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QUASIDISKS AND THE ZYGMUND PROPERTY

ZHU LAIYI AND ZHONG LEFAN

(Communicated by Albert Baernstein II)

Abstract. In this paper, we obtain a new characterization of quasidisks by
the Zygmund property.

1. Introduction

Suppose that D is a proper subdomain of the finite complex plane C. For z ∈ C
and 0 < r < ∞, let B(z, r) denote the open disk with center z and radius r. For
constant M > 0 and f(z) analytic in D, we say f(z) ∈MHt

2 if the inequality

|f(z)− P1(f, z)| ≤Mδ log
2d

δ
(1.1)

holds for any z1, z2 ∈ D and z ∈ D ∩ [B(z1, d) ∪ B(z2, d)], where d = |z1 − z2|,
δ = min{|z − z1|, |z − z2|}, and

P1(f, z) =
z2 − z
z2 − z1

f(z1) +
z − z1

z2 − z1
f(z2).(1.2)

Let Ht
2 =

⋃
M>0 MHt

2. By [1], in the case D = {z : |z| < 1}, Ht
2 is the following

well-known Zygmund’s class Λ∗:

Λ∗ =

{
f(z) analytic in D sup

|h|≤t
max

θ∈|0,2π|
|f(ei(θ+h))− 2f(eiθ) + f(ei(θ−h))| ≤Mf t

}
.

(1.3)

Zygmund’s class Λ∗ has many important applications in approximation theory.
A domain D ⊂ C is said to be an (α, β)-John domain, 0 < α ≤ β <∞, if there

exists z0 ∈ D such that every z ∈ D can be joined to z0 by a rectifiable curve
γ : [0, d]→ D, satisfying:

(a) γ(0) = z, γ(d) = z0;

(b) d ≤ β;

(c) dist(γ(s), ∂D) ≥ αs
d

(0 ≤ s ≤ d),

(1.4)

where s is the arc-length parameter.
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A domain D ⊂ C is said to be an (α, β)-uniform domain, if for each pair of
points z1, z2 ∈ D, z1 6= z2, there is an (α|z1 − z2|, β|z1, z2|)-John domain G such
that z1, z2 ∈ G ⊂ D.
D is said to be a K-quasidisk if it is the image of a disk or half-plane under a

K-quasiconformal mapping f : Ĉ→ Ĉ, where Ĉ = C ∪ {∞}. By [5], we know that
if D is a K-quasidisk, then D is an (α, β)-uniform domain for constants α and β
that depend only on K.

Quasidisks were characterized in [3] and [4] by the Hardy-Littlewood property
(only for unbounded domains) and in [2] by the Schwarzian univalence criterion.
In 1992, we obtained the following theorem.

Theorem Z ([6]). Suppose that D is a quasidisk in C. Then necessary and suffi-
cient conditions for f(z) ∈ Ht

2 are that f(z) is analytic in D and satisfies

|f ′′(z)| = O(dist(z, ∂D)−1), z ∈ D.(1.5)

The sketch of the proof is as follows.
Suppose that f(z) ∈ Ht

2. For any z ∈ D, let 0 < r < dist(z, ∂D)/4. Then
Dr = B(z, r) ⊂ D. Choosing z1, z2 ∈ Dr with |z1 − z2| = 2r,

Dr ⊂ B(z1, 2r) ∪B(z2, 2r) ⊂ D(1.6)

and

Dr\{z1, z2} ⊂ B(z1, 2r) ∪B(z2, 2r).(1.7)

Setting

P1(f, z) =
z2 − z
z2 − z1

f(z1) +
z − z1

z2 − z1
f(z2),

we have

f(z)− P1(f, z) =
1

2πi

∫
∂Dr

f(ζ)− P1(f, ζ)

ζ − z dζ.(1.8)

It follows that

f ′′(z) =
1

πi

∫
∂Dr

f(ζ)− P1(f, ζ)

(ζ − z)3
dζ.(1.9)

By (1.1) we have

|f ′′(z)| ≤ Mf

πr3

∫
∂Dr

δ(ζ) log
4r

δ(ζ)
|dζ|,(1.10)

where δ(ζ) = min{|ζ − z1|, |ζ − z2|}.
Set

ζ = z + reiθ, zk = z + reiθk , k = 1, 2.

Then

δ(ζ) = 2rmin

{
sin

θ − θk
2

}
,

so

|f ′′(z)| ≤ Mf

πr3
16r2

∫ 2π

0

sin
θ

2
log

2

sin θ
2

dθ ≤ C0
1

r
.

