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Abstract. Let (xi) be a finite collection of commuting self-adjoint elements
of a von Neumann algebra M. Then within the (abelian) C*-algebra they
generate, these elements have a least upper bound x. We show that within
M, x is a minimal upper bound in the sense that if y is any self-adjoint element
such that xi ≤ y ≤ x for all i, then y = x. The corresponding assertion for
infinite collections (xi) is shown to be false in general, although it does hold
in any finite von Neumann algebra.

We use this sort of result to show that ifN ⊂M are von Neumann algebras,
Φ :M→N is a faithful conditional expectation, and x ∈M is positive, then
Φ(xn)1/n converges in the strong operator topology to the “spectral order
majorant” of x in N .

This paper arose from an investigation of the sequence (xn + yn)1/n, where x
and y are positive semidefinite operators on a Hilbert space. If x and y commute,
i.e. x, y ∈ C(X) (the continuous complex-valued functions on a compact Hausdorff
space X), then this sequence decreases to their least upper bound in C(X). We
found that in general it converges in the strong operator topology, and the limit
operator is the least upper bound of x and y relative to a nonstandard (“spectral”)
order on B(H) (the algebra of bounded linear operators on the Hilbert space H).
After proving this result we learned that it had already been proved in [7] (see
also [1] and [14]). However, we also became acquainted with closely related work of
Alan Lambert which suggested a generalization in terms of conditional expectations.
Namely, if N ⊂M are von Neumann algebras, Φ :M→N is a faithful conditional
expectation, and x ∈ M is positive, then Φ(xn)1/n converges to the least element
of N which is greater than x, relative to the spectral order on M. This result is
discussed in section II. We thank Alan Lambert for calling our attention to the
similarity between his and our work and suggesting that there might be a relation.

In our investigation the following question arose. Let (xi) be a collection of
commuting self-adjoint operators and let x be their least upper bound in the (com-
mutative) von Neumann algebra they generate. Then is x a minimal upper bound
for (xi) within B(H)? We found that this is not always so, although it is true if
the collection (xi) is finite; also, within finite von Neumann algebras, it is true for
infinite collections (section I). In addition, Kato [7] has shown that any positive
operator x is a minimal upper bound for the operators aEx(a,∞), where Ex is the
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spectral measure of x and a ranges over R (Theorem 6); this is the crucial result
needed to show convergence of Φ(xn)1/n.

I. Minimal upper bounds

Let H be a (complex) Hilbert space and B(H) the algebra of bounded operators
on H. According to a well-known result of Kadison [5], two self-adjoint operators
x, y ∈ B(H) have a least upper bound (or “join”) in B(H) if and only if they are
comparable, i.e. x ≤ y or x ≥ y. A related result of Sherman [11] states that the
self-adjoint elements of a C*-algebra A form a lattice if and only if A is abelian.

On the other hand, any bounded collection of commuting self-adjoint operators
(xi) does have a join x within the (abelian) von Neumann algebra it generates. We
call x the commutative join of the xi. Note that x remains a join of (xi) within any
commutative algebra containing (xi); this is clear by a functional calculus argument
if the collection is finite [5, Lemma 10] and then follows for any collection by taking
the limit of a net of finite joins.

By the preceding results, we cannot expect x to be a join within larger algebras
in general (e.g., in B(H)); but we can still ask whether x is at least a minimal
upper bound for the collection (xi), within a larger algebra. In this connection the
following result seems to be useful. Recall that if M and N are von Neumann
algebras and N ⊂M, then a conditional expectation fromM onto N is a positive
linear mapping Φ : M → N such that Φ(I) = I and Φ(xyz) = xΦ(y)z for all
x, z ∈ N and y ∈ M (see [6, p. 834]). Equivalently, Φ is a projection of norm 1
fromM onto N [13]. It is called faithful if x > 0 implies Φ(x) > 0.

