DIFFERENCES OF VECTOR-VALUED FUNCTIONS ON TOPOLOGICAL GROUPS

BOLIS BASIT AND A. J. PRYDE

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let G be a locally compact group equipped with right Haar measure. The right differences $\triangle_h \varphi$ of functions φ on G are defined by $\triangle_h \varphi(t) = \varphi(th) - \varphi(t)$ for $h, t \in G$. Let $\varphi \in L^\infty(G)$ and suppose $\triangle_h \varphi \in L^p(G)$ for some $1 \leq p < \infty$ and all $h \in G$. We prove that $\|\triangle_h \varphi\|_p$ is a right uniformly continuous function of h. If G is abelian and the Beurling spectrum $sp(\varphi)$ does not contain the unit of the dual group \hat{G} , then we show $\varphi \in L^p(G)$. These results have analogues for functions $\varphi: G \to X$, where X is a separable or reflexive Banach space. Finally, we apply our methods to vector-valued right uniformly continuous differences and to absolutely continuous elements of left Banach G-modules.

§1. Introduction

Let $\xi \in L^p(\mathbb{R})$ for some $1 \leq p \leq \infty$. Consider the indefinite integral $\varphi(t) = P\xi(t) = \int_0^t \xi(x)dx$. Now $\triangle_h \varphi(t) = \int_t^{t+h} \xi(x)dx = \chi_h * \varphi(t)$ where χ_h is the characteristic function of [-h,0]. It follows that $\triangle_h \varphi \in L^p(\mathbb{R})$ and moreover that φ is continuous. We seek conditions under which there exists a constant function c such that $\varphi + c \in L^p(\mathbb{R})$. In short we write $\varphi \in L^p(\mathbb{R}) + \mathbb{C}$.

More generally, let $\varphi \in L^{\infty}(G)$ where G is a locally compact group equipped with right Haar measure and suppose $\triangle_h \varphi \in L^p(G)$ for some $1 \leq p < \infty$ and all $h \in G$. What additional conditions ensure $\varphi \in L^p(G)$?

To answer this question, we study the function $\psi(h) = \triangle_h \varphi$ and develop a new method for investigating difference problems.

Firstly, let X be a Banach space. The right and left differences of a function $\varphi:G\to X$ are defined by $\Delta_h\varphi(t)=\varphi(th)-\varphi(t)$ and $\Delta^h\varphi(t)=\varphi(ht)-\varphi(t)$ respectively. Let e be the unit in G. We say that φ is right uniformly continuous if $\lim_{v\to e}\sup_{t\in G}||\Delta_v\varphi(t)||=0$, and let $C_{rub}(G,X)$ be the space of all right uniformly continuous bounded functions $\varphi:G\to X$. For functions $f,g:G\to \mathbb{C}$ we will use the involution given by $f^*(t)=f(t^{-1})$ and the right convolution $f*g(t)=\int_G f(th^{-1})g(h)dh$. The space of compactly supported continuous functions $\varphi:G\to X$ will be denoted by $C_c(G,X)$ or $C_c(G)$ if $X=\mathbb{C}$.

In section 2 we prove that the function ψ defined above is right uniformly continuous. This allows us in section 3 to construct a continuous weight function w on

Received by the editors September 21, 1994 and, in revised form, January 4, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 43A15; Secondary 28B05, 39A05.

Key words and phrases. Differences, weight functions, spectrum, right uniform continuity, G-modules, weak continuity, absolutely continuous elements.

G which dominates ψ . The corresponding Beurling algebra $L^1_w(G)$ is a Wiener algebra (see [10, pages 22, 83, 142]). Under the assumption that G is abelian and the spectrum $sp(\varphi)$ does not contain the unit \hat{e} of the dual group \hat{G} , we use a Bochner-Haar integral (see [11, page 132]) to show that $\varphi \in L^p(G)$. For the definition of spectrum see (3.1) below ([10, page 139] and [2]). As a consequence, we show that if $\xi \in L^p(\mathbb{R})$ for some $1 \leq p \leq \infty$ and if $0 \notin sp(\xi)$, then there exists a constant function c such that $P\xi + c \in L^p(\mathbb{R})$. We also show that these results remain valid for X-valued functions where X is a separable or reflexive Banach space.

In section 4 we use some of these techniques to prove that vector-valued bounded functions with right uniformly continuous right differences are right uniformly continuous. The abelian case was obtained in [4] and [6]. As a consequence, we obtain in section 5 a characterization of absolutely continuous elements of left Banach G-modules.

