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ASYMPTOTIC BEHAVIOR OF C0-SEMIGROUPS

IN BANACH SPACES

LUTZ WEIS AND VOLKER WROBEL

(Communicated by Palle E. T. Jorgensen)

Abstract. We present optimal estimates for the asymptotic behavior of
strongly continuous semigroups UA : [0,∞[→ L(X) in terms of growth ab-
scissas of the resolvent function R(·, A) of the generator A. In particular we
give Ljapunov’s classical stability condition a definite form for (infinite di-
mensional) abstract Cauchy problems: The abscissa of boundedness of R(·, A)
equals the growth bound of the classical solutions of y′ = Ay.

1. Introduction

Let A : X ⊇ D(A) → X denote a closed linear operator on a complex Banach
space X . Let σ(A;X) and ρ(A;X) := C\σ(A;X) denote the spectrum and the
resolvent set of A, respectively, and R(·, A) : ρ(A;X) → L(X), z 7→ (z Idx−A)−1

the resolvent function. Recall that A is positive in the sense of Triebel [Tr, p. 91],
if {

A is densely defined, ]−∞, 0] ⊆ ρ(A;X) and

K := sup{(1 + |t|)‖R(t, A)‖ : t > 0} <∞.
(1.1)

If A is a positive operator and α ∈ C, then fractional powers Aα exist as densely
defined closed linear operators (cf. Triebel [Tr, p. 98] for details).

If A : X ⊇ D(A) → X generates a C0-semigroup, then by the Hille-Yosida
theorem one can always find µ > 0 such that µ −A is a positive operator. As the
domains D((µ−A)α) do not depend on µ as long as µ−A is positive ([Ko, Theorem
6.4]), the quantities ωβ(A) defined below do not depend on µ.

Let

s(A) := sup{Re(z) : z ∈ σ(A;X)}(1.2)

denote the spectral bound of A.
We shall subdivide the half-plane {z ∈ C : Re z ≥ s(A)} according to the

following abscissas associated with R(·, A) and UA, respectively: Given α ∈ [0,∞[,
let

sα(A) := inf{s > s(A) : ‖R(a+ ib, A)‖ = O(|b|α) as |b| → ∞ and α ≥ s}(1.3)
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denote the abscissa of growth order α for R(·, A) on lines parallel to the imaginary
axis. Given β ∈ C, let{

ωβ(A) := sup{ω(x) : x ∈ D((µ−A)β)}, where

ω(x) := inf{ω ∈ R : limt→∞ ‖e−tωUA(t)x‖ = 0}
(1.4)

denote the growth bound of the semigroup UA on D((µ − A)β). The following
theorem summarizes the known results on these quantities:

Theorem 1.1. Suppose A : X ⊇ D(A) → X generates a C0-semigroup UA on a
complex Banach space X. Then

(1) (Slemrod [Sl])

ωm+2(A) ≤ sm(A) (m ∈ N ∪ {0}).(1.5)

(2) (Weiss [Wss], Gearhart [G]) If X is a Hilbert space, then

ωm(A) = sm(A) (m ∈ N ∪ {0}).(1.6)

(3) (Wrobel [Wr]) If X is a B-convex Banach space, then

ωm+1(A) ≤ sm(A) (m ∈ N ∪ {0}),(1.7)

and in general (1.7) cannot be replaced by (1.6) outside the class of Hilbert spaces.
(4) (van Neerven, Straub and Weis [vN-S-W])

ω1+ε(A) ≤ s0(A) (ε > 0).(1.8)

(5) (van Neerven, Straub and Weis [vN-S-W]) If X is of Fourier type p, 1 ≤ p ≤
2, then

ωβ(A) ≤ s0(A)

(
β >

1

p
− 1

q
,

1

p
+

1

q
= 1

)
.(1.9)

(6) (Weis [Ws]) If X is Lebesgue-space Lp(Ω, µ) (1 ≤ p < ∞) and UA is a
semigroup of positive operators, then

ω0(A) = s0(A) = s(A).(1.10)

Among other things we shall prove that (1.7) is true for general Banach spaces
X . Since the Cauchy problem

(AC) y′ = Ay, y(0) = x

for y : [0,∞[→ X has a continuously differentiable solution if and only if x ∈ D(A),
this result shows in particular that—just as in the finite dimensional case—all
classical solutions of (AC) have an exponential bound already determined by s0(A),
i.e. by s(A) if UA is a positive semigroup on a Banach lattice.