Proposition 1. Let M and N be von Neumann algebras, N ⊂ M, and suppose
there exists a faithful conditional expectation Φ : M → N . Let (xi) ⊂ N be a
bounded collection of self-adjoint elements and suppose x ∈ N is a minimal upper
bound of (xi) within N . Then x remains a minimal upper bound for (xi) within
M.

Proof. Let y ∈ M and suppose xi ≤ y ≤ x for all i. Since Φ is positive and
idempotent, it follows that

xi = Φ(xi) ≤ Φ(y) ≤ Φ(x) = x

for all i. Thus Φ(y) = x, i.e. Φ(x− y) = 0, by the minimality of x within N . But
then y < x, i.e. x−y > 0, would contradict the faithfulness of Φ. We conclude that
y = x, which shows that x is a minimal upper bound within M.

The following three corollaries give conditions under which the commutative
join of (xi) is a minimal upper bound, within a von Neumann algebra M. This
conclusion can be drawn if M is finite, or if the collection (xi) is finite, or if
(xi) ⊂ l∞.

Corollary 2. Let M be a finite von Neumann algebra and let (xi) be a bounded
collection of commuting self-adjoint elements of M. Then the commutative join of
the xi is a minimal upper bound for the xi within M.

Proof. By Zorn’s lemma we can find an orthogonal family (pk) of central projections
inM such that

∑
pk = 1, together with tracial states (fk) onM such that fk(pk) =

1 for all k and such that each fk is faithful on pkM. Let N be the von Neumann
algebra generated by (pk) and (xi). Then by ([4, Théoréme 8]; or [12, p. 332]), there
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exists a faithful conditional expectation Φk : pkM→ pkN for all k, and summing
gives us a faithful conditional expectation Φ :M→N .

Let x be the commutative join of the xi. Since N is commutative, x is the least
upper bound of the xi in N , so it is certainly a minimal upper bound within N .
Proposition 1 now implies that x is a minimal upper bound within M as well.

Corollary 3. Let M be a von Neumann algebra and let (xi) be a finite collection
of commuting self-adjoint elements of M. Then the commutative join of the xi is
a minimal upper bound for the xi within M.

Proof. Without loss of generality suppose M = B(H). Let x be the commutative
join of the xi. We begin by claiming that there is a collection of projections (pi)
which commute with the xi and satisfy

∑
pi = 1 and pixi = pix for all i. These

can be constructed inductively, setting p′i = the projection onto ker(x− xi) and

pi =
(

1−
i−1∑
1

pj
)
p′i.

It is easy to see that
∑
pi = 1 by looking at the (abelian) C*-algebra generated by

the xi and the pi.
Now let N be the commutant within M of the collection (pi). Then the map

Φ : y 7→
∑
piypi is a conditional expectation from M onto N , and we claim it is

also faithful. To see this suppose y ≥ 0 and Φ(y) = 0. Then for each i we have

piypi = (y1/2pi)
∗(y1/2pi) = 0,

hence y1/2pi = 0, hence ypi = 0. Summing over i then shows that y = 0. Thus Φ
is faithful, as claimed.

To complete the proof we must show that x is a minimal upper bound for (xi)
within N . In fact, x is the least upper bound within N . For suppose y ∈ N and
y ≥ xi for all i. Then

piy ≥ pixi = pix

for all i, so that

y =
∑

piy ≥
∑

pix = x.

Thus within N , x is the join of the (xi), so by Proposition 1 it remains minimal
within M.

Corollary 4. Let M be a von Neumann algebra and let (xi) ⊂ M be a bounded
collection of commuting self-adjoint elements. Suppose that the von Neumann al-
gebra generated by (xi) is isomorphic to l∞(S) for some index set S. Then the
commutative join of the xi is a minimal upper bound for the xi within M.

