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Abstract. Let G be a locally compact group equipped with right Haar mea-
sure. The right differences 4hϕ of functions ϕ on G are defined by 4hϕ(t) =
ϕ(th) − ϕ(t) for h, t ∈ G. Let ϕ ∈ L∞(G) and suppose 4hϕ ∈ Lp(G) for
some 1 ≤ p < ∞ and all h ∈ G. We prove that ‖4hϕ‖p is a right uniformly
continuous function of h. If G is abelian and the Beurling spectrum sp(ϕ) does

not contain the unit of the dual group Ĝ, then we show ϕ ∈ Lp(G). These
results have analogues for functions ϕ : G → X, where X is a separable or
reflexive Banach space. Finally, we apply our methods to vector-valued right
uniformly continuous differences and to absolutely continuous elements of left
Banach G-modules.

§1. Introduction

Let ξ ∈ Lp(R) for some 1 ≤ p ≤ ∞. Consider the indefinite integral ϕ(t) =

Pξ(t) =
∫ t

0 ξ(x)dx. Now 4hϕ(t) =
∫ t+h
t ξ(x) dx = χh ∗ ϕ(t) where χh is the

characteristic function of [−h, 0]. It follows that 4hϕ ∈ Lp(R) and moreover that
ϕ is continuous. We seek conditions under which there exists a constant function c
such that ϕ+ c ∈ Lp(R). In short we write ϕ ∈ Lp(R) + C.

More generally, let ϕ ∈ L∞(G) where G is a locally compact group equipped
with right Haar measure and suppose 4hϕ ∈ Lp(G) for some 1 ≤ p < ∞ and all
h ∈ G. What additional conditions ensure ϕ ∈ Lp(G)?

To answer this question, we study the function ψ(h) = 4hϕ and develop a new
method for investigating difference problems.

Firstly, let X be a Banach space. The right and left differences of a function
ϕ : G → X are defined by ∆hϕ(t) = ϕ(th) − ϕ(t) and ∆hϕ(t) = ϕ(ht) − ϕ(t)
respectively. Let e be the unit in G. We say that ϕ is right uniformly continuous if
limv→e supt∈G||∆vϕ(t)|| = 0, and let Crub(G,X) be the space of all right uniformly
continuous bounded functions ϕ : G → X . For functions f, g : G → C we will
use the involution given by f∗(t) = f(t−1) and the right convolution f ∗ g(t) =∫
G f(th−1)g(h)dh. The space of compactly supported continuous functions ϕ : G→
X will be denoted by Cc(G,X) or Cc(G) if X = C.

In section 2 we prove that the function ψ defined above is right uniformly con-
tinuous. This allows us in section 3 to construct a continuous weight function w on
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G which dominates ψ. The corresponding Beurling algebra L1
w(G) is a Wiener al-

gebra (see [10, pages 22, 83, 142]). Under the assumption that G is abelian and the

spectrum sp(ϕ) does not contain the unit ê of the dual group Ĝ, we use a Bochner-
Haar integral (see [11, page 132]) to show that ϕ ∈ Lp(G). For the definition of
spectrum see (3.1) below ([10, page 139] and [2]). As a consequence, we show that
if ξ ∈ Lp(R) for some 1 ≤ p ≤ ∞ and if 0 /∈ sp(ξ), then there exists a constant
function c such that Pξ + c ∈ Lp(R). We also show that these results remain valid
for X-valued functions where X is a separable or reflexive Banach space.

In section 4 we use some of these techniques to prove that vector-valued bounded
functions with right uniformly continuous right differences are right uniformly con-
tinuous. The abelian case was obtained in [4] and [6]. As a consequence, we obtain
in section 5 a characterization of absolutely continuous elements of left Banach
G-modules.

§2. Technical lemmas

Lemma 2.1. Let ϕ ∈ L∞(G) and suppose 4hϕ ∈ Lp(G) for some 1 ≤ p ≤ ∞
and all h ∈ G. Then the function ψ : G→ Lp(G), ψ(h) = 4hϕ, is right uniformly
continuous if and only if it is continuous at one point h0 ∈ G.

Proof. For arbitrary h, v ∈ G we have ‖ψ(hv) − ψ(h)‖p = ‖ψ(v) − ψ(e)‖p =
‖ψ(h0v)− ψ(h0)‖p and the lemma follows.