For C0-semigroups UA we shall prove

ωα+1(A) ≤ sRe α(A) (α ∈ C,Re α > 0 or α = 0).(1.11)

If X is a Hilbert space one can prove

ωα(A) = sRe α(A) (α ∈ C,Re α > 0 or α = 0)(1.12)

using the Fourier techniques of [Wr], and (1.11) can be improved, if X is B-convex:
For a suitable small ε > 0 :

ωα+1−ε(A) ≤ sRe α(A) (α ∈ C,Re α > 0 or α = 0).(1.13)
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Furthermore we find that (5) holds even for β = 1
p−

1
q . Thus (5) fills the gap between

our result for general Banach spaces (1.11) and the Hilbert space result (1.12) by
showing how these growth estimates depend on the geometry of the underlying
Banach space, in particular on its Fourier type. Recall (cf. [P]) that a Banach
space has Fourier type p if the Hausdorff-Young inequality for the X-valued Fourier
transform F holds, i.e. there exists C <∞ with

‖Ff‖Lp′(X) ≤ C‖f‖Lp(X) (f ∈ Lp(X)).

In section 4 we show that (1.11) and (1.9) with β = 1
p −

1
q included are best

possible in general. More precisely, we show that for Af(x) := xf ′(x) in X :=
Lp(1,∞) ∩ Lq(1,∞), 1 ≤ p ≤ 2, 1

p + 1
q = 1, the function

[0,∞[ 3 α 7→ ωα(A)

satisfies

ω0(A) = −1

q
, ω 1

p−
1
q
(A) = ω1(A) = −1

p
= s(A)

and is linear inbetween. Note that p is the Fourier type of X . In particular, for
p = 1 we have

ωα(A) ≤ s(A) only if α ≥ 1.

So (1.11) is best possible, even for positive semigroups.
The paper is organized as follows. Section 2 contains relevant facts on the inter-

polation of domain spaces of fractional powers. In particular, we show that ωα(A) is
a convex function of α. Section 3 contains the announced results, whereas section 4
demonstrates that our estimates are best possible.

2. Fractional powers of positive operators

and interpolation of domains

We refer the reader to the monograph of Triebel [Tr] and the paper of Komatsu
[Ko] for background information on interpolation theory. In this section we collect
some relevant facts on domains of fractional powers and prove some basic properties
of the growth order function α 7→ ωα(A).

Given an interpolation couple {X,Y } of Banach spaces X,Y let

(X,Y )Θ,p (0 < Θ < 1, 1 ≤ p ≤ ∞)(2.1)

denote the interpolation space corresponding to the real interpolation method ([Tr,
p. 24]), and let

[X,Y ]Θ (0 < Θ < 1)(2.2)

denote the interpolation space corresponding to the complex interpolation method
([Tr, p. 64]).

If Y ⊆ X , then

(X,Y )Θ̃,q̃ ⊆ (X,Y )Θ,q(2.3)

and

(X,Y )Θ̃,1 ⊆ [X,Y ]Θ̃ ⊆ (X,Y )Θ̃,∞ ⊆ [X,Y ]Θ(2.4)

(0 < Θ < Θ̃ < 1, 1 ≤ q, q̃ ≤ ∞).
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The following is a consequence of [Tr, 1.15.2]. For the reader’s convenience we
outline a proof.

