necessary if the von Neumann
algebra has no finite direct summand of type I. We arrive at these results by
constructing an appropriate additive measure from the CP.

1. Introduction and notation

In this paper A denotes a von Neumann algebra on a Hilbert space H and P(A)
denotes the (orthogonal) projections of A. We denote by B(H) the algebra of all
bounded linear operators on H. The largest projection in P(B(H)) (i.e. the identity
operator) is denoted by l and we use 0 for the zero projection. If P ∈ P(A), then
P⊥ denotes l − P and Γ(P ) denotes the set of all subprojections of P which are
in P(A). The range projection R(B) ∈ P(B(H)) of a linear operator B ∈ B(H) is
defined by R(B)H = BH. If B ∈ A, then R(B) ∈ P(A). By P ∼ Q we mean the
equivalence of P,Q ∈ P(A) in the sense of von Neumann’s comparison theory, and
P - Q means that P ∼ Q′ for some Q′ ∈ Γ(Q).

Definition 1.1. Let � denote a preorder on P(A). Then � is a comparative
probability (CP) on P(A) if the following conditions are satisfied:

(A1) 0 � P ∀P ∈ P(A) with Q � 0 for some Q ∈ P(A).
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(A2) If P,Q ∈ P(A), then either P � Q or Q � P .
(A3) If P , Q, R, all in P(A), are such that P ⊥ R, Q ⊥ R, then P � Q⇔ P +R �

Q+R.

If P � Q and Q � P are simultaneously satisfied, we write P ∼= Q, and if Q � P ,
we write P ≺ Q. Given a CP � and a real-valued function f on P(A) (e.g. the
restriction of a state on A), we say that f implements � if P � Q⇔ f(P ) ≤ f(Q),
or, equivalently, if P ≺ Q⇔ f(P ) < f(Q). Because CP’s are defined on projections,
the natural domain of study of these objects is the von Neumann algebra. However,
an interesting case is that of the C? algebra of compact operators on some Hilbert
space. This algebra is generated by the finite rank projections. Even though
the unit operator is missing when the Hilbert space is infinite dimensional, one
can show that, here too, a CP can be satisfactorily defined and conditions for
implementability can be demonstrated [12]. For this case (unlike the von Neumann
algebra case) the above axioms, as they stand, make � a “comparative weight”
in that � is no longer necessarily bounded, where boundedness is defined for an
arbitrary C? algebra A as follows:

Definition 1.2. Let � be a preorder on P(A). Then � is bounded if and only if
there exists P ∈ P(A) such that Q � P if Q ∈ Γ(P⊥).

Let µ be a state on A and A ∈ A self-adjoint. Then, in the standard quantum
mechanical interpretation, µ(A) is the mean value of the results (i.e. the expectation
value) of measurements of the quantum observable (represented by) A when the
system is in the state (represented by) µ. When restricted to P(A), µ is an “additive
probability”, i.e. a normalized additive measure, which is completely additive if and
only if µ is normal. This probability has the following interpretation: Let E ⊂ σ(A)
be a Borel set and let the spectral projection χE(A) of A be defined in the usual
functional calculus for self-adjoint operators. Then µ(χE(A)) is the probability that
a ∈ E, where a is the result of a single measurement of A, while the system is in
the state µ. Clearly, µ induces a CP �µ on P(A) defined by P �µ Q if and only if
µ(P ) ≤ µ(Q). The idea of a purely comparative probability was first introduced by
Ochs [13] who worked mainly on uniqueness rather than existence of implementing
states. In fact, Ochs had an additional axiom, namely:

(A4) For P,Q ∈ P(A), P � Q⇔ Q⊥ � P⊥.

It would appear that inclusion of (A4) offers no additional advantage of any
consequence in the search for the conditions of implementability. For example, one
can construct, on a finite von Neumann algebra, a continuous CP which satisfies
(A4) but which cannot be implemented by a state. One can also show that in
general, axioms (A3) and (A4) are mutually independent. But as we shall see later,
for many algebras, the addition of a single topological condition on � is sufficient
to make (A4) a consequence of (A3).

The question of uniqueness was taken further and completely resolved by Gold-
stein and Paszkiewicz in [5]. For our investigation of the possibility of implemen-
tation by a state we need to consider a continuity concept:

Definition 1.3. The CP � is said to be uniformly (weakly) continuous if when-
ever the net Qj : j ∈ J in P(A) uniformly (weakly) converges to Q with S � Qj �
T ∀j ∈ J for some S, T ∈ P(A), then S � Q � T .

In Kelly [8], � is uniformly (weakly) continuous if given P,Q ∈ P(A) such that
P ≺ Q, then there exists uniform (weak) neighbourhoods N (P ) and N (Q) of P
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and Q respectively such that P ′ ≺ Q′ if P ′ ∈ N (P ) and Q′ ∈ N (Q). One can show
that this definition is identical to ours.