§2. Technical Lemmas

Lemma 2.1. Let $\varphi \in L^{\infty}(G)$ and suppose $\triangle_h \varphi \in L^p(G)$ for some $1 \leq p \leq \infty$ and all $h \in G$. Then the function $\psi : G \to L^p(G)$, $\psi(h) = \triangle_h \varphi$, is right uniformly continuous if and only if it is continuous at one point $h_0 \in G$.

Proof. For arbitrary $h, v \in G$ we have $\|\psi(hv) - \psi(h)\|_p = \|\psi(v) - \psi(e)\|_p = \|\psi(h_0v) - \psi(h_0)\|_p$ and the lemma follows.

Lemma 2.2. Let $\varphi \in L^{\infty}(G)$ and suppose $\triangle_h \varphi \in L^p(G)$ for some $1 and all <math>h \in G$. Let $g \in L^q(G)$ where $\frac{1}{p} + \frac{1}{q} = 1$. Then the function $\psi_g : G \to \mathbb{C}$, $\psi_g(h) = \int_G \triangle_h \varphi(t) g(t) dt$, is continuous.

Proof. Firstly let $g \in C_c(G)$. Then for $h, v \in G$ we have

$$\psi_g^*(h) = \int_G \varphi(t) \triangle_h g(t) dt$$
 and $\Delta_v \psi_g^*(h) = \int_G \varphi(th^{-1}) \Delta_v g(t) dt$.

Hence ψ_q^* is right uniformly continuous . In particular, ψ_g is continuous.

Secondly, take an arbitrary $g \in L^q(G)$. There exists a sequence $\{g_n\}$ in $C_c(G)$ converging to g in the L^q -norm. This implies $|\psi_{g_n}(h) - \psi_g(h)| \to 0$ as $n \to \infty$ for all $h \in G$. By the Baire category theorem [11, page 12], ψ_g is continuous on a set D of the second category. Since G is locally compact, $D \neq \emptyset$. Now we show that continuity of ψ_g at one point h_0 implies its continuity on G. Indeed, note that for $h, k \in G$ we have $\Delta_k \psi_g(h) = \psi_g(hk) - \psi_g(h) = \int_G [\varphi(thk) - \varphi(th)] g(t) dt = (\Delta_k \varphi)^* * g(h^{-1})$. By [7, 20.32 (e)], $\Delta_k \psi_g \in C_0(G)$. From the identity $\Delta^v \psi_g(h) = \Delta^v \psi_g(h_0) + \Delta^v \Delta_{h_0^{-1}h} \psi_g(h_0)$, the continuity of ψ_g at h_0 and the continuity of $\Delta_{h_0^{-1}h} \psi_g$ at h_0 we conclude that ψ_g is continuous.

Theorem 2.3. Let $\varphi \in L^{\infty}(G)$ and suppose $\triangle_h \varphi \in L^p(G)$ for some $1 and all <math>h \in G$. Then $\psi : G \to L^p(G)$, $\psi(h) = \triangle_h \varphi$, is right uniformly continuous.

Proof. By Lemma 2.2, ψ is weakly continuous. That is, $\langle \psi(h), g \rangle = \psi_g(h)$ is a continuous function of h for all $g \in L^q(G)$. By a Theorem of Namioka [9, Theorem 4.1], ψ is continuous on a dense G_δ subset of G. By Lemma 2.1, ψ is right uniformly continuous.

We need the following proposition.

Proposition 2.4. Let X be a Banach space. Let $\varphi : G \to X$ be bounded on an open subset U of G. Suppose $\triangle_h \varphi$ is continuous for each $h \in G$. Then φ is continuous.

Proof. For $g \in X^*$, the dual of X, set $\varphi_g = g \circ \varphi$. Then φ_g is bounded on U and the differences $\Delta_h \varphi_g = g \circ \Delta_h \varphi$ are all continuous. By [1, Theorem 2.1] φ_g is continuous at each $h_o \in U$. From the identity $\Delta^v \varphi_g(h) = \Delta^v \Delta_{h_o^{-1}h} \varphi_g(h_o) + \Delta^v \varphi_g(h_o)$ we conclude that φ_g is continuous on G. By [9, Theorem 4.1], φ is continuous on a dense G_δ subset of G. The identity $\Delta^v \varphi(h) = \Delta^v \Delta_{h_1^{-1}h} \varphi(h_1) + \Delta^v \varphi(h_1)$ shows that φ is continuous on G.