Lemma 2.1. Let A : X ⊇ D(A)→ X denote a positive operator, and let α, β, γ ∈
C such that 0 < Re α < Re γ < Re β. Then

(D(Aα), D(Aβ))Re(γ−α)
Re(β−α) ,1

⊆ D(Aγ) ⊆ (D(Aα), D(Aβ))Re(γ−α)
Re(β−α) ,∞

(2.5)

and, moreover, for all ε > 0 sufficiently small

[D(Aα), D(Aβ)]Re(γ−α)
Re(β−α) +ε

⊆ D(Aγ) ⊆ [D(Aα), D(Aβ)]Re(γ−α)
Re(β−α)−ε

.(2.6)

Proof. The domain spaces D(Aα) of fractional powers Aα are Banach spaces if
equipped with their graph norms ([Tr, p. 99]) and D(Aβ) ⊆ D(Aα) if Re α <
Re β ([Tr, p. 101]). Thus using (2.3) and (2.4) we see that (2.6) is an immediate
consequence of (2.5). In order to prove (2.5) first observe that Aα is a topological
isomorphism from D(Aµ+α) onto D(Aµ) if Re µ > 0 ([Tr, p. 101]). Since the
considered interpolation methods are functorial, it suffices to prove

(X,D(Aβ−α))Re(γ−α)
Re(β−α) ,1

⊆ D(Aγ−α) ⊆ (X,D(Aβ−α))Re(γ−α)
Re(β−α) ,∞

.(2.7)

Consequently we have to consider the following situation: Let

0 < Re η < Re µ, ε > 0, 0 < Θ < 1

such that

Re η = (Re η + ε)Θ.

Then by [Tr, Theorem 1.15.2 (f)] we obtain for m ∈ N, m > Re η + ε :

(X,D(Aµ)) Re η
Re µ ,p

= (X,D(Aµ))Re η+ε
Re µ ·Θ,p

= (X,D(Aη+ε))Θ,p

= (X,D(Am))Re η+ε
m ·Θ,p = (X,D(Am))Re η

m ,p.
(2.8)

But then [Tr, Theorem 1.15.2 (d)] yields

(X,D(Am))Re η
m ,1 ⊆ D(Aη) ⊆ (X,D(Am))Re η

m ,∞.(2.9)

Letting η = γ − α, µ = β − α, (2.9) and (2.8) give (2.7).

Corollary 2.2. Let A : X ⊇ D(A) → X denote a positive operator, α ∈ C,
Re α > 0, c, v, w ∈ R, v ≤ w, c > 0, and let

T : D(Aα)→ L1([0,∞[, evtdt;X)

denote a continuous linear operator. If for all µ > c > 0 the operator

T : D(Aα+µ)→ L1([0,∞[, ewtdt;X)

is continuous, then for all β with Re β = Re α+ c

z0 := sup{r ∈ R : T (D(Aβ)) ⊆ L1([0,∞[, ertdt;X)} ≥ w.

Proof. Given 0 < Θ < 1, let zΘ := (1−Θ)v + Θw. Then by [Tr, Theorem 1.18.5]

[L1([0,∞[, evtdt;X), L1([0,∞[, ewtdt;X)]Θ = L1([0,∞[, ezΘtdt;X)(2.10)

with equivalent norms.
Let ε > 0 and 0 < Θ := c

(1+ε)(c+ε) < 1. Then by (2.6) we have

D(Aα+ c
1+ε ) ⊆ [D(Aα), D(Aβ)]Θ(2.11)
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and (2.10) yields a continuous linear operator

T : [D(Aα), D(Aβ)]Θ → L1([1,∞[, ezΘtdt;X).(2.12)

Since D(Aβ) ⊆ D(Aα+ c
1+ε ) for all ε > 0 and (2.10) we get

T : D(Aβ)→ L1([0,∞[, ezΘtdt;X)

continuous for all 0 < Θ < 1.
Consequently z0 ≥ w, because z0 < w implies the existence of 0 < Θ < 1 such

that z0 < zΘ < w, contradicting the definition of z0.
A similar argument shows that α 7→ ωα(A) is a convex function on [0,∞[.