As a linear preorder on P(A), � induces an interval topology on P(A), which we
will call the � topology, which is generated by a neighbourhood base consisting (in
obvious terminology) of � intervals [0, P ), (Q,1] : P,Q ∈ P(A). One easily shows
(cf. [10], Proposition 2.2) that � is uniformly (weakly) continuous if and only if the
interval topology induced by � is weaker than the topology on P(A) inherited from
the uniform (weak) topology on B(H). We note here that if a CP � is implemented
by some state µ, then the � topology is just that topology on P(A) for which sets
of the form {P ′ ∈ P(A) : 0 < |µ(P − P ′)| < 1/n}, n ∈ N, form a neighbourhood
base of P . Unlike the case of states, not every CP is uniformly continuous, and
perhaps more surprisingly, not every uniformly continuous CP can be implemented
by a state as the following counter-example will show: Let A be a finite factor
of type II and let τ be the restriction to P(A) of the canonical trace on A. Let
ω be a state on A such that ω 6= τ . Define the preorder E on P(A) as follows:
For P,Q ∈ P(A), P E Q if and only if either τ(P ) < τ(Q) or τ(P ) = τ(Q) and
ω(P ) ≤ ω(Q). It is not difficult to verify that E is a CP. Now, τ−1{x} is a uniformly
connected component of P(A) for every x ∈ [0, 1]. This follows from the fact that
if P,Q ∈ τ−1{x}, then P ∼ Q. Since A is finite, we also have P⊥ ∼ Q⊥ so that we
actually have unitary equivalence, that is, P = U?QU for some unitary U ∈ A (see,
for example, [2], Chapter 4; or [1]). But by the spectral theorem, U = exp(iH) for
some self-adjoint H ∈ A. Since H is bounded, t ∈ [0, 1] 7→ exp(−iHt)Q exp(iHt) is
a uniformly continuous path joining P and Q. On the other hand, if P ∈ τ−1{x}
and Q ∈ τ−1{y} with x 6= y, then ‖P−Q‖ = 1, because ‖P−Q‖ < 1 implies P ∼ Q
[9], [15]. It easily follows then that E is, in fact, uniformly continuous. However
no state can implement E. To see this let Q ∈ P(A) be such that τ(Q) = 1/4 and
let the sequence Qn in P(A) be such that Q ⊥ Qn ∀n and such that τ(Qn) = 2−n.
Clearly Qn converges to 0 in the E topology. Since ω 6= τ , we may assume, by
Theorem 2.3 of [5], that Q / P for some P ∈ P(A) such that τ(P ) = 1/4. Thus
Q/P/Q+Qn ∀n ∈ N so that all the Q+Qn are excluded from the E neighbourhood
[0, P ) of Q. Thus addition fails here to be even separately E continuous on P(A);
consequently no state can implement E.

Let P ∈ P(A) be finite and let � be a CP on P(A). We will say that � is tracial
on Γ(P ) if � is implemented by the canonical trace on the reduced algebra PA.
Next, we give some conditions for � to be tracial.

Proposition 1.4. Let A be a type II factor and let P ∈ P(A) be finite. Let τ be
the restriction to Γ(P ) of the normalized canonical trace on PA. If � is a CP on
P(A) such that 0 ≺ P , then the following are all equivalent :

(i) � is tracial on Γ(P ).
(ii) τ(R) = τ(S)⇒ R ∼= S for R,S ∈ Γ(P ).
(iii) There exists x ∈ (0, 1) such that, for R,S ∈ Γ(P ), τ(R) = τ(S) = x⇒ R ∼= S.

Proof. The implications (i) ⇒ (ii), (i) ⇒ (iii) and (ii) ⇒ (iii) are all clear.
(ii) → (i) We note that item (ii) implies that � is “faithful” on Γ(P ) in that

0 ≺ P ′ for nonzero P ′ ∈ Γ(P ). To see this suppose there is a T ∈ Γ(P ) with
T 6= 0 and T ∼= 0. Then, for some n ∈ N, we can find mutually orthogonal
Pj ∈ Γ(P ) : 1 ≤ j ≤ n such that P =

∑n
j=1 Pj and such that τ(Pj) < τ(T ) for all j.

The last condition implies that Pj ∼= 0 ∀j, and hence gives a contradicting P ∼= 0.
Now suppose that τ(R) < τ(S) for some S, T ∈ Γ(P ). Then there exists S′ ∈ Γ(S)
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such that τ(S′) = τ(R). Since � is faithful and S′ < S, we have R ∼= S′ ≺ S. We
conclude that, for R,S ∈ Γ(P ), τ(R) ≤ τ(S)⇒ R � S, which simultaneously gives
R � S ⇒ τ(R) ≤ τ(S).

(iii) ⇒ (ii) Let y ∈ (0, 1) be such that y + x < 1, y < x, and let R,S ∈ Γ(P )
be such that τ(R) = τ(S) = y. Now by Proposition 1.6 of Chapter V of [14],
R∨ S −R ∼ S −R ∧ S. Hence τ(R ∨ S) ≤ τ(R) + τ(S) = 2y. As 2y+ (x− y) < 1,
there exists T ∈ Γ(P ) such that T ⊥ (R∨S) and such that τ(T ) = x− y. We have
τ(R+T ) = τ(S+T ) = x implies, by hypothesis, that R+T ∼= S+T , which in turn
gives, by (A3), R ∼= S. We conclude that the set S = {t ∈ (0, 1): τ(R) = τ(S) <
t ⇒ R ∼= S for R,S ∈ Γ(P )} is nonempty. Now let z ∈ S. Let z′ ∈ (0, 1) be such
that z′ < z, z + z′ < 1, and let z′′ be such that 0 < z′′ < z′ and z + z′ + z′′ < 1.
Let R,S ∈ Γ(P ) be such that τ(R) = τ(S) = z + z′′ and let R′ ∈ Γ(R), S′ ∈
Γ(S) be such that τ(R′) = τ(S′) = z′. Again, we have τ(R′ ∨ S′) ≤ 2z′. As
2z′+ (z+ z′′− z′) < 1, there exists T ∈ Γ(P ) such that T ⊥ (R′∨S′) and such that
τ(T ) = z + z′′ − z′. Further, since z + z′′ − z′ < z, we have T ∼= R− R′ ∼= S − S′.
Thus, by (A3), R = R′+R−R′ ∼= R′+T ∼= S′+T ∼= S′+S−S′ = S. This shows
that supS = 1 and the proof is complete.