Proof. Identify l∞(S) with the von Neumann algebra generated by (xi) and let N
be the commutant of l∞(S) within M. Let (pi) be the set of minimal projections
in l∞(S). Then we have a conditional expectation Φ :M→ N defined by Φ(y) =∑
piypi, and it is faithful by the same argument as used in Corollary 3. Also, x is

a minimal upper bound for (xi) (in fact, a join) within N , again as in Corollary 3;
so Proposition 1 implies that x is minimal in M.
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In light of the preceding results it seems reasonable to conjecture that any com-
mutative join is always a minimal upper bound. However, we will now show that this
is not the case. First observe that by negating every operator, the question about
joins is equivalent to a similar question about meets (greatest lower bounds); this
is the version that we will falsify. For n ∈ N and 1 ≤ k ≤ n define fn,k : [0, 1]→ R
by

fn,k(t) =

{
2/n if k−1

n ≤ t ≤
k
n ,

2 otherwise.

Then let Mn,k be the operator on L2[0, 1] given by multiplication by fn,k. It is easy
to see that the operators Mn,k all commute, and their commutative meet — their
greatest lower bound within L∞[0, 1] — is 0.

Let 1 denote the function in L2[0, 1] which is constantly one, and let P be the
orthogonal projection onto 1; thus for any g ∈ L2[0, 1], Pg = 〈g, 1〉1 is the function
which takes the constant value

〈g, 1〉 =

∫ 1

0

g(t)dt.

It is clear that P is strictly positive, and we will now show that P ≤ Mn,k for all
n, k.

To see this, let g ∈ L2[0, 1] and note that
∫ 1

0
(fn,k(t))−1dt ≤ 1. So

〈Pg, g〉 =
∣∣∣∫ 1

0

g(t)dt
∣∣∣2

≤
(∫ 1

0

(fn,k(t))1/2|g(t)|(fn,k(t))−1/2dt
)2

≤
(∫ 1

0

fn,k(t)|g(t)|2dt
)(∫ 1

0

(fn,k(t))−1dt
)

≤
∫ 1

0

fn,k(t)|g(t)|2dt

= 〈Mn,kg, g〉.

(The crucial middle inequality is the Cauchy-Schwarz inequality.) Thus, we con-
clude that 0 < P ≤Mn,k for all n, k even though 0 is the commutative meet of the
Mn,k. This completes the example.

There is a simple formula for the commutative join of two operators:

x1 ∨ x2 = (x1 + x2 + |x1 − x2|)/2.

This formula still makes sense if x1 and x2 fail to commute, which suggests the
following result.

Corollary 5. Let x1 and x2 be two self-adjoint elements of a von Neumann algebra.
Then x = (x1 + x2 + |x1 − x2|)/2 is a minimal upper bound for x1 and x2.

Proof. Without loss of generality we may assume that the ambient von Neumann
algebra is B(H). Note first that

2x1 = x1 + x2 + (x1 − x2) ≤ x1 + x2 + |x1 − x2|,
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hence x1 ≤ x. Similarly x2 ≤ x, so that x is an upper bound for x1 and x2.
Conversely let y be self-adjoint and suppose x1, x2 ≤ y ≤ x. Then some easy
algebra shows that

x1 − x2, x2 − x1 ≤ 2y − x1 − x2 ≤ |x1 − x2|.
Now the operators x1 − x2 and x2 − x1 commute and their commutative join is
|x1 − x2|, so Corollary 3 implies that

2y − x1 − x2 = |x1 − x2|.
From this it follows that y = x.

Finally, let us mention that the join of a set of projections (i.e. the projection
onto the closed linear span of their ranges) is a minimal upper bound within any
ambient von Neumann algebra. By complementation (i.e., replacing p by 1 − p),
this is implied by the following result of Kadison ([5, Lemma 2]): let (pi) be a set
of projections and let p be their meet (i.e. the projection onto the intersection of
the ranges); then among all positive operators, p is a greatest lower bound.

(Kadison states this result for two projections, but the proof works for arbitrary
collections. A von Neumann algebra argument goes as follows. Let (pi) be a set of
projections in a von Neumann algebra M and let q be their join in the lattice of
projections, i.e. the projection onto the closed linear span of the ranges. Suppose
x ∈ M satisfies pi ≤ x ≤ q for all i. Then x − pi is positive and dominated by
q−pi, hence x−pi commutes with pi, hence x commutes with pi. Now since pi ≤ x
and the two commute, it follows that pi ≤ Ex{1}, and as this is true for all i we
conclude that q ≤ Ex{1}, hence q ≤ x.)