Corollary 2.5. Let $\varphi \in L^{\infty}(G)$ and suppose $\triangle_h \varphi \in L^1(G)$ for all $h \in G$. Then $\psi : G \to L^1(G)$, $\psi(h) = \triangle_h \varphi$, is right uniformly continuous.

Proof. Since $\triangle_h \varphi \in L^1(G) \cap L^\infty(G)$, we conclude $\triangle_h \varphi \in L^p(G)$ for all $1 \leq p \leq \infty$. By Theorem 2.3, $\|\triangle_h \varphi\|_{1+\frac{1}{n}}$ is a continuous function of h for each $n \in \mathbb{N}$, the natural numbers. Moreover, $\lim_{n\to\infty} \|\triangle_h \varphi\|_{1+\frac{1}{n}} = \|\triangle_h \varphi\|_1$. By the Baire category theorem, $\|\triangle_h \varphi\|_1$ is a continuous function of h except on a subset of G of the first category. So it is continuous at some $h_0 \in G$. Hence there exists a neighbourhood V of the unit e in G such that $\|\psi(h_0 v)\|_1 = \|\triangle_{h_0 v} \varphi\|_1 \leq 1 + \|\triangle_{h_0} \varphi\|_1$ for all $v \in V$. Consider the differences $\triangle_k \psi$ for $k \in G$. We have $\|\Delta_v \Delta_k \psi(h)\|_1 = \|\Delta_v \Delta_k \varphi\|_1 \to 0$ as $v \to e$, by [7, Theorem 20.4], since $\triangle_k \varphi \in L^1(G)$ for each $k \in G$. Hence $\triangle_k \psi : G \to L^1(G)$ is continuous. By Proposition 2.4, ψ is continuous, and by Lemma 2.1, ψ is right uniformly continuous.

Remark 2.6. Proposition 2.4 also holds true for the more general case of σ -well α -favorable topological groups as defined in [3]. In this case we use [3, Theorem 1] instead of [9, Theorem 4.1].

Remark 2.7. Let X be a Banach space and $1 \leq p \leq \infty$. Then $L^p(G,X)$ denotes the Banach space of strongly measurable functions $\varphi: G \to X$ for which $||\varphi(.)||_X \in L^p(G)$. If $1 \leq p < \infty$, then $C_c(G,X)$ is dense in $L^p(G,X)$. Moreover, if 1 and <math>X is separable or reflexive, then the dual of $L^p(G,X)$ is $L^q(G,X^*)$, where $\frac{1}{p} + \frac{1}{q} = 1$. For this, see [5, 8.20.3 and 8.20.5]. It follows that the results of this section remain valid with $L^p(G)$ replaced by $L^p(G,X)$ for $1 \leq p \leq \infty$ whenever X is a separable or reflexive Banach space.

Remark 2.8. If X is a Banach space not containing a subspace isomorphic to c_{\circ} (the Banach space of convergent to zero complex sequences), then $L^{1}(G, X)$ is also a Banach space not containing a subspace isomorphic to c_{\circ} (see [8]). It follows that in the proof of Corollary 2.5 with $X = \mathbb{C}$ we can avoid application of Proposition 2.4 and conclude instead from [1, Theorem 2.1] that ψ is continuous at some point h_{o} and hence is right uniformly continuous. This simplification is not available for Banach spaces X containing subspaces isomorphic to c_{\circ} .

$\S 3$. Bounded functions with differences in $L^p(G)$

In this section G is a locally compact abelian group. Let $\varphi \in L^p(G)$ for some $1 \leq p \leq \infty$. Then [7, Corollary 20.14], $f * \varphi \in L^p(G)$ for each $f \in L^1(G)$. It follows that

$$I(\varphi) = \{ f \in L^1(G) : f * \varphi = 0 \}$$

is a closed ideal of $L^1(G)$. We define

(3.1)
$$sp(\varphi) = \text{hull } I(\varphi) = \{ \gamma \in \widehat{G} : \widehat{f}(\gamma) = 0 \text{ for all } f \in I(\varphi) \}$$

where \widehat{G} is the dual group of G and \widehat{f} is the Fourier transform of f. For the following, see [2, Proposition 1.1].