Taking r = dist(z, ∂D)/8 yields (1.5).
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In order to prove the sufficiency, let z1, z2 ∈ D and z1 6= z2. For any z ∈
[B(z1, h)∪B(z2, h)]∩D, let δ = min{|z1−z|, |z2−z|}. Since D is an (α, β)-uniform
domain, for k = 1, 2 there exists an (α|zk − z|, β|zk, z|)-John domain Dk ⊂ D
containing z and zk. Let zk0 be the point in the definition of the (α|zk−z|, β|zk, z|)-
John domain Dk, γ1k the corresponding rectifiable arc joining z to zk0, and γ2k the
arc joining zk to zk0. Then we have

f(z)− P1(f, z) =
z2 − z
z2 − z1

[∫
γ1k

(ζ − z)f ′′(ζ)dζ −
∫
γ2k

(ζ − z1)f ′′(ζ)dζ

]
− z − z1

z2 − z1

[∫
γ2k

(ζ − z2)f ′′(ζ)dζ −
∫
γ1k

(ζ − z)f ′′(ζ)dζ

]
+

(z2 − z)(z − z1)

z2 − z1
[f ′(z10)− f ′(z20)]

=S1 + S2 + S3.

(1.11)

It is easy to see that

Sk = O(δ), k = 1, 2.(1.12)

We estimate S3. By virtue of (c) in (1.4), we have

dist(zk0, ∂D) ≥ α|z − zk|, k = 1, 2.(1.13)

In the case

|z10 − z20| ≤ max
k=1,2

dist(zk0, ∂D)/2,

we may assume without loss of generality that dist(z20, ∂D) ≥ dist(z10, ∂D). Then
the open disk B2 with center z20 and radius dist(z20, ∂D)/2 is contained in D. Con-
sequently, the distance of each point on B2 to ∂D is not less than dist(z20, ∂D)/2.
Noting that z10 ∈ B2, let σ be the segment from z10 to z20. Then we have

|f ′(z10)− f ′(z20)| =
∣∣∣∣∫
σ

f ′′(ζ)dζ

∣∣∣∣ = O(1).

Thus

S3 = O(δ).

In the case |z10 − z20| ≥ maxk=1,2 dist(zk0, ∂D)/2, it is not too difficult to show
that

|f ′(z10)− f ′(z20)| = O

(
log
|z10 − z20|

δ

)
.

It follows from (1.13) and (1.12) that

|f(z)− P1(f, z)| ≤Mδ log
2h

δ
.

This proves that f(z) ∈ Ht
2.

Definition 1. Suppose that D is a proper subdomain of C. We say that D has the
Zygmund property if there exists a constant M > 0 such that f(z) ∈ Ht

2 whenever
f(z) is analytic in D and satisfies |f ′′(z)| ≤M dist(z, ∂D)−1 in D.
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From Theorem Z we know that quasidisks have the Zygmund property. In the
present paper we show that, if an unbounded domain C has the Zygmund property,
it is a quasidisk too. We thus obtain a characterization of unbounded quasidisks
by the Zygmund property.

Theorem. Suppose that D is a simply connected domain in Ĉ = C ∪ {∞} with

∞ ∈ ∂D and that D∗ = Ĉ\D is a domain. Then D is a quasidisk if and only if
both D and D∗ have the Zygmund property.

2. Some lemmas

Lemma 1 ([3]). Suppose that D is a simply connected subdomain of C and that
z0 ∈ C. If there exist points in D∩B(z0, r) which cannot be joined in D∩B(z0, br),
then there exist points z1, z2 ∈ D ∩B(z0, r) and w0 ∈ ∂B(z0, br)\D such that

|h(z1)− h(z2)− 2πi| ≤ 2

b− 1
(2.1)

whenever h(z) is an analytic branch of log(z − w0) in D.

Under the conditions of Lemma 1, let z0, z1, z2 and w0 be points as indicated in
its statements. Choose an arc γ in D from z1 to z2, and let z′ be the first point
at which γ meets ∂B(z1,

d
2 ) when γ is traversed from z1 to z2, where d = |z1 − z2|.

Denote by γ′ the subarc of γ from z1 to z′.
Given h(z), an analytic branch of log(z − w0) in D, let h0(z) be the analytic

branch of log(z − w0) in B(z0, br) satisfying

h0(z1) = h(z1).(2.2)

If σ is the segment from z1 to z2, then plainly

|h0(z2)− h0(z1)| =
∣∣∣∣∫
σ

h′0(z)dz

∣∣∣∣ ≤ ∫
σ

|dz|
|z − w0|

≤ 2

b− 1
.(2.3)

Since γ′ ⊂ D ∩B(z1,
d
2 ) ⊂ B(z0, br), we infer from (2.2)

h(z′) = h0(z′).(2.4)

Both h0(z) and h(z) are analytic branches of log(z −w0) in some neighborhood of
z2; we thus have h0(z2)− h(z2) = 2kπi. Using (2.1), (2.2) and (2.3) we conclude

|h0(z2)− h(z2)− 2πi| ≤ 4

b− 1
≤ 4

3
,

h0(z2)− h(z2) = 2πi.(2.5)

For z ∈ B(z0, br), let f0(z) = (z − w0)h0(z).