Let Pj be a net in P(A); then convergence to some P ∈ P(A) is denoted by

Pj
w→ P (Pj

u→ P ) in the weak (uniform) topology and by Pj
�→ P in the �

topology. It has been shown [10], [11] that if � is a uniformly (weakly) continuous
CP on P(A), where A is type I∞ factor, then � is implemented by a state (normal
state). The purpose of this paper is to examine the extent to which these results
can be extended to the general von Neumann algebra.

2. Topological structure and other results

For the remainder of this paper, unless the contrary is indicated, A is either a
type II1 factor with � a weakly continuous CP on P(A), or A is a type II∞ or a type
III factor with � a uniformly continuous CP on P(A). The strategy here, as in [11],
will be to construct an additive measure on P(A) which implements �. By a gener-
alization of Gleason’s theorem [3], [9], such an additive measure is the restriction of
a state. For each P ∈ P(A) we define D(P ) to be the set {Q ∈ Γ(P ) : Q ∼ P −Q}.
We will use D to denote D(l). Let P,Q ∈ D. Then by Proposition 6.2.2 of [6],
P ∼ Q and P⊥ ∼ Q⊥ so that P and Q are unitarily equivalent. Consequently, D is
uniformly and hence � connected. This � connectedness implies that all � closed
subsets of D are � order complete and, equivalently, are � compact [8].

We begin with a few technical lemmas. The first one contains a strengthening
of Lemma 2.1 (i) in Gunson [4].

Lemma 2.1. Let P,Q ∈ P(A). The following statements are equivalent :

(i) ‖(P −Q)φ‖ < ‖φ‖ if φ 6= 0.
(ii) P ∧Q⊥ = 0 = Q ∧ P⊥.
(iii) R(PQ) = P and R(QP ) = Q.
(iv) The map f : P ′ ∈ Γ(P ) 7→ R(QP ′) is a bijection onto Γ(Q) satisfying

f(R(PQ′)) = Q′ for Q′ ∈ Γ(Q).

Proof. (i) ⇒ (ii) If P ∧Q⊥ 6= 0, then clearly there exists φ 6= 0 such that Pφ = φ
and Qφ = 0. This immediately gives ‖(P −Q)φ‖ = ‖φ‖ and the contradiction gives
the result.
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(ii) ⇒ (i) If P,Q ∈ P(A) and φ ∈ H is nonzero, then ‖(P − Q)φ‖ = ‖φ‖ ⇒
〈φ|(P − Q)2φ〉 = ‖φ‖2. As ‖P − Q‖ ≤ 1 we must have φ = (P − Q)2φ. Now
Q⊥(P −Q)2 = Q⊥PQ⊥ so that Q⊥φ = Q⊥P (Q⊥φ). We either have Q⊥φ = 0 ⇒
Qφ = φ ⇒ Pφ = 0 ⇒ P⊥φ = φ, whence Q ∧ P⊥ > 0; or else ψ = Q⊥φ 6= 0 ⇒
Pψ = ψ = Q⊥ψ ⇒ P ∧Q⊥ > 0. The result follows by contraposition.

(ii) ⇒ (iv) Let Q′ ∈ Γ(Q) be nonzero and let P ′ = R(PQ′). We wish to show
that Q′ = R(QP ′). Clearly, R(Q′PQ′) ≤ Q′. Let Q′φ = φ for some φ ∈ H. Then
〈Q′PQ′ψ|φ〉 = 0 ∀ψ ∈ H implies, by choosing ψ = φ, that PQ′φ = 0 which implies,
by hypothesis, that φ = 0. We conclude that R(Q′PQ′) = Q′ and hence that
R(QPQ′) ≥ Q′. Similarly, if for some φ ∈ H we have 〈QPQ′φ|Q′ψ〉 = 0 ∀ψ ∈ H,
then QPQ′φ = 0. We conclude that R(QPQ′) = f(R(PQ′)) = Q′ as required,
where we have used the fact that R(AB) = R(AR(B)) for A,B ∈ A. This also
shows that f is onto Γ(Q). It only remains to show that f is injective. To this end,
let f(P ′) = f(P ′′) for P ′, P ′′ ∈ Γ(P ). Interchanging the symmetric roles of P and
Q, we have P ′ = R(PQP ′) = R(Pf(P ′)) = R(Pf(P ′′)) = R(PQP ′′) = P ′′, so
that f is injective.

(iv) ⇒ (iii) Since f is a bijection, we conclude that R(QP ) = f(P ) = Q and
again, interchanging P and Q, we get R(PQ) = P .

(iii) ⇒ (ii) Let φ ∈ H. Now Q⊥Pφ = φ ⇒ Pφ = φ, QPφ = 0. Hence
0 = 〈ψ|QPφ〉 = 〈PQψ|φ〉 ∀ψ ∈ H. Since Pφ = φ and PQH = PH, we have φ = 0
and hence Q⊥ ∧ P = 0. A similar argument gives P⊥ ∧Q = 0.