Our final result along the lines of this section was given in ([7, Lemma]). (We
thank Khristo Boyadzhiev for bringing this to our attention.) For I ⊂ R and x
a self-adjoint element of a von Neumann algebra, let Ex(I) denote the x-spectral
projection of I. The result states that any positive x is a minimal upper bound
for the collection of operators {aEx(a,∞) : a ∈ R}. As these operators commute
and their commutative join is x, this follows from Corollary 2 if the von Neumann
algebra is finite. Also, it follows from Corollary 4 if x has a discrete spectrum.
However in general the proof is a bit more involved.

Theorem 6 (Kato). Let x and y be positive elements of a von Neumann algebra
M and suppose aEx(a,∞) ≤ y ≤ x for all a ∈ R. Then y = x.

II. Convergence of Φ(xn)1/n

In [9] Olson introduced a new partial order with respect to which the self-adjoint
elements of any von Neumann algebra form a conditionally complete lattice — i.e.
every bounded set has a least upper bound and greatest lower bound. (This order
seems to have been rediscovered several times. It was independently introduced in
[2, 3], and [10], and perhaps elsewhere.) This “spectral order” is defined by x � y
if and only if Ex(a,∞) ≤ Ey(a,∞) for all a ∈ R. Indeed, it is easy to see that
any bounded collection of self-adjoint elements {xi} has a join with respect to this
order; it is that self-adjoint element y such that

Ey(a,∞) =
∨
Exi(a,∞)

for all a ∈ R. (
∨

denotes the join of projections, i.e. closed linear span.) Olson
also showed that x � y if and only if xn ≤ yn for all n ∈N.
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The spectral order join behaves as one would expect in familiar cases. For
instance, if x and y commute then it is just the commutative join of x and y
discussed in section I. Or, if x and y are (perhaps noncommuting) projections, then
their join in the spectral order is just their join as projections.

(In light of section I, it is worth noting that the spectral order join is not always
a minimal upper bound relative to the usual order. For instance, consider the 2×2
matrices (

8 0
0 0

)
,

(
8 8
8 8

)
<

(
11 5
5 11

)
<

(
12 4
4 12

)
.

The rightmost matrix is the spectral order join of the two on the left, as one can
see by checking eigenspaces.)

Now let N ⊂ M be von Neumann algebras, Φ :M→ N a faithful conditional
expectation, and x ∈ M a positive element. (We retain this notation in Lemmas 7
and 8.) The collection

{y = y∗ ∈ N : x � y}
is bounded below and hence has a greatest lower bound with respect to the spectral
order in N . Thus, there exists a least element x+ of N among all those which
dominate x in spectral order. Equivalently, x+ can be defined by specifying its
spectral projections, namely Ex+(a,∞) is the least projection in N which contains

Ex(a,∞). We want to prove that the sequence Φ(xn)1/n converges in the strong
operator topology to x+.

In the case of abelian M and N this result is due to Lambert [8]. Here the
spectral order agrees with the usual order, so that x+ is the majorant of x in N
in the usual sense; thus Lambert’s result gives a characterization of this majorant
in terms of the moments of x. Our result (Theorem 9) can be seen as a quantum
probabilistic version of this fact.

Lemma 7. Let y ∈ M, y ≥ 0, and let p be its range projection. Then y1/n → p in
the strong operator topology.

Proof. Let M act normally on a Hilbert space H. First observe that the set of
vectors ξ such that Ey(0, ε)ξ = 0 for some ε > 0 is dense in H. Since the sequence

(y1/n) is bounded in norm, it will therefore suffice to show that y1/nξ → pξ for
such ξ. Thus let ε > 0 and suppose Ey(0, ε)ξ = 0; also write p′ = Ey[ε,∞) and

q = 1− p = Ey({0}), and observe that ξ = (p′ + q)ξ and y1/nq = 0.