Lemma 2. Under the conditions of Lemma 1 and with z0, z1, z2, w0 and z′ as in-
dicated in the statement of the lemma and the ensuing discussion, it is the case
that

|f0(z′)− P1(f0, z
′)| ≤ 3d

b− 2
.(2.6)
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Proof. Let σ1 be the segment from z1 to z′, and σ2 the segment from z2 to z′. We
compute

|f0(z′)− P1(f0, z
′)|

=

∣∣∣∣ z2 − z′
z2 − z1

[f0(z′)− f0(z1)] +
z′ − z1

z2 − z1
[f0(z′)− f0(z2)]

∣∣∣∣
=

∣∣∣∣ z2 − z′
z2 − z1

∫
σ1

(z − z1)f ′′0 (z)dz +
z′ − z1

z2 − z1

∫
σ2

(z − z2)f ′′0 (z)dz

∣∣∣∣
≤ |z2 − z′|
|z2 − z1|

∫
σ1

|z − z1|
|dz|
|z − w0|

+
|z′ − z1|
|z2 − z1|

∫
σ2

|z − z2|
|dz|
|z − w0|

≤ 3

2
|z1 − z′|

|z1 − z′|
(b− 2)r

+
|z1 − z′||z′ − z2|
|z2 − z1|

|z2 − z′|
(b− 2)r

≤ 6

b− 2
|z1 − z′| ≤

3d

b− 2
.

Definition 2 ([2]). A set E in Ĉ is said to be a-locally connected if for all z0 ∈ C
and r > 0, any pair of points in E ∩B(z0, r) can be joined in E ∩B(z0, ar) and any
pair of points in E\B(z0, r) can be joined in E\B(z0,

r
a ).

Lemma 3 ([2]). Suppose that a domain D in C is a-locally connected and that ∂D
is connected and contains at least two points. Then ∂D is a K-quasiconformal
circle, where K depends only on a.

3. Proof of the Theorem

The necessity of both D and D∗ having the Zygmund property is ensured by
Theorem Z. We must treat the sufficiency.

As in [2], we only need to prove the following proposition.

Proposition. Suppose that D is a simply connected proper subdomain of C which
has the Zygmund property. Then there exists a constant b > 4, which depends only
on the constant M in Definition 1, such that for all z0 ∈ C and r > 0, each pair of
points in D ∩B(z0, r) can be joined in D ∩B(z0, br).

Proof. Choose

b =
M log 4 + 8

π
+ 2,(3.1)

and suppose the conclusion does not hold for some z0 ∈ C and r > 0. Fix points
z1, z2 in D ∩ B(z0, r) which cannot be joined in D ∩ B(z0, br), and let z′ and w0

be as in section 2.

Consider h(z) an analytic branch of log(z − w0) in D, along with the function

f(z) = (z − w0)h(z).(3.2)

Then f(z) is analytic in D, where it satisfies

|f ′′(z)| = 1

|z − w0|
≤ dist(z, ∂D).(3.3)
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The hypothesis on D implies that

|f(z)− P1(f, z)| ≤Mδ log
2d

δ
(3.4)

holds for all z ∈ D ∩ [B(z1, d) ∪ B(z2, d)]. In particular, (3.4) holds for the point
z′ ∈ D ∩ [B(z1, d) ∪B(z2, d)]. Noting δ = |z′ − z1| = |z′ − z2| = d

2 , we have

|f(z′)− P1(f, z′)| ≤ Md log 4

2
.(3.5)

Because f(z1) = f0(z1), f(z′) = f0(z′) and f(z2) = f0(z2) + 2πi(z2 − w0), we
obtain

|f(z′)− P1(f, z′)| = |f0(z′)− P1(f0, z
′) + P1(f − f0, z

′)|

≥
∣∣∣∣ z′ − z1

z2 − z1
[f(z2)− f0(z2)]

∣∣∣∣− |f0(z′)− P1(f0, z
′)|

= π|z2 − w0| − |f0(z′)− P1(f0, z
′)|.

By (2.6) and (3.1), we conclude that

|f(z′)− P1(f, z′)| ≥ π(b− 2)r − 3d

b− 2

≥ (M log 4 + 8)d− 3πdM

log 4 + 8

≥Md log 4,

which contradicts (3.5).
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