Lemma 2.2. Let P,Q ∈ P(A) be such that ‖(P −Q)φ‖ < ‖φ‖ for φ 6= 0 and let f
be as defined in Lemma 2.1. Then the following are true:

(i) f(P ′) ∼ P ′ for P ′ ∈ Γ(P ).
(ii) If P ′, P ′′ ∈ Γ(P ) are such that f(P ′) ⊥ f(P ′′), then P ′ ⊥ f(P ′′) and P ′′ ⊥

f(P ′).

Proof. (i) By Proposition 6.1.6 of [6], R(A) ∼ R(A∗), for A ∈ A. Hence f(P ′) =
R(QP ′) ∼ R(P ′Q) = P ′ as required.

(ii) R(QP ′) ⊥ R(QP ′′) ⇒ 〈QP ′φ|QP ′′ψ〉 = 〈P ′φ|QP ′′ψ〉 = 0 ∀φ, ψ ∈ H. The
required results follow at once.

Lemma 2.3. Let P,Q ∈ P(A) be both nonzero. Then there exists P ′ ∈ Γ(P ) and
Q′ ∈ Γ(Q), both nonzero, such that P ′ ⊥ Q′. If, in addition, 0 ≺ P and 0 ≺ Q,
then P ′ and Q′ can be chosen such that 0 ≺ P ′ and 0 ≺ Q′.

Proof. If R = P ∧Q⊥ > 0, then the choice P ′ = R and Q′ = Q will suffice, with a
similar result in the caseQ∧P⊥ > 0. Now let P∧Q⊥ = Q∧P⊥ = 0. Let P ′′ ∈ Γ(P )
be such that 0 < P ′′ < P . Since the function f in Lemma 2.1 is a bijection, we
have 0 < R(QP ′′) < Q and hence 0 < Q − R(QP ). By Lemma 2.2, the choice
P ′ = P ′′ and Q′ = Q−R(QP ′′) will satisfy our requirements. This completes the
proof of the first part. For the second part we now assume that 0 ≺ P and 0 ≺ Q.
As in the first part, if 0 ≺ P ∧ Q⊥ or 0 ≺ Q ∧ P⊥, then there is no difficulty in
finding the required P ′ and Q′. So we assume that 0 ∼= P ∧Q⊥ ∼= Q ∧ P⊥ and set

P̃ = P − P ∧ Q⊥ and Q̃ = Q − Q ∧ P⊥. Clearly P̃ ∼= P and Q̃ ∼= Q. We claim

that ‖(P̃ − Q̃)φ‖ < ‖φ‖ for φ 6= 0. To justify this we let (Q̃⊥ ∧ P̃ )φ = φ for some

φ ∈ H. Then P̃ φ = φ = Pφ and Q̃φ = 0. The latter gives Qφ = Q∧P⊥φ and since
P⊥φ = 0, we conclude that Qφ = 0 so that P ∧Q⊥φ = φ. This immediately yields

φ = 0 and so Q̃⊥ ∧ P̃ = 0. Similarly P̃⊥ ∧ Q̃ = 0 and Lemma 2.1 completes the
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argument. If it is the case that for Q1 ∈ Γ(Q̃) we haveR(P̃Q1) ∼= 0⇒ Q1
∼= 0, then

we pick any Q2 ∈ Γ(Q̃) such that 0 ≺ Q2 ≺ Q̃. Clearly, 0 ≺ R(P̃Q2). By Lemma

2.2, the choice P ′ = R(P̃Q2) and Q′ = Q̃−Q2 will satisfy our requirements. If, on

the other hand, there is a Q1 ∈ Γ(Q̃) such that R(P̃Q1) ∼= 0 with 0 ≺ Q1, then by

Lemma 2.2 the choice P ′ = P̃ −R(P̃Q1) and Q′ = Q1 will suffice. This completes
the proof of the proposition.

Lemma 2.4. For any P ∈ P(A), there exists P ′ ∈ D(P ) such that P ′ ∼= P − P ′.
Proof. We only need consider the case 0 ≺ P . Let Q ∈ D(P ). If Q ∼= P −Q, then
there is nothing further to show. So we consider the case Q ≺ P −Q. Since D(P )
is uniformly path connected, there exists a uniformly, and hence � continuous,
path t ∈ [0, 1] 7→ Pt ∈ D(P ) such that P0 = Q and P1 = P − Q. Since the path
t ∈ [0, 1] 7→ P −Pt is also uniformly and hence � continuous, there exists s ∈ (0, 1)
such that 0 ≤ t ≤ s ⇒ Pt � P − Pt. Let s0 be the supremum of all such s. We
cannot have Ps0 ≺ P − Ps0 since another continuity argument would show that
this inequality would also have to be true for a neighbourhood of s0. Similarly, we
cannot have P − Ps0 ≺ Ps0 , hence the required result.

Given any P ∈ P(A), repeated application of Lemma 2.4 results in a “partition-
ing” of P into 2n subprojections of equal “size”. We shall be using this idea several
times and the following definition will be useful:

Definition 2.5. Let n ∈ N and let P ∈ P(A) be such that 0 ≺ P . A set {Pj ∈
Γ(P ) : 1 ≤ j ≤ n} is called an equipartition of P of order n if the Pj are all mutually
orthogonal, Pj ∼= Pk ∀j, k and if

∑n
j=1 Pj = P .

The following result shows that any sequence of mutually orthogonal projections
of P(A) must be � convergent to 0.

Lemma 2.6. Let Q ∈ P(A) be such that 0 ≺ Q. If B is a set of mutually orthogonal
projections of P(A) satisfying Q � P ∀P ∈ B, then B is a finite set.