Now as n goes to∞, a functional calculus argument shows that y1/np′ converges
to p′ in operator norm. Thus

y1/nξ = y1/n(p′ξ + qξ) = y1/np′ξ → p′ξ = pξ,

as desired.

Lemma 8. Φ(xn)1/n ≤ x+ for all n ∈N.

Proof. Since x � x+ it follows from Olson’s characterization of � that xn ≤ xn+.
Thus Φ(xn) ≤ xn+. By ([12, Proposition I.1.6]), taking nth roots preserves the

inequality; thus Φ(xn)1/n ≤ x+.

Theorem 9. Let N ⊂M be von Neumann algebras, let Φ :M→N be a faithful
conditional expectation, and let x ∈ M be positive. Then the sequence Φ(xn)1/n
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converges in the strong operator topology to x+, the spectral order majorant of x in
N .

Proof. Let xn = Φ(xn)1/n; we want to show that x+ − xn → 0. By Lemma 8,
the elements x+ − xn are all positive; hence strong operator convergence to zero
is equivalent to weak operator convergence to zero. Thus, we must show that
x+ − xn → 0 (weak operator). By weak operator compactness of the unit ball, it
will suffice to show that no weak operator cluster point of the sequence (x+−xn) is
strictly positive. Equivalently, we must show that no cluster point of (xn) is strictly
less than x+. By Theorem 6, it will therefore suffice to show that aEx+(a,∞) ≤ z
for any weak operator cluster point z of (xn).

Let z be a weak operator cluster point of the sequence (xn). For a ∈ R define

p = Ex(a,∞) and q = Ex+(a,∞).

Now xn ≥ anp, hence Φ(xn) ≥ anΦ(p), and taking nth roots as in Lemma 8 then
yields xn ≥ aΦ(p)1/n.

Let p′ be the range projection of Φ(p). We claim that p′ ≥ p. For otherwise,

(1− p′)p(1− p′) > 0,

hence

Φ((1 − p′)p(1− p′)) > 0

by faithfulness of Φ, hence

(1− p′)Φ(p)(1− p′) > 0,

a contradiction. (We are indebted to Lawrence Brown for this observation.) It
then follows from the definition of x+ that p′ ≥ q. Lemma 7 now implies that
aΦ(p)1/n → ap′ ≥ aq (strong operator). Combining with the result of the last
paragraph then shows that z ≥ aq, as desired.

Corollary 10. Let x and y be positive operators on a Hilbert space. Then the
operators (xn+yn)1/n converge in the strong operator topology to the spectral order
join of x and y.

Proof. Let M = B(H) ⊕ B(H) and N = B(H), with N embedded diagonally in
M via z 7→ (z, z). Then the map Φ : (z, z′) 7→ (z + z′)/2 is a faithful conditional
expectation from M onto N . According to Theorem 9, then, for any positive
element x⊕ y ∈M

Φ((x⊕ y)n)1/n = Φ(xn ⊕ yn)1/n → z

where z is the least element of N , relative to the spectral order, which dominates
x⊕ y. Thus, z is just the spectral order join of x and y and we have that(xn + yn

2

)1/n

→ z

(strong operator). Since (1/2)1/n → 1, this implies that (xn + yn)1/n → z as
well.

We note that it is possible to prove Theorem 9 using Corollary 3 or Corollary 4
rather than Theorem 6. This can be done by means of the following device. Choose
ε > 0 and define f : R→ R by

f(t) = kε for k ∈ Z and kε < t ≤ (k + 1)ε;
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then by functional calculus define

x′ = f(x), x′n = Φ((x′)n)1/n, x′+ = f(x+).

Then x′+ is the spectral order majorant of x′ in N . Also xn ≥ (x′)n, hence xn ≥ x′n.
In this way the problem is reduced to showing that x′n → x′+ weak operator, which
can be proved in the same way that we showed xn → x+, but now requiring only
Corollary 3 or Corollary 4 since x′+ has finite spectrum.
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