Lemma 2.2. Let ϕ ∈ L∞(G) and suppose 4hϕ ∈ Lp(G) for some 1 < p < ∞
and all h ∈ G. Let g ∈ Lq(G) where 1

p + 1
q = 1. Then the function ψg : G → C,

ψg(h) =
∫
G
4hϕ(t)g(t)dt, is continuous.

Proof. Firstly let g ∈ Cc(G). Then for h, v ∈ G we have

ψ∗g(h) =

∫
G

ϕ(t)4hg(t) dt and ∆vψ
∗
g(h) =

∫
G

ϕ(th−1)∆vg(t) dt.

Hence ψ∗g is right uniformly continuous . In particular, ψg is continuous.
Secondly, take an arbitrary g ∈ Lq(G). There exists a sequence {gn} in Cc(G)

converging to g in the Lq-norm. This implies |ψgn(h) − ψg(h)| → 0 as n → ∞
for all h ∈ G. By the Baire category theorem [11, page 12], ψg is continuous on a
set D of the second category. Since G is locally compact, D 6= ∅. Now we show
that continuity of ψg at one point h0 implies its continuity on G. Indeed, note
that for h, k ∈ G we have 4kψg(h) = ψg(hk)−ψg(h) =

∫
G

[ϕ(thk) −ϕ(th)]g(t)dt =

(4kϕ)∗ ∗ g(h−1). By [7, 20.32 (e) ], 4kψg ∈ C0(G). From the identity 4vψg(h)
= 4vψg(h0) +4v4h−1

0 hψg(h0), the continuity of ψg at h0 and the continuity of

∆h−1
0 hψg at h0 we conclude that ψg is continuous.

Theorem 2.3. Let ϕ ∈ L∞(G) and suppose 4hϕ ∈ Lp(G) for some 1 < p < ∞
and all h ∈ G. Then ψ : G→ Lp(G), ψ(h) = 4hϕ, is right uniformly continuous.

Proof. By Lemma 2.2, ψ is weakly continuous. That is, 〈ψ(h), g〉 = ψg(h) is a
continuous function of h for all g ∈ Lq(G). By a Theorem of Namioka [9, Theorem
4.1], ψ is continuous on a dense Gδ subset of G. By Lemma 2.1, ψ is right uniformly
continuous.

We need the following proposition.
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Proposition 2.4. Let X be a Banach space. Let ϕ : G→ X be bounded on an open
subset U of G. Suppose 4hϕ is continuous for each h ∈ G. Then ϕ is continuous.

Proof. For g ∈ X∗, the dual of X , set ϕg = g◦ϕ. Then ϕg is bounded on U and the
differences ∆hϕg = g◦∆hϕ are all continuous. By [1, Theorem 2.1] ϕg is continuous
at each ho ∈ U . From the identity ∆vϕg(h) = ∆v∆h−1

o hϕg(ho) + ∆vϕg(ho) we
conclude that ϕg is continuous on G. By [9, Theorem 4.1], ϕ is continuous on a
dense Gδ subset of G. The identity ∆vϕ(h) = ∆v∆h−1

1 hϕ(h1) + ∆vϕ(h1) shows

that ϕ is continuous on G.

Corollary 2.5. Let ϕ ∈ L∞(G) and suppose 4hϕ ∈ L1(G) for all h ∈ G. Then
ψ : G→ L1(G), ψ(h) = 4hϕ, is right uniformly continuous.

Proof. Since 4hϕ ∈ L1(G)∩L∞(G), we conclude 4hϕ ∈ Lp(G) for all 1 ≤ p ≤ ∞.
By Theorem 2.3, ‖4hϕ‖1+ 1

n
is a continuous function of h for each n ∈ N, the

natural numbers. Moreover, limn→∞‖4hϕ‖1+ 1
n

= ‖4hϕ‖1. By the Baire category

theorem, ‖4hϕ‖1 is a continuous function of h except on a subset of G of the first
category. So it is continuous at some h0 ∈ G. Hence there exists a neighbourhood
V of the unit e in G such that ‖ψ(h0v)‖1 = ‖4h0vϕ‖1 ≤ 1+‖4h0ϕ‖1 for all v ∈ V .
Consider the differences 4kψ for k ∈ G. We have ||∆v∆kψ(h)||1 = ||∆v∆kϕ||1 → 0
as v → e, by [7, Theorem 20.4], since 4kϕ ∈ L1(G) for each k ∈ G. Hence
4kψ : G → L1(G) is continuous. By Proposition 2.4, ψ is continuous, and by
Lemma 2.1, ψ is right uniformly continuous.