Proposition 3.1. Let $\varphi \in L^p(G)$ for some $1 \leq p \leq \infty$. Then

- (i) $sp(\varphi * f) \subset sp(\varphi) \cap supp(\hat{f})$ for all $f \in L^1(G)$; and
- (ii) $sp(\varphi) = \emptyset$ if and only if $\varphi = 0$.

Now let w be a weight function on G satisfying the Beurling-Domar condition. See [10, page 132]. Then the Beurling algebra $L^1_w(G) = \{f \in L^1(G) : wf \in L^1(G)\}$ is a Wiener algebra [10, 6.3.1]. The dual of $L^1_w(G)$ is $L^\infty_w(G) = \{\varphi : \frac{\varphi}{w} \in L^\infty(G)\}$. If $\varphi \in L^\infty_w(G)$, then its spectrum with respect to $L^1_w(G)$ will be denoted by $sp_w(\varphi) = \text{hull } I_w(\varphi)$, where $I_w(\varphi) = \{f \in L^1_w(G) : f * \varphi = 0\}$ (see [10, page 142]).

We show

Theorem 3.2. Let $\varphi \in L^{\infty}(G)$ and suppose $\triangle_h \varphi \in L^p(G)$ for some $1 \leq p < \infty$ and all $h \in G$. If $\hat{e} \notin sp(\varphi)$, then $\varphi \in L^p(G)$.

Proof. By Theorem 2.3 and Corollary 2.5, $\psi: G \to L^p(G)$, $\psi(h) = \triangle_h \varphi$, is uniformly continuous. Define $w: G \to \mathbb{R}$ by $w(h) = 1 + \|\psi(h)\|_p + \|\psi(h^{-1})\|_p$. Then

- (i) $w(hk) \le w(h)w(k)$ for all $h, k \in G$;
- (ii) w is uniformly continuous; and
- (iii) $w(h^n) \leq nw(h)$ for all $h \in G, n \in \mathbb{N}$.

It follows that w is a weight function on G satisfying the Beurling-Domar condition. Hence $L^1_w(G)$ is a Wiener algebra. Since $\hat{e} \notin sp(\varphi)$, by [10, 2.1.3, Remark] there exist a neighbourhood V of \hat{e} and a function $f \in L^1_w(G)$ such that $\operatorname{supp}(\hat{f}) \subset V$, $\hat{f}(\hat{e}) = 1$ and $V \cap sp(\varphi) = \emptyset$. By Proposition 3.1, $\varphi * f = 0$. Hence $\varphi(t) = \int_G [\varphi(t) - \varphi(ts^{-1})] f(s) ds = -\int_G \Delta_{s^{-1}} \varphi(t) f(s) ds$. The integrand as a function of s from G to $L^p(G)$ is weakly Borel measurable. Moreover, we claim that it is almost separably-valued with respect to Haar measure. Indeed $f \in L^1(G)$, so its (essential) support is σ -compact. The function $\Delta_{s^{-1}}\varphi$ of s is continuous and, therefore, restricted to the support of f it has a range which is σ -compact in $L^p(G)$ and hence separable. The claim follows. By Pettis's theorem [11, page 131] the integrand is strongly Borel measurable. Moreover, since $\|\Delta_{s^{-1}}\varphi\|_p \leq w(s)$, by Bochner's theorem [11, page 133] the Bochner-Haar integral $\int_G \Delta_{s^{-1}}\varphi f(s) ds$ exists and belongs to $L^p(G)$. That is, $\varphi \in L^p(G)$.

Letting w denote the weight function defined above, one can show by the same method as used in the proof of Theorem 3.2.

Theorem 3.3. Let $\varphi \in L^{\infty}(G)$ and suppose $1 \leq p < \infty$. Then $\varphi \in L^p(G)$ if and only if

- (i) $\triangle_h \varphi \in L^p(G)$ for all $h \in G$, and
- (ii) there exists $f \in L^1_w(G)$, $f \neq 0$, such that $f * \varphi \in L^p(G)$.

Similarly, we have

Theorem 3.4. Let $\varphi \in L^{\infty}(G)$ and suppose $\triangle_h \varphi \in L^p(G)$ for some $1 \leq p < \infty$ and all $h \in G$. If $f \in L^1_m(G)$ and $\hat{f}(\hat{e}) = 1$, then $\varphi - f * \varphi \in L^p(G)$.