Proof. If A is finite, then any sequence of orthogonal projections must weakly
converge to 0 and so the result follows at once. Assume now that A is infinite.
We suppose, for a contradiction, that the contrary is true, that is, B is an infinite
set. We examine first the case where Q ⊥ Q′ ∀Q′ ∈ B. By Lemma 2.4, there
exists Q0 ∈ D(Q) such that 0 ≺ Q0. By Proposition 6.2.2 of [6], D(Q⊥0 ) ⊂ D.
We pick sequences Sj and Tj in B, each consisting of distinct projections, such
that Sj ⊥ Tk ∀j, k and such that S =

∑
j∈N Sj -

∑
j∈N Tj. Again Proposition

6.2.2 of [6] gives D(Q⊥0 − S) ⊂ D. Let Rj be a sequence of mutually orthogonal
projections of D(Q⊥0 − S). If we set Qj = Rj + Sj , then Qj ∈ D for all j and
hence

∑m
j=2 Qj ∈ D(P ) for all m ∈ [2,∞], where P =

∑
j∈NQj. Now since D(P )

is uniformly connected with
∑n
j=2 Qj ≤

∑∞
j=2 Qj ∈ D(P ) for all n, and since∑n

j=2 Qj is increasing with n,
∑n
j=2 Qj

�→ Q̃, as n → ∞, for some Q̃ ∈ D(P ).

Now addition is uniformly continuous on P(A). Hence Q0 +D(P ) is also uniformly

connected. As Q0 + Q2 ≺ Q̃ ≺ Q0 +
∑∞
j=2 Qj , we also have Q̃ ∼= Q0 + Q′ for

some Q′ ∈ D(P ). Thus there exists m ∈ N for which Q′ ≺
∑m
j=2 Qj . (A4) yields

a contradictory Q0 + Q′ � Qm+1 + Q′ ≺
∑m+1
j=2 Qj . Now we look at the case of

arbitrary Q. Pick a sequence of distinct projections Pj of B. By Lemma 2.3, there
exist mutually orthogonal projections S ∈ Γ(Q) and T ∈ Γ(P1) such that 0 ≺ S
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and 0 ≺ T . By considering equipartitions of T , it is clear from the first case that
there exists T ′ ∈ Γ(T ) for which 0 ≺ T ′ � S. Thus the sequence Pj : j ≥ 2 is such
that T ′ ⊥ Pj for all j, and since 0 ≺ T ′, this contradicts the result of the first case.
The proof of the lemma is now complete.

Lemma 2.7. If A is infinite, then l is in the � supremum of D.

Proof. Suppose for a contradiction that l /∈� supD, with A infinite. Then there
exists R ∈ P(A)\D such that P � R ≺ l for all P ∈ D. We note that D(R) ⊂ D.
We can find a sequence of mutually orthogonal nonzero projections of D(R). Hence,
by Lemma 2.6, there exists P ′ ∈ D such that P ′ ≤ R and such that P ′ ≺ R⊥. We
conclude that R = (R − P ′) + P ′ ≺ R − P ′ + R⊥ = l− P ′. Since l − P ′ ∈ D, we
have a contradiction, and the proof is complete.

Lemma 2.8. Let P ∈ P(A) and let Pj be a sequence of projections of Γ(P⊥) such

that Pj
�→ 0. Then P + Pj

�→ P .

Proof. Let Qj be a � decreasing sequence of mutually orthogonal projections of
Γ(P⊥) such that 0 ≺ Qj ∀j. By Lemma 2.6 and (A3), it is sufficient to show

that P + Qj
�→ P . This is trivially true for the case A is finite, so we assume

otherwise. If P is not infinite, we can ensure that P +Q1 is infinite by choosing the
sequence Qj with Q1 infinite. Now D(P + Q1) is uniformly path connected and,
by Lemmas 2.6 and 2.7, � dense in Γ(P +Q1). As P +Qj ≺ P +Q1 for all large

enough j, we have P + Qj
�→ R, for some R ∈ D(P + Q1). This R must in fact

be in the � infimum of the � decreasing P +Qj. Since R is infinite, there exists,

by Lemma 2.7, a sequence Rj in Γ(R) for which Rj ≺ R for all j and Rj
�→ R.

Pick any k ∈ N; then there exists m > 1 such that Qm ≺ R − Rk. By (A3),
Rk + Qm � Rk + (R − Rk) = R � P + Qm, which implies that Rk � P . Hence
P ∼= R as required, since P � R.

Proposition 2.9. Let P ∈ P(A) be such that 0 ≺ P . Then Γ(P ) ∩ (0, P ) is a �
path connected subset of P(A) which is � dense in [0, P ]. Hence [0, P ] is � compact
for every P ∈ P(A).

Proof. We already know that D(P ) is � path connected. If P is infinite, then by
Lemmas 2.6 and 2.7, 0 and P are � limits of D(P ) and the result follows at once.

Now we consider P finite. If � is tracial on Γ(P ) with τ the implementing
normalized trace, then any map γ : [0, 1]→ P(A) for which γ(x) ∈ τ−1{x} is a �
continuous path. Suppose now that � is not tracial on Γ(P ). Let x ∈ (0, 1) and
let S be the � path connected component of Γ(P ) containing the uniformly (and
hence �) path connected set τ−1{x}. Set x0 = sup{t ∈ [x, 1] : τ−1{t} ⊂ S}. We
claim that x0 = 1. To justify this we suppose, for a contradiction, that x0 < 1. By
Proposition 1.4, there exists R,S ∈ τ−1{x0} such that R ≺ S. By Lemma 2.8, there
exists R′ ∈ Γ(P −R) such that R ≺ R+R′ ≺ S. Thus R+R′ ∈ S, a contradiction
since τ(R+R′) > x0. By Lemma 2.6, 0 is a � limit of nonzero projections of Γ(P );
this completes the proof. The � density and compactness follow immediately.

