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ON THE DENSITY OF PROPER EFFICIENT POINTS
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Abstract. In this paper, our aim is to discuss the density of proper efficient
points. As an interesting application of the results in this paper, we want to
prove a density theorem of Arrow, Barankin, and Blackwell.

In [1], Luc introduced a new concept of the proper efficient point for a set.
Using some results of recession cone, Luc established efficiency conditions, especially
proper efficiency and domination properties ( [1, 2]). The present paper is devoted
to the study of the density of proper efficient points. In detail, the set of proper
efficient points for a set is dense in the set of efficient points. As an interesting
application of the results in this paper, we prove a density theorem of Arrow,
Barankin, and Blackwell ( [3, 4]).

First let us recall some notations:
Throughout the paper, E is a separated locally convex topological linear space

and E∗ its topological dual. U(0) denotes the family of balanced open convex
neighbourhoods of the origin in E. For A ⊂ E, cone(A), cl(A), and int(A) denote
the generated cone, the closure, and the interior of A, respectively.

Let C ⊂ E be a convex cone, and let A be a nonempty subset of E. We say that
x ∈ A is an efficient point of A with respect to C if there exists y ∈ A, such that
y ∈ x−C; then y ∈ x+C. Equivalently, (x−C) ∩A ⊂ x+C. If the C is pointed
(that is, C ∩ (−C) = {0}), then x ∈ A is an efficient point iff

(x− C) ∩A = {x}.
We denote by E(A,C) the set of all efficient points of A (with respect to C).

We say that x ∈ A is a proper efficient point of A with respect to C if there exists
a closed convex cone K 6= E such that C\{0} ⊂ int(K) and x ∈ E(A,K).

The set of proper efficient points of A is denoted by PropE(A,C). It is obvious
that the set of proper efficient points of A is contained in the set of efficient points,

PropE(A,C) ⊂ E(A,C),

but the converse is not generally true.
If C is a convex cone, the convex set B ⊂ C is said to be a base of C if

0 /∈ cl(B) and C = cone(B) =
⋃
{tB : t ≥ 0} = {tb : t ≥ 0, b ∈ B}.

A cone with base must be pointed.
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For the cone C with base B, we define the “expansion” cone as below.
According to 0 /∈ cl(B), there exists a balanced convex open neighbourhood

U∗ ∈ U(0) such that

U∗ ∩B = ∅.
Let N(0) = {U ⊂ U∗ : U ∈ U(0)}, and for U ∈ N(0), let

CU = cl(cone(B + U)).

CU is said to be an expansion cone of C. It is clear that the expansion cone CU is
a closed convex cone.

Lemma 1. For any U ∈ N(0), we have that

C\{0} ⊂ int(CU ) and 0 /∈ int(CU ).

Proof. Let x ∈ C\{0}. There exists b ∈ B, t > 0, such that x = tb, so

x+ tU = tb+ tU ⊂ t(B + U) ⊂ cone(B + U) ⊂ CU .
Therefore, x ∈ int(CU ).

Assume that 0 ∈ int(CU ), for some U ∈ N(0); then CU = E. Choose any b ∈ B.
By −b ∈ CU , there is some net {µτ (bτ + uτ ) : τ ∈ Λ}, µτ > 0, bτ ∈ B, uτ ∈ U ,
such that µτ (bτ + uτ ) → −b, consequently µτ (bτ + uτ ) + b → 0. Since U is a
neighbourhood of the zero, there exists τ0 ∈ Λ such that

µτ0(bτ0 + uτ0) + b ∈ U,
or

µτ0(bτ0 + uτ0) + b = vτ0 , vτ0 ∈ U,
and consequently

µτ0
µτ0 + 1

bτ0 +
1

µτ0 + 1
b =

1

µτ0 + 1
vτ0 +

µτ0
µτ0 + 1

(−uτ0) := wτ0 .

This implies wτ0 ∈ B ∩ U (since U is balanced and convex, and B is convex),
which contradicts that B ∩ U = ∅. This contradiction shows that 0 /∈ int(CU ), for
all U ∈ N(0). The proof of Lemma 1 is complete.