To study indefinite integrals, we use the weight

(3.2)
$$v(x) = 1 + |x|, \ x \in \mathbb{R}.$$

It is readily seen that v is a symmetric weight function satisfying Beurling conditions (see [10, page 17]). It follows that $L_v^1(\mathbb{R})$ is a Wiener algebra. We denote by $C_u(\mathbb{R})$ ($C_{ub}(\mathbb{R})$) the set of all complex-valued uniformly continuous (uniformly continuous bounded) functions defined on \mathbb{R} .

Proposition 3.5. If $\xi \in L^p(\mathbb{R})$ where $1 \leq p \leq \infty$ and v is given by (3.2), then $P\xi \in C_u(\mathbb{R}) \cap L_w^{\infty}(\mathbb{R})$.

Proof. If p=1, it is well-known that $P\xi$ is absolutely continuous and hence uniformly continuous. For arbitrary p, and $x,h\in\mathbb{R},\ |P\xi(x+h)-P\xi(x)|=|\int_0^h\xi(x+t)\,dt|\leq |h|^{1-1/p}\|\xi\|_p$ showing that $P\xi\in C_u(\mathbb{R})$. Moreover, $|P\xi(x)|=|\int_0^x\xi(t)\,dt|\leq |x|^{1-1/p}\|\xi\|_p$, showing that $P\xi\in L_w^\infty(\mathbb{R})$.

Theorem 3.6. If $\xi \in L^p(\mathbb{R})$ where $1 \leq p \leq \infty$ and $0 \notin sp(\xi)$, then $P\xi \in C_{ub}(\mathbb{R})$. Moreover, $P\xi \in L^p(\mathbb{R}) + \mathbb{C}$.

Proof. Since $0 \notin sp(\xi)$, there exists a neighbourhood $V = [-\delta, \delta]$ such that $sp(\xi) \cap V = \emptyset$. Since $L^1_v(\mathbb{R})$ is a Wiener algebra, there is a function $h \in L^1_v(\mathbb{R})$ such that $\hat{h} = 1$ for $|\lambda| \leq \delta/4$ and $\hat{h} = 0$ for $|\lambda| \geq \delta/3$. By Proposition 3.1, $h * \varphi = 0$. Similarly, by [10, page 140-141] and [2, Proposition 1.1], $sp_v(h * P\xi) \subset supp\ (\hat{h}) \cap sp_v(P\xi) \subset \{0\}$. Since $\frac{d(h * P\xi)}{dx} = h * \xi = 0$, we conclude that $h * P\xi = c$, a constant. If $\eta = P\xi - c$, then $0 \notin sp_w(\eta)$. Indeed, $h * \eta = h * P\xi - h * c = c - c = 0$. Thus $h \in I_v(\eta)$ and $\hat{h}(0) = 1$, showing $0 \notin sp_w(\eta)$. By Proposition 3.5, $\eta \in C_u(\mathbb{R})$ and so by [2, Theorem 4.2], η is bounded and so is $P\xi$. This proves that $P\xi \in C_{ub}(\mathbb{R})$. The function η satisfies all the conditions of Theorem 3.2, therefore $\eta \in L^p(\mathbb{R})$. Hence $P\xi \in L^p(\mathbb{R}) + \mathbb{C}$.

Remark 3.7. The results of section 3 remain true for X-valued functions provided that X is separable or reflexive. The spectrum of $\varphi \in L^p(G,X)$ is defined again by (3.1).

§4. Right uniformly continuous differences

In this section and the next, we again take a locally compact group G and a Banach space X. The following theorem, for the case of abelian groups, was proved by Datry and Muraz [4, Théorème 4, Corollaire]. Their proof was indirect, using deep results for Banach G-modules. We give a different direct proof, using the techniques of the previous sections, and then deduce results for G-modules in section 5.

Theorem 4.1. Let $\varphi : G \to X$ be a bounded function and suppose $\triangle_h \varphi \in C_{rub}(G,X)$ for all $h \in G$. Then $\varphi \in C_{rub}(G,X)$.

Proof. Define $\psi: G \to C_{rub}(G,X)$ by $\psi(h) = \Delta_h \varphi$. Then for $h, k \in G$ we have

$$||\Delta_v \Delta_k \psi(h)||_{\infty} = ||\Delta_v \Delta_k \varphi||_{\infty} \to 0 \text{ as } v \to e.$$

So $\Delta_k \psi: G \to C_{rub}(G,X)$ is continuous. By Proposition 2.4, ψ is continuous. Finally, continuity of ψ at e implies that φ is right uniformly continuous.