Remark 2.6. Proposition 2.4 also holds true for the more general case of σ-well
α-favorable topological groups as defined in [3]. In this case we use [3, Theorem 1]
instead of [9, Theorem 4.1].

Remark 2.7. Let X be a Banach space and 1 ≤ p ≤ ∞. Then Lp(G,X) denotes
the Banach space of strongly measurable functions ϕ : G→ X for which ||ϕ(.)||X ∈
Lp(G). If 1 ≤ p <∞, then Cc(G,X) is dense in Lp(G,X). Moreover, if 1 < p <∞
and X is separable or reflexive, then the dual of Lp(G,X) is Lq(G,X∗), where
1
p + 1

q = 1. For this, see [5, 8.20.3 and 8.20.5]. It follows that the results of this

section remain valid with Lp(G) replaced by Lp(G,X) for 1 ≤ p ≤ ∞ whenever X
is a separable or reflexive Banach space.

Remark 2.8. If X is a Banach space not containing a subspace isomorphic to c◦
(the Banach space of convergent to zero complex sequences), then L1(G,X) is also
a Banach space not containing a subspace isomorphic to c◦ (see [8]). It follows that
in the proof of Corollary 2.5 with X = C we can avoid application of Proposition
2.4 and conclude instead from [1, Theorem 2.1] that ψ is continuous at some point
ho and hence is right uniformly continuous. This simplification is not available for
Banach spaces X containing subspaces isomorphic to c◦.

§3. Bounded functions with differences in Lp(G)

In this section G is a locally compact abelian group. Let ϕ ∈ Lp(G) for some
1 ≤ p ≤ ∞. Then [7, Corollary 20.14], f ∗ϕ ∈ Lp(G) for each f ∈ L1(G). It follows
that

I(ϕ) = {f ∈ L1(G) : f ∗ ϕ = 0}
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is a closed ideal of L1(G). We define

(3.1) sp(ϕ) = hull I(ϕ) = {γ ∈ Ĝ : f̂(γ) = 0 for all f ∈ I(ϕ)}

where Ĝ is the dual group of G and f̂ is the Fourier transform of f . For the
following, see [2, Proposition 1.1].

Proposition 3.1. Let ϕ ∈ Lp(G) for some 1 ≤ p ≤ ∞. Then

(i) sp(ϕ ∗ f) ⊂ sp(ϕ) ∩ supp (f̂) for all f ∈ L1(G); and

(ii) sp(ϕ) = ∅ if and only if ϕ = 0.

Now let w be a weight function on G satisfying the Beurling-Domar condition.
See [10, page 132]. Then the Beurling algebra L1

w(G) = {f ∈ L1(G) : wf ∈ L1(G)}
is a Wiener algebra [10, 6.3.1]. The dual of L1

w(G) is L∞w (G) = {ϕ : ϕw ∈ L∞(G)}. If
ϕ ∈ L∞w (G), then its spectrum with respect to L1

w(G) will be denoted by spw(ϕ) =
hull Iw(ϕ), where Iw(ϕ) = {f ∈ L1

w(G) : f ∗ ϕ = 0} (see [10, page 142]).

We show

Theorem 3.2. Let ϕ ∈ L∞(G) and suppose 4hϕ ∈ Lp(G) for some 1 ≤ p < ∞
and all h ∈ G. If ê /∈ sp(ϕ), then ϕ ∈ Lp(G).

Proof. By Theorem 2.3 and Corollary 2.5, ψ : G → Lp(G), ψ(h) = 4hϕ, is uni-
formly continuous. Define w : G→ R by w(h) = 1 + ‖ψ(h)‖p + ‖ψ(h−1)‖p. Then

(i) w(hk) ≤ w(h)w(k) for all h, k ∈ G;

(ii) w is uniformly continuous; and

(iii) w(hn) ≤ nw(h) for all h ∈ G,n ∈ N.