Theorem 1. Assume that C is a closed convex cone with base B. Then for any
compact set A ⊂ E, the set of proper efficient points of A is dense in the set of
efficient points of A,

E(A,C) ⊂ cl(PropE(A,C)).

Proof. Let A 6= ∅ be a compact set, and x ∈ E(A,C). Without loss of generality,
we may assume that x = 0, thus (0 − C) ∩ A = {0}. We must show that there
exists a net {xτ} ⊂ PropE(A,C) such that xτ → 0.

For any U ∈ N(0), assume that CU is the expansion cone, and let AU = (0−CU)∩
A. Since AU is compact, by using the usual existence theorem of efficient points
(see [7, p. 140, Theorem 6.3]), there exists an efficient point of AU with respect to
CU . Let xU ∈ E(AU , CU ). Since AU is a section of A at 0, xU ∈ E(A,CU ). Of
course CU is a closed convex cone with C\{0} ⊂ int(CU ), so

xU ∈ PropE(A,C) for U ∈ N(0).
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Since A is compact and {xU : U ∈ N(0)} ⊂ A, without loss of generality, we
may assume that xU → x ∈ A.

Now we have to prove that x = 0.
Since xU ∈ AU = (0−CU )∩A,−xU ∈ CU . Hence there exists a net tτ (bτ+uτ )→

−xU , where tτ ≥ 0, bτ ∈ B, uτ ∈ U . Considering −xU + U is a neighbourhood of
−xU , there exists some index τU such that

tτU (bτU + uτU ) ∈ −xU + U

or

tτU (bτU + uτU ) = −xU + yU , yU ∈ U.(1)

The number set {tτU : U ∈ N(0)} must be bounded. Otherwise, we may assume
that tτU → +∞. Obviously, the two nets {uτU : U ∈ N(0)} and {yU : U ∈ N(0)}
converge to 0. From (1) follows that

bτU =
−xU + yU

tτU
− uτU → 0;

this implies 0 ∈ cl(B), which is a contradiction, since 0 /∈ cl(B).
Since {tτU} is a bounded number set, we may assume without loss of generality

that tτU → t ≥ 0. By (1)

tτU bτU = (−xU + yU )− tτUuτU = −xU + (yU − tτUuτU )→ −x.
Considering {tτU bτU } ⊂ C, we conclude that −x ∈ C, or x ∈ −C. Since 0 ∈
E(A,C), and C is pointed, so x ∈ (−C)∩A = (0−C)∩A = {0}, therefore, x = 0,
consequently xU → 0. This completes the proof.

The result stated in Theorem 1 can be extended to weakly compact sets. Note
that the symbol “⇀” denotes weak convergence.

Theorem 2. Let C be a closed convex cone with bounded base B. Then for any
weakly compact set A ⊂ E, the set of proper efficient points of A is dense in the set
of efficient points of A,

E(A,C) ⊂ cl(PropE(A,C)).

Proof. Let us replace strong convergence by weak convergence, and note that for
a convex set w- cl(·) = cl(·). By using the same proof of Theorem 1, we can
conclude that there exists a net {xU : U ∈ N(0)} ⊂ PropE(A,C) such that
xU ⇀ 0 ∈ E(A,C).

Now, we must prove that xU → 0. According to (1) in Theorem 1,

tτU (bτU + uτU ) = −xU + yU for U ∈ N(0),

where uτU → 0, yU → 0, and tτU → t ≥ 0.
If t > 0, then

bτU =
−xU + yU

tτU
− uτU ⇀ 0.

This implies 0 ∈ w- cl(B) = cl(B), which is a contradiction. Therefore t = 0,
consequently tτU → 0.

Since B is bounded, {bτU} ⊂ B is bounded. Therefore,

xU = yU − tτU (bτU + uτU )→ 0.

The proof is complete.
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As an interesting application of the above theorems, we want to prove the Arrow-
Barakin-Blackwell theorem. For convenience, we introduce first some concepts and
definitions.