Remark 4.2. In view of Remark 2.6, Theorem 4.1 holds true for the more general case of σ -well α -favorable topological groups.

§5. Application to left G-modules

A Banach space X together with a family of bounded linear operators $A_h: X \to X$, for $h \in G$, is called a *left Banach G-module* if

- (i) $A_e(x) = x$ for all $x \in X$;
- (ii) $A_{hk}(x) = A_h(A_k(x))$ for all $h, k \in G$ and all $x \in X$;
- (iii) $||A_h(x)|| \le \kappa ||x||$ for all $h \in G$, all $x \in X$, and some $\kappa > 0$.

The space $X_{abs} = \{x \in X : ||A_v x - x|| \to 0 \text{ as } v \to e\}$ is a closed submodule of X. Its elements are called *absolutely continuous*. See Datry and Muraz [4], where Theorem 5.2 below is obtained in the case G is abelian using a different proof.

For a fixed vector $x \in X$ we study the function $\psi : G \to X$ given by $\psi(h) = A_h x$. So x is absolutely continuous if and only if ψ is continuous at e. In fact the following is true.

Theorem 5.1. For an element x of a left Banach G-module X, the following are equivalent.

- (a) $x \in X_{abs}$;
- (b) ψ is weakly continuous at some point in G;
- (c) ψ is right uniformly continuous.

Proof. If $x \in X_{abs}$, then ψ is continuous, and therefore weakly continuous, at e. So (a) implies (b). Next suppose ψ is weakly continuous at h_0 . From the identity $\langle \triangle_v \psi(h), x^* \rangle = \langle \triangle_v \psi(h_0), A^*_{hh_0^{-1}}(x^*) \rangle$ for $h, v \in G$ and $x^* \in X^*$, it follows that ψ is weakly continuous on G. By [9, Theorem 4.1] ψ is continuous at some point h_1 . From the identity $\triangle_v \psi(h) = A_{hh_1^{-1}}(\triangle_v \psi(h_1))$ it follows that ψ is right uniformly continuous. Hence (b) implies (c). That (c) implies (a) is obvious.

Theorem 5.2. Let x be an element of a Banach G-module X. If $A_hx - x \in X_{abs}$ for all $h \in G$, then $x \in X_{abs}$.

Proof. For each $k \in G$, $\triangle_k \psi(h) = A_h(A_k x - x)$ which by Theorem 5.1 defines a right uniformly continuous function $\triangle_k \psi : G \to X$. As ψ is bounded, Theorem 4.1 shows that ψ is right uniformly continuous. Hence $x \in X_{abs}$.

Remark 5.3. In view of Remark 2.6, the results of this section hold true for the more general case of σ -well α -favorable topological groups.

REFERENCES

- B. Basit and M. Emam, Differences of functions in locally convex spaces and applications to almost periodic and almost automorphic functions, Annales Polonici Math. XLI (1983), 193–201. MR 85d:43005
- B. Basit and A.J. Pryde, Polynomials and functions with finite spectra on locally compact abelian groups, Bull. Austral. Math. Soc. 51 (1994), 33–42. CMP 95:07
- J.P.R Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), 455–461. MR 82h:54012
- C. Datry and G. Muraz, Analyse harmonique dans les modules de Banach I: propriétés générales, Bull. Science Mathematique 119 (1995), 299–337.

- R.E. Edwards, Functional Analysis—Theory and Applications, Holt, Rinehart and Winston Inc., New York, 1965. MR 36:4308
- 6. F. Galvin, G. Muraz et P. Szeptycki, Fonction aux différence f(x) f(a + x) continues, C.R.Acad.Sci. Paris, série I **315** (1991), 397–400. MR **94b**:39035
- E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Part I, Springer-Verlag, 1979. MR 81k:43001
- 8. S. Kwapien, On Banach spaces containing co, Studia Math. 52 (1974), 187–188. MR 50:8627
- 9. I. Namioka, Separate continuity and joint continuity, Pacific Journal of Math. $\bf 51$ (1974), 515–531. MR $\bf 51$:6693
- H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monographs, Oxford Univ., 1968. MR 46:5933
- 11. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1966. MR ${\bf 50:}2851$

DEPARTMENT OF MATHEMATICS, MONASH UNIVERSITY, CLAYTON, VICTORIA 3168, AUSTRALIA *E-mail address*: bbasit(ajpryde)@vaxc.cc.monash.edu.au