It follows that w is a weight function on G satisfying the Beurling-Domar con-
dition. Hence L1

w(G) is a Wiener algebra. Since ê /∈ sp(ϕ), by [10, 2.1.3, Re-
mark] there exist a neighbourhood V of ê and a function f ∈ L1

w(G) such that

supp(f̂) ⊂ V , f̂(ê) = 1 and V ∩ sp(ϕ) = ∅. By Proposition 3.1, ϕ ∗ f = 0. Hence
ϕ(t) =

∫
G

[ϕ(t)− ϕ(ts−1)]f(s)ds = −
∫
G
4s−1ϕ(t)f(s)ds. The integrand as a func-

tion of s from G to Lp(G) is weakly Borel measurable. Moreover, we claim that
it is almost separably-valued with respect to Haar measure. Indeed f ∈ L1(G),
so its (essential) support is σ-compact. The function 4s−1ϕ of s is continuous
and, therefore, restricted to the support of f it has a range which is σ-compact in
Lp(G) and hence separable. The claim follows. By Pettis’s theorem [11, page 131]
the integrand is strongly Borel measurable. Moreover, since ‖4s−1ϕ‖p ≤ w(s), by
Bochner’s theorem [11, page 133] the Bochner-Haar integral

∫
G
4s−1ϕf(s)ds exists

and belongs to Lp(G). That is, ϕ ∈ Lp(G).

Letting w denote the weight function defined above, one can show by the same
method as used in the proof of Theorem 3.2.

Theorem 3.3. Let ϕ ∈ L∞(G) and suppose 1 ≤ p < ∞. Then ϕ ∈ Lp(G) if and
only if

(i) 4hϕ ∈ Lp(G) for all h ∈ G, and

(ii) there exists f ∈ L1
w(G), f 6= 0, such that f ∗ ϕ ∈ Lp(G).

Similarly, we have
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Theorem 3.4. Let ϕ ∈ L∞(G) and suppose 4hϕ ∈ Lp(G) for some 1 ≤ p < ∞
and all h ∈ G. If f ∈ L1

w(G) and f̂(ê) = 1, then ϕ− f ∗ ϕ ∈ Lp(G).

To study indefinite integrals, we use the weight

(3.2) v(x) = 1 + |x|, x ∈ R.

It is readily seen that v is a symmetric weight function satisfying Beurling conditions
(see [10, page 17]). It follows that L1

v(R) is a Wiener algebra. We denote by Cu(R)
(Cub(R) ) the set of all complex-valued uniformly continuous (uniformly continuous
bounded) functions defined on R.

Proposition 3.5. If ξ ∈ Lp(R) where 1 ≤ p ≤ ∞ and v is given by (3.2), then
Pξ ∈ Cu(R) ∩ L∞w (R).

Proof. If p = 1, it is well-known that Pξ is absolutely continuous and hence
uniformly continuous. For arbitrary p, and x, h ∈ R, |Pξ(x + h) − Pξ(x)| =

|
∫ h

0
ξ(x + t) dt| ≤ |h|1−1/p‖ξ‖p showing that Pξ ∈ Cu(R). Moreover, |Pξ(x)| =

|
∫ x

0 ξ(t) dt| ≤ |x|
1−1/p‖ξ‖p, showing that Pξ ∈ L∞w (R).

Theorem 3.6. If ξ ∈ Lp(R) where 1 ≤ p ≤ ∞ and 0 6∈ sp(ξ), then Pξ ∈ Cub(R).
Moreover, Pξ ∈ Lp(R) + C.

Proof. Since 0 6∈ sp(ξ), there exists a neighbourhood V = [−δ, δ] such that sp(ξ) ∩
V = ∅. Since L1

v(R) is a Wiener algebra, there is a function h ∈ L1
v(R) such that ĥ =

1 for |λ| ≤ δ/4 and ĥ = 0 for |λ| ≥ δ/3. By Proposition 3.1, h∗ϕ = 0. Similarly, by

[10, page 140-141] and [2, Proposition 1.1], spv(h∗Pξ) ⊂ supp (ĥ)∩spv(Pξ) ⊂ {0}.
Since d(h∗Pξ)

dx = h ∗ ξ = 0, we conclude that h ∗ Pξ=c, a constant. If η = Pξ − c,
then 0 6∈ spw(η). Indeed, h ∗ η = h ∗ Pξ − h ∗ c = c − c = 0. Thus h ∈ Iv(η)

and ĥ(0) = 1, showing 0 6∈ spw(η). By Proposition 3.5, η ∈ Cu(R) and so by [2,
Theorem 4.2], η is bounded and so is Pξ. This proves that Pξ ∈ Cub(R). The
function η satisfies all the conditions of Theorem 3.2, therefore η ∈ Lp(R). Hence
Pξ ∈ Lp(R) + C.