Lemma 2.10. Let P ∈ P(A) be such that 0 ≺ P and let Pj ∈ Γ(P ) be a sequence

of mutually orthogonal projections satisfying 0 ≺ Pj. Then P − Pj
�→ P . Hence

P(A) is � second countable.
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Proof. By Proposition 2.9, there exists a sequence Qj in Γ(P ) such that Qj
�→ P

and such that Qj ≺ P ∀j. Pick any j ∈ N. By Lemma 2.3, we can find mutually
orthogonal R ∈ Γ(P1) and S ∈ Γ(P − Qj) such that 0 ≺ R � S. Let k0 ∈ N be
such that Pk � R if k > k0. Then, by (A3), Qj ≤ P − S = (P − S − R) + R �
(P − S −R) + S = P −R = (P −R− Pk) + Pk � (P −R− Pk) +R = P − Pk, for
k > k0. The result follows at once. The second countability follows immediately
from this result together with Lemma 2.8.

Proposition 2.11. Let T ∈ P(A) be such that 0 ≺ T ≺ l.

(i) Let P , Q, R and S, all in Γ(T ), be such that P ⊥ R, Q ⊥ S, P � Q and
R � S. Then P +R � Q+ S.

(ii) Let P,Q ∈ Γ(T ) be such that P � Q. Then Q ∼= P +R for some R ∈ Γ(P⊥).

Proof. (i) We assume that 0 ≺ P , lest the result be trivial. Let {Pj : 1 ≤ j ≤ 2n}
and {Qj : 1 ≤ j ≤ 2n} be equipartitions of P and Q. Assume that n is large enough
so that by Lemma 2.6, Pj � T⊥ and Qj � T⊥. We claim that Pj � Qj ∀j. To see
this, suppose for a contradiction that the converse is true, that is Qj ≺ Pj ∀j. By
Proposition 2.9, there exists T ′ ∈ Γ(T⊥) such that Qj ≺ T ′ ≺ Pj . Suppose, for an
inductive proof, that Q′m =

∑m
j=1 Qj ≺

∑m
j=1 Pj = P ′m for m such that 1 ≤ m < 2n.

Then Q′m+1 = Q′m+Qm+1 ≺ Q′m+T ′ ≺ P ′m+T ′ ≺ P ′m+Pm+1 = P ′m+1. Since the
inequality is true for m = 1, we haveQ ≺ P , and the contradiction verifies the claim.
A similar inductive argument involving the use of T ′ shows that R+P ′m � S+Q′m
for 1 ≤ m ≤ 2n. This completes the proof. We note that if the condition P � Q is
replaced by P ∼= Q, then we immediately have R � S ⇔ P +R � Q+ S.

(ii) Again, we only need consider the case 0 ≺ P . By Proposition 2.9, there
exists P ′ ∈ Γ(Q) such that P ′ ∼= P . Since (Q− P ′) + P ′ = Q � T = (T − P ) + P
and P ′ ∼= P , item (i) gives Q− P ′ � T −P . Hence there exists R ∈ Γ(T −P ) such
that R ∼= Q − P ′. Again, by item (i), we have Q = P ′ + (Q − P ′) ∼= P + R, as
required.

The following result establishes separate � continuity of addition on P(A).

Proposition 2.12. Let P,Q ∈ P(A) be mutually orthogonal with 0 ≺ P and let

Qj be a sequence of Γ(P⊥) such that Qj
�→ Q. Then P +Qj

�→ P +Q.

Proof. Proposition 2.9 implies that we can pick a subsequence P +Qjk of P +Qj
and � converges to T , say. Clearly P � T and by Proposition 2.11 (ii), T ∼= P +Q′

for some Q′ ∈ Γ(P⊥). By (A3), Qjk
�→ Q′ and so Q′ ∼= Q. Thus every � convergent

subsequence of P +Qj � converges to P +Q; hence the result.

Lemma 2.13. Let P,Q ∈ P(A) be such that 0 ≺ P and 0 ≺ Q. Let n ∈N and let
{Pj : 1 ≤ j ≤ 2n} and {Qj : 1 ≤ j ≤ 2n} be equipartitions of P and Q respectively.

Then we have
∑2n

j=1 Pj �
∑2n

j=1 Qj ⇔ Pj � Qj ∀j.

Proof. It is sufficient to show that Pj ∼= Qj implies that P ∼= Q. To see this, we
suppose for the moment that Pj ∼= Qj ⇒ P ∼= Q is given. Now, if Pj ≺ Qj, then by
Proposition 2.9, there exists Q′j ∈ Γ(Qj), for each j, such that Pj ∼= Q′j ≺ Qj . The

given supposition implies that P ∼=
∑2n

j=1 Q
′
j ≺ Q. Thus we have Pj � Qj ⇒ P � Q

and this clearly is equivalent to saying Pj � Qj ⇔ P � Q. Now let Pj ∼= Qj.
Case 1: Pj = Qk for some j and k. We are obviously free to change labels so that

j = k = 2n. Suppose inductively that P ′m =
∑m
j=1 Pj

∼=
∑m
j=1 Qj = Q′m for some m
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such that 1 ≤ m < 2n. Then P ′m+1 = P ′m+Pm+1
∼= P ′m+P2n

∼= Q′m+P2n
∼= Q′m+1,

by (A3). Since P ′1
∼= Q′1, we have P ∼= Q as required.