Corollary 2.3. Let A : X ⊇ D(A) → X be the generator of a C0-semigroup UA.
For 0 ≤ α1 < α2, 0 < Θ < 1 and α(Θ) := (1−Θ)α1 + Θα2 we have

ωα(Θ)(A) ≤ (1−Θ)ωα1(A) + Θωα2(A).(2.13)

Proof. We proceed as in the proof of Corollary 2.2. Fix 0 < Θ < 1. Then for all
ε > 0, we have by (2.6)

D((−A)α(Θ)) ⊆ [D((−A)α1), D((−A)α2)]Θ−ε.

Moreover, for all ai < −ωαi(A), we have (cf. (2.10))

[L1([0,∞[, ea1tdt;X), L1([0,∞[, ea2tdt;X)]Θ−ε

= L1([0,∞[, ezΘ,εdt;X), where zΘ,ε = (1−Θ + ε)a1 + (Θ− ε)a2.

Since

T : D((−A)αi )→ L1([0,∞[, eaitdt;X) (i = 1, 2),

x 7→ UA(·)x
are bounded operators, so is

T : D((−A)α(Θ))→ L1([0,∞[, ezΘ,εtdt;X).

By the Datko-Pazy Lemma (see Lemma 3.1) we obtain

lim
t→∞

ezΘ,εtUA(t)x = 0

for all x ∈ D((−A)α(Θ)) and ε > 0.
Consequently, for x ∈ D((−A)α(Θ)) we have by definition

ω(x) ≤ inf{−zΘ,ε : ε > 0} = −a1(1−Θ)−Θa2

and then

ωα(Θ)(A) ≤ (1−Θ)(−a1) + Θ(−a2).(2.14)

But as (2.14) is true for all ai such that ai < −ωαi(A) (i = 1, 2), we obtain the
desired result by taking the infimum over all such ai.

Remark 2.4. Corollaries 2.2, 2.3 and their proofs as well as (2.5) and (2.6) imply
that the growth bounds are the same for all of the usual scales of intermediate
spaces. More precisely, if Xα is one of the spaces

(X,D(A))α,p, 1 ≤ p ≤ ∞, [X,D(A)]α or D((−A)β)

with Re β = α, then ωα(A) is the inf of all w such that for all x ∈ Xα, we have

sup e−wt‖UA(t)x‖ <∞.
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3. Asymptotic behavior

We recall the Datko-Pazy Lemma and a consequence of its proof ([Pa, p. 116,
Theorem 4.1]).

Lemma 3.1. Suppose A : X ⊇ D(A) → X generates a C0-semigroup UA and let
1 ≤ p <∞. Then

(1) If x ∈ X is such that
∫∞

0 ‖UA(t)x‖p dt <∞, then ‖UA(t)x‖ → 0, i.e. ω(x) ≤
0.

(2) If for all x ∈ X one has
∫∞

0
‖UA(t)x‖p dt <∞, then ω0(A) < 0.

We should remark that if we replace the whole space X by D((−A)α) in (2), we do
not get ωα(A) < 0 but in general only ωα(A) ≤ 0 by (1).

The following is our main result.

Theorem 3.2. Suppose A : X ⊇ D(A)→ X generates a C0-semigroup UA. Then
for all α ∈ C such that Re α > 0 we have

ωα+1(A) ≤ sRe α(A)(3.1)

and

ω1(A) ≤ s0(A).(3.2)

Proof. Given µ ∈ R, we have σ(A+ µ;X) = σ(A;X) + {µ} and consequently (1.3)
and (1.4) immediately imply that

sRe α(A+ µ) = sRe α(A) + µ

and

ωα(A+ µ) = ωα(A) + µ.