Remark 3.7. The results of section 3 remain true for X-valued functions provided
that X is separable or reflexive. The spectrum of ϕ ∈ Lp(G,X) is defined again by
(3.1).

§4. Right uniformly continuous differences

In this section and the next, we again take a locally compact group G and
a Banach space X . The following theorem, for the case of abelian groups, was
proved by Datry and Muraz [4, Théorème 4, Corollaire]. Their proof was indirect,
using deep results for Banach G-modules. We give a different direct proof, using
the techniques of the previous sections, and then deduce results for G-modules in
section 5.

Theorem 4.1. Let ϕ : G → X be a bounded function and suppose 4hϕ ∈
Crub(G,X) for all h ∈ G. Then ϕ ∈ Crub(G,X).

Proof. Define ψ : G→ Crub(G,X) by ψ(h) = 4hϕ. Then for h, k ∈ G we have

||∆v∆kψ(h)||∞ = ||∆v∆kϕ||∞ → 0 as v → e.
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So ∆kψ : G → Crub(G,X) is continuous. By Proposition 2.4, ψ is continuous.
Finally, continuity of ψ at e implies that ϕ is right uniformly continuous.

Remark 4.2. In view of Remark 2.6, Theorem 4.1 holds true for the more general
case of σ-well α-favorable topological groups.

§5. Application to left G-modules

A Banach space X together with a family of bounded linear operators Ah : X →
X , for h ∈ G, is called a left Banach G-module if

(i) Ae(x) = x for all x ∈ X ;
(ii) Ahk(x) = Ah(Ak(x)) for all h, k ∈ G and all x ∈ X ;
(iii) ‖Ah(x)‖ ≤ κ‖x‖ for all h ∈ G, all x ∈ X , and some κ > 0.
The space Xabs = {x ∈ X : ‖Avx− x‖ → 0 as v → e} is a closed submodule of

X . Its elements are called absolutely continuous. See Datry and Muraz [4], where
Theorem 5.2 below is obtained in the case G is abelian using a different proof.

For a fixed vector x ∈ X we study the function ψ : G→ X given by ψ(h) = Ahx.
So x is absolutely continuous if and only if ψ is continuous at e. In fact the following
is true.

Theorem 5.1. For an element x of a left Banach G-module X, the following are
equivalent.

(a) x ∈ Xabs;
(b) ψ is weakly continuous at some point in G;
(c) ψ is right uniformly continuous.

Proof. If x ∈ Xabs, then ψ is continuous, and therefore weakly continuous, at e.
So (a) implies (b). Next suppose ψ is weakly continuous at h0. From the identity
〈4vψ(h), x∗〉 = 〈4vψ(h0), A∗

hh−1
0

(x∗)〉 for h, v ∈ G and x∗ ∈ X∗, it follows that ψ

is weakly continuous on G. By [9, Theorem 4.1] ψ is continuous at some point h1.
From the identity 4vψ(h) = Ahh−1

1
(4vψ(h1)) it follows that ψ is right uniformly

continuous. Hence (b) implies (c). That (c) implies (a) is obvious.

Theorem 5.2. Let x be an element of a Banach G-module X. If Ahx− x ∈ Xabs

for all h ∈ G, then x ∈ Xabs.

Proof. For each k ∈ G, 4kψ(h) = Ah(Akx − x) which by Theorem 5.1 defines a
right uniformly continuous function 4kψ : G→ X . As ψ is bounded, Theorem 4.1
shows that ψ is right uniformly continuous. Hence x ∈ Xabs.

Remark 5.3. In view of Remark 2.6, the results of this section hold true for the
more general case of σ-well α-favorable topological groups.
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