Let C be a closed convex cone, and let

C] = {f ∈ E∗ : f(x) > 0 for all x ∈ C\{0}}.
An element f ∈ E∗ is said to be strictly positive if f ∈ C]. Let A 6= ∅. x ∈ A
is said to be a positively proper efficient point of A if there exists some strictly
positive functional f ∈ C] such that

f(x) ≤ f(x) for all x ∈ A,
i.e.

f(x) = min{f(x) : x ∈ A}.
We denote by PsE(A,C) the set of those elements x ∈ A satisfying the above
condition. Obviously, for any subset A, one has that

PsE(A,C) ⊂ E(A,C).

The converse is not true, but we can very simply show the following conclusions.

Theorem 3 (the Arrow-Barankin-Blackwell theorem [3–6]). (i) Let C ⊂ E be a
closed convex cone with base B. Then for any compact convex set A ⊂ E, the
positively proper efficient point set of A is dense in the efficient point set,

E(A,C) ⊂ cl(PsE(A,C)).

(ii) Let C ⊂ E be a closed convex cone with bounded base B. Then for any
weakly compact convex set A, the above result is true.

Proof. It is sufficient to show only that

PropE(A,C) ⊂ PsE(A,C).

Indeed, let x ∈ PropE(A,C). By hypothesis, there exists a closed convex cone K
such that

C\{0} ⊂ int(K) and x ∈ E(A,K).

Since x ∈ E(A,K), (x − K) ∩ A ⊂ x + K. Consequently, we get
(x − K\l(K)) ∩ A = ∅, where l(K) = K ∩ (−K). Choose any x ∈ int(K). If
x ∈ l(K), then x ∈ −K, or −x ∈ K. This implies that 0 = 1

2x + 1
2 (−x) ∈ int(K)

(since K is convex), which contradicts the assumption that 0 /∈ int(K). Therefore
x ∈ int(K\l(x)). So, we obtain ∅ 6= int(K) ⊂ int(K\l(K)). Using a separating
theorem, there exists 0 6= f ∈ E∗ and a real t such that

sup f(x−K\l(K)) ≤ t ≤ inf f(A),

sup f(x− int(K\l(K)) < t ≤ inf f(A).

As x ∈ A and C\{0} ⊂ int(K) ⊂ int(K\l(K)), the second inequality implies
f ∈ C]. Furthermore, notice that for any x ∈ K, ∃{xn} ⊂ K\l(K), such that
xn → x, therefore, from the first inequality follows that sup f(x−K) ≤ t ≤ inf f(A).
By 0 ∈ K, we have f(x) ≤ f(x) for all x ∈ A, this is x ∈ PsE(A,C). So

PropE(A,C) ⊂ PsE(A,C);

this relation implies cl(PropE(A,C)) ⊂ cl(PsE(A,C)).
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Now, using Theorem 1 (respectively, Theorem 2), we obtain

E(A,C) ⊂ cl(PropE(A,C)) ⊂ cl(PsE(A,C)).

The proof is complete.

Concluding remarks

Borwein in [4] proved that every efficient point of a weakly compact convex set in
a finite-dimensional space is a limit of Borwein’s properly efficient points. Using the
concept of an approximating family of cones, and relaxing the convexity assumption
imposed upon the objective set, Helbig [10] proved the above fact, too. In 1989,
Sterna-Karwad discussed the existence of approximating families of cones in normed
spaces, and using this concept, she showed that every efficient point of a weakly
compact set in a normed space can be approximated by properly efficient points.
Clearly, the approximating family of a cone cannot be extended onto topological
vector spaces because this notion exists not in topological vector spaces (see [13]).
In this paper, in order to derive the density theorem of properly efficient points in
Luc’s sense which is a generalization of Henig’s properly efficient point in normed
spaces, we consider a generalised concept of approximation families of cones, in
which the “pointed” property is not required.

The author would like to thank the anonymous referee for many valuable sug-
gestions and comments which improved the quality of this paper.
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