So without loss of generality we may assume that −A itself is positive. Furthermore,
we can restrict ourselves to a fixed α ∈ C with Re α ≥ 0 and sRe α(A) < 0. Observe
that for all δ > 0

z 7→ R(z,A)z−α

is bounded on {z ∈ C : Re z ≥ sRe α(A) + δ} by (1.3). Consequently the following
is an absolutely convergent integral for ε > 0 and sRe α(A) + δ < 0:

Iα,ε(t) :=
1

2πi

∫
Re z=sRe α(A)+δ

eztR(z,A)(−z)−α−1−εdz,(3.3)

where we consider the principal branch of the fractional power.
Equation (3.3) represents a one-parameter family of bounded operators on X ,

and a straightforward estimation of (3.3) gives

‖Iα,ε(t)‖ ≤ Ce(sRe α(A)+δ)t,(3.4)

since z 7→ R(z,A)(−z)−Re α is bounded along the line Re z = sRe α(A) + δ, and∫∞
0 (c+ t2)−

1+ε
2 dt <∞ (c > 0).

Assume for the moment that

Iα,ε(t) = UA(t)(−A)−α−1−ε(3.5)
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has been established. Then we apply Corollary 2.2 with T := UA:

UA : X → L1([0,∞[, e−(ω0(A)+δ0)tdt;X),

UA : D((−A)α+1+ε)→ L1([0,∞[, e−(sRe α(A)+δ1)tdt;X)

(δ0, δ1 > 0 small).

Then the conclusion of Corollary 2.2 with c = 1 and the Datko-Pazy Lemma 3.1(1)
yield

−ωα+1(A) ≥ −sRe α(A)− δ1
and thus

ωα+1(A) ≤ sReα(A)

since δ1 can be chosen arbitrarily small.
So we have to prove (3.5). Since Iα,ε(t) is a bounded operator and D∞(A) :=⋂
n∈ND(An) is dense in X , it suffices to prove (3.5) with both sides restricted to

D∞(A). So let x ∈ D∞(A). By means of the resolvent equation and Cauchy’s
theorem we obtain with Γ := {z ∈ C : Re z = sRe α(A) + δ} (just as in the proof of
the Dunford calculus)

Iα,ε(t)x =

(
1

2πi

∫
Γ

(−z)−α−1−εR(z,A) dz

)(
1

2πi

∫
Γ

eztR(z,A)xdz

)
.

Since the second factor on the right-hand side equals UA(t)x, as is well-known
(residue theorem), one has to show that for Re β > 0

(−A)−β =
1

2πi

∫
Γ

(−z)−βR(z,A) dz.

But this is routine by deforming the path of integration and taking boundary values
on [0,∞[. Indeed, first replace Γ by

Γε = ]+∞− iε,−iε] ∪
{
z ∈ C : |z| = ε,

π

2
≤ arg(z) ≤ 3

2
π

}
∪ [iε, iε+∞[

and observe that by Cauchy’s theorem∫
Γε

(−z)−βR(z,A) dz =

∫
Γ

(−z)−βR(z,A) dz;

consequently (0 ∈ ρ(A;X))∫
Γ

(−z)−βR(z,A) dz = lim
ε↓0

∫ ∞
0

{(−t− iε)−β − (−t+ iε)−β}R(t, A) dt

= (eiπβ − e−iπβ)

∫ ∞
0

t−βR(t, A) dt = 2πi(−A)−β

(cf. [Tr, p. 98, 1.15.1 (1)] for the last equality).

Remark 3.3. Inequality (3.2) also follows directly from 1.1(4) and (2.3) since the
convex function α 7→ ωα(A) is continuous. Furthermore, using the fact that z 7→
R(z,A)(−A)−α (0 < Re α) is bounded on {z ∈ C : Re z ≥ sRe α(A) + δ} (δ > 0),
one can use the techniques of [Wr] and [vN-S-W] to improve Theorem 3.2 as follows:

(1) If X is a Hilbert space, then

ωα(A) = sRe α(A) (0 < Re α, or α = 0).
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(2) If X is B-convex, there exists ε > 0 such that

ωα+1−ε(A) ≤ sRe α(A) (0 < Re α, or α = 0).