Case 2. P ≺ l and Q ≺ l. We first observe that, because P ≺ l, Proposition 2.11

(i) implies that if {P̃j : 1 ≤ j ≤ 2n} is another equipartition of P , then P̃j ∼= Pj
and (with the use of Proposition 2.9) also implies that, if P ′′1 ∈ Γ(P ) is such that
P ′′1
∼= Pj , then P ′′1 is always part of some equipartition {P ′′j : 1 ≤ j ≤ 2n} of P .

The same observations will, of course, identically hold for Q. Now, by Lemma 2.3
and Proposition 2.9, there exists mutually orthogonal R ∈ Γ(P ) and S ∈ Γ(Q)
such that 0 ≺ R ∼= S. Pick n large enough so that, by Lemma 2.6, Pj � R and
Qj � R. Then we may assume from the above observations that P2n ⊥ Q2n . As
P2n +Q2n

∼= Q2n +Q1 ≺ Q, there exists, by Proposition 2.11 (ii), T ∈ P(A) such
that T ⊥ (P2n +Q2n) and such that T + P2n +Q2n

∼= P . From earlier arguments,
there exists an equipartition {Tj : 1 ≤ j ≤ 2n} of T +P2n +Q2n for which T1 = P2n

and T2 = Q2n . We deduce from Case 1 that Q ∼= T + P2n + Q2n and hence

that P ∼= Q as required. This only shows that, for n large enough,
∑2n

j=1 Pj �∑2n

j=1 Qj ⇔ Pj � Qj . We now extend this to arbitrary n ∈ N. If m ∈ N, then

for each j such that 1 ≤ j ≤ 2n, we pick equipartitions {Pjk : 1 ≤ k ≤ 2m} and
{Qjk : 1 ≤ k ≤ 2m} of Pj and Qj respectively. For m large enough, the above
arguments show that we may assume that Pjk ∼= Pil, Pjk ∼= Qil and Qjk ∼= Qil
for all i, j, k and l and that we may also assume that P11 ⊥ Q11. We also follow
these arguments to establish the existence of T ∈ P(A) and an equipartition of
{Tj : 1 ≤ j ≤ 2n+m} of T for which T1 = P11 and T2 = Q11. This gives the required
P ∼= T ∼= Q.

Case 3. P ∼= l or Q ∼= l. Given the preceding cases, the result will have been
established if we can show that Q ≺ l⇒ P ≺ l. Now, let Q ≺ l. As P1

∼= Q1 ≺ Q,

there exists, by Proposition 2.11 (ii), R ∈ Γ(P⊥1 ) such that P̃ = P1 +R ∼= Q. Case 2

reveals that there exists an equipartition {P̃j : 1 ≤ j ≤ 2n} of P̃ for which P̃1 = P1.

Case 1 then gives P ∼= P̃ ∼= Q, completing the proof of the lemma.

We are now in a position to give what might appear to be only a slight strength-
ening of axiom (A3). As we shall see, the result, together with the corollary that
follows it, is strong enough to place our final implementability theorem well within
sight.

Proposition 2.14. Let P , Q, R and S, all in P(A), be such that P ⊥ R and
Q ⊥ S. Then P � Q, R � S ⇒ P +R � Q+ S.

Proof. Assume, to avoid triviality, that 0 ≺ P and 0 ≺ R. We let {Pj : 1 ≤ j ≤ 2n},
{Qj : 1 ≤ j ≤ 2n}, {Rj : 1 ≤ j ≤ 2n} and {Sj : 1 ≤ j ≤ 2n} be equipartitions of P ,
Q, R and S respectively. By (A3), we have for each j and k, Pj +Rj ∼= Pj +Rk ∼=
Pk +Rk and similarly, Qj + Sj ∼= Qk + Sk.

We assume that n is large enough so that, by a now familiar procedure, P1, Q1,
R1 and S1 may be chosen to be all mutually orthogonal. Lemma 2.13 gives P1 � Q1

and R1 � S1. Hence another use of (A3) yields Pj + Rj ∼= P1 + R1 � P1 + S1 �
Q1 +S1

∼= Qj+Sj for all j. Since {Pj+Rj : 1 ≤ j ≤ 2n} and {Qj+Sj : 1 ≤ j ≤ 2n}
are equipartitions of P+R andQ+S respectively, P+R � Q+S follows immediately
from Lemma 2.13.
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Corollary 2.15. Let P,Q ∈ P(A) be mutually orthogonal and let sequences Pj and

Qj in P(A) be such that Pj � P and Qj � Q, Pj ⊥ Qj ∀j and such that Pj
�→ P

and Qj
�→ Q. Then Pj +Qj

�→ P +Q.

Proof. We assume that 0 ≺ P and 0 ≺ Q, lest the result be trivial. Let P ′j
be a sequence of mutually orthogonal projections of Γ(P ) such that 0 ≺ P ′j ∀j
and let the sequence Q′j in Γ(Q) be similarly defined. Then, by Lemma 2.10,

(P − P ′j) + (Q − Q′j)
�→ P + Q. For a given j ∈ N there exists k0 ∈ N for which

P−P ′j � Pk and Q−Q′j � Qk if k > k0. Proposition 2.14 gives (P−P ′j)+(Q−Q′j) �
Pk +Qk � P +Q for all k > k0. This gives the required result.