(3) If X has Fourier type p with 1 ≤ p ≤ 2, then with 1
p + 1

q = 1,

ωα+ 1
p−

1
q
(A) ≤ sRe α(A) (0 < Re α, or α = 0).

4. Optimality of the estimates for ω(A)

Consider X := Lp(1,∞) ∩ Lq(1,∞), 1 ≤ p ≤ 2, 1
p + 1

q = 1, with norm

f 7→ ‖f‖X := ‖f‖p + ‖f‖q
and the C0-semigroup UA of positive operators (in the lattice sense!) given by

(UA(t)f)(x) = f(etx).

Then it is well known and easily checked that the generator A is x d
dx on a suitable

domain and

ω0(A) = −1

q
, s0(A) = s(A) = −1

p
(see below).(4.1)

Moreover, since Lp and Lq both have Fourier type p, it is clear that X has Fourier
type p.

Fix f ∈ C∞0 (R) with supp f ⊆ [1, 2] and for n ∈ N let

fn(x) := f(x− n+ 1).

Then fn ∈ C∞0 (R) ⊆ D(A) and supp fn ⊆ [n, n+ 1]. Moreover

‖fn‖X = ‖fn‖p + ‖fn‖q = ‖f‖X(4.2)

and

‖fn‖D(Ap) = ‖fn‖p + ‖x · f ′(x− n+ 1)‖p
≤ ‖f‖p + (n+ 1)‖f ′‖p ≤ ‖f‖p + (n+ 1)‖Apf‖p
≤ (n+ 1)‖f‖D(Ap).

Consequently,

‖fn‖D(A) ≤ (n+ 1)‖f‖D(A)(4.3)

and by [Tr, p. 61, 1.10.1] and [Tr, p. 101]

‖fn‖D((−A)α) ≤ c0‖fn‖1−αX ‖fn‖αD(A)

≤ c(n+ 1)α (by (4.2) and (4.3))
(4.4)

with suitable constants c0, c.
For t ≤ logn, we have

e−
t
q ‖fn‖q + e−

t
p ‖fn‖p ≤ ‖UA(t)fn‖X .(4.5)

Suppose we have

‖UA(t)fn‖X ≤Metω‖fn‖D((−A)α).(4.6)

Then taking t = log(n), (4.4)–(4.6) yield

(n)−
1
q ‖fn‖q + n−

1
p ‖fn‖p ≤ D(n+ 1)α+ω (n ∈ N)
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with a suitable constant D, and thus

α+ ω ≥ −1

q
.

Since ωα(A) = inf{ω ∈ R : ∃M such that (4.6) holds}, we have

−1

q
− α ≤ ωα(A)(4.7)

and since X has Fourier type p

ωβ(A) ≤ s0(A) for all β >
1

p
− 1

q
(by (1.9)).

Since for all β > 1
p , the functions fβ : [1,∞[→ R, x 7→ x−β are eigenfunctions of A

with eigenvalue −β, s(A) = s0(A) = − 1
p is an accumulation point of eigenvalues,

and therefore

−1

p
≤ ωβ(A) ≤ −1

p
, ω 1

p−
1
q
(A) = −1

p
.(4.8)

By (2.13) taking 0 < Θ < 1 such that α = Θ( 1
p −

1
q ) we obtain

−1

q
− α

(4.7)

≤ ωα(A) ≤ (1−Θ)ω0(A) + Θω 1
p−

1
q
(A)

(4.1),(4.8)
= −(1−Θ)

1

q
−Θ

1

p
= −1

q
− α.

Consequently α 7→ ωα(A) fulfills ω0(A) = − 1
q , ω 1

p−
1
q

= − 1
p , is linear inbetween and

equals − 1
p for α > 1

p −
1
q . If p = 1, then ω1(A) = s0(A), i.e. (3.1) is best possible

in general Banach spaces. If p = 2, then ω0(A) = s0(A) as it has to be.
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