Proposition 2.16. � is implemented by an additive measure (= a state) on P(A).

Proof. For each n ∈ N, let Un = {T (n)
j : j ∈ K(n)}, where K(n) = {1, 2, 3, . . . , 2n},

be an equipartition of l. For a given n, T
(n)
j can also be “halved”, by Lemma

2.4. Therefore we can arrange that the Un are “nested” in the sense that T
(n+1)
2j−1 +

T
(n+1)
2j = T

(n)
j for n ∈ N and for j ∈ K(n). For each n ∈ N we define Vn to

be the set {
∑
j∈K T

(n)
j : K ⊂ K(n)}. We define V to be

⋃
n∈N Vn. We note that

if P ∈ V , then P⊥ ∈ V and that, in the case 0 ≺ P , there exists n ∈ N such

that P =
∑m
k=1 T

(n)
jk

, for some m ≤ 2n and T
(n)
jk

in Un. The nesting property

implies that for each n ∈ N and P ∈ V , there exists an equipartition Un(P ) =

{P (n)
j : 1 ≤ j ≤ 2n} of P such that Un(P ) ⊂ V . We define Vn(P ) and V(P ) in

analogy with Vn(= Vn(l)) and V(= V(l)). It is clear that V(P ) = Γ(P ) ∩ V . We
claim that V(P ) is � dense in [0, P ]. To see this, let S, T ∈ [0, P ] be such that
S ≺ T . By Lemma 2.8, there exists R ∈ Γ(S⊥) such that S ≺ S + R ≺ T . By

Lemma 2.6, P
(n)
j

�→ 0 as n→∞. Choose n ∈ N such that P
(n)
j ≺ R and let m be

the largest integer for which
∑m
j=1 P

(n)
j � S. As S ≺ P , we have m < 2n. Hence,

by Proposition 2.14,
∑m+1
j=1 P

(n)
j ≺ S+R ≺ T and, by the definition of m, we have

S ≺
∑m+1
j=1 P

(n)
j . Thus we have S ≺

∑m+1
j=1 P

(n)
j ≺ T , which verifies the claim. We

have also demonstrated that there is a sequence P ′j in V(P ) such that P ′j
�→ T and

such that P ′j ≺ T .

Now we define the function µ : V → [0, 1] by µ(
∑
j∈K T

(n)
j ) = 2−n#(K), where

#(K) is the cardinality of the set K. Clearly µ is additive on V and satisfies
P � Q ⇔ µ(P ) ≤ µ(Q) for P , Q ∈ V . Now suppose the sequence Pj in V �
converges to P ∈ V , with Pj � P (P � Pj). Then we may assume, by the nesting

property, that Pj ≤ P (P ≤ Pj) for all j. Hence P −Pj
�→ 0(Pj −P

�→ 0). Since for

any sequence Qj in V , we have Qj
�→ 0 ⇔ µ(Qj) → 0, additivity of µ on V yields

µ(Pj)→ µ(P ). This shows that µ is � continuous on V . For arbitrary P ∈ P(A),
we define µ(P ) to be limj µ(Pj), where Pj is any sequence in V such that Pj � P ∀j
and Pj

�→ P . Henceforth, we will regard µ as being defined on all of P(A). One
also shows very easily that P � Q ⇔ µ(P ) ≤ µ(Q) for P,Q ∈ P(A). Now let
S and T in P(A) be mutually orthogonal with 0 ≺ S and 0 ≺ T . Let Sj be any

sequence in V such that Sj � S and Sj
�→ S. If j ∈ N, then T � S⊥j by Proposition

2.14; hence there exists Tj ∈ V(S⊥j ) such that Tj � T and such that Tj is in any
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desired � neighbourhood of T . This implies that we can choose Tj
�→ T . Corollary

2.15 and additivity of µ on V then gives µ(S) + µ(T ) = limj µ(Sj) + limj µ(Tj) =
limj{µ(Sj) + µ(Tj)} = limj µ(Sj + Tj) = µ limj(Sj + Tj) = µ(S + T ). This is
sufficient to show additivity of µ on P(A).

3. Conclusion

If � is a CP on P(A) for some von Neumann algebra A, then the restriction of
� to P(B), where B is a subspace of A, is also a CP. Furthermore, weak or uniform
continuity of � is automatically inherited on P(B). Hence type decomposition of
von Neumann algebras leads to the final results below (incorporating Theorem 3.14
of [11]):

Theorem 3.1. (a) Let A be a von Neumann algebra without a finite direct sum-
mand, and let � be a comparative probability on P(A). Then � is implemented by
a state if and only if � is uniformly continuous.

(b) Let A be a von Neumann algebra without a direct summary of type In, n <∞,
and let � be a comparative probability on P(A). Then � is implemented by a normal
state if and only if � is weakly continuous.

In our search for implementability based on the continuity condition, finiteness of
A, whether it be in operator algebraic terms or in terms of linear dimension, seems
to be the main obstacle. Thus, where we have the latter form of finiteness, and
hence both, we have no result at all. Where we have only the former, i.e., the type
II1 case, we have a result only if we insist on weak continuity as the counterexample
in Section 1 shows. From the proofs, it is clear that the difficulty arising from this
finiteness is the loss of connectedness of P(A). Thus in the worst case we have no
connectedness of P(A) in any “reasonable” topology, whereas in the type II1 case
we have weak but not uniform connectedness.
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