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ABSTRACT. In this paper we study some structural and geometric proper-
ties of the quotient Banach spaces £, (I)/hy(S), where I is an arbitrary set,
¢ is an Orlicz function, £, (I) is the corresponding Orlicz space on I and
he(S) = {z € Lo(I) : YA > 0, 3s € S such that Io,(*5*) < oo}, S being
the ideal of elements with finite support. The results we obtain here extend
and complete the ones obtained by Leonard and Whitfield (Rocky Mountain
J. Math. 13 (1983), 531-539). We show that £, (I)/h,(S) is not a dual space,
that Ext(By, 1)/, (s)) = 0, if ©(t) > 0 for every t > 0, that Sty (1) /hp(S)
has no smooth points, that it cannot be renormed equivalently with a strictly
convex or smooth norm, that £, (I)/he(S) is a Grothendieck space, etc.

1. NOTATION AND PRELIMINARIES

Let ¢ : R — [0, +00] denote an Orlicz function, i.e. a function which is even,
nondecreasing, left continuous for x > 0, ¢(0) = 0 and p(z) — oo as x — 0.
Define a(p) = sup{t > 0 : o(t) = 0}, 7(p) = sup{t > 0 : p(t) < oo} and
assume that 7(¢) > 0. Fix an arbitrary set I and, for z € R!, define I,(x) =
Siere(@i). Let €,(I) be the corresponding Orlicz space, i.e. £,(I) = {z € R :
X > 0 such that I,(z/)\) < oo}. Consider in £,(I) the F-norm |z|, := inf{\ >
0:I,(x/N) < A}, Vo € £,(I), and the associated distance d(z,y) = |z — yl,. It is
known that (¢,(I),d) is a complete F-space.

Let S C £,(I) be the ideal of elements of finite support. Define h,(S) by:

(E

he(S) ={x € £,(I): VA >0, 3s € S such that I, ) < o0},

and 6(z) by:
6(z) = inf{\ > 0: 3s € S such that IM?) < ook, x € Ly,(I).

Clearly, hy(S) is a closed ideal of £,(I) such that hy(S) = {z € £,(I) : YA >
0, I,(A\x) < oo}, if ¢ is finite, and S = h,(S), where S is the closure of S in £, (I).

We are interested in the quotient space £, (I)/h,(S). Hence we must impose the
condition £,(I) # h,(S). Note that this happens if and only if I is infinite and
o ¢ AY, i.e. ¢ doesn’t satisfy the A condition at 0.
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If ¢ is convex we can consider the Luxemburg norm || - || and the Luxemburg
distance dp.:

[zl = nf{A > 0: L(z/A) <1}, do(zy) = llz—yle,  2yel(]),
as well as the Amemiya-Orlicz norm || - ||, and the Amemiya-Orlicz distance d,:

Hx||0:]i€r>1%{%(1+1¢(kx))}, do(z —y) = [z —yllo,  w,y €l,(D).

on £,(I) the same topology as |- |,. Denote by B (resp. B2) and SL (resp. S9)
the closed unit ball and unit sphere of (¢,(I), | - ||z) (resp. (¢,(I),] - |lo)). Recall
that a Banach M -space is a Banach lattice (X, | - ||) such that ||z Vy| = ||z] V ||ly||,
whenever z,y € X .

It is known that, Vo € £ (1), ||z]lz < ||z|lo < 2|lz|/z and that these norms define

Proposition 1.1. Let I be an infinite set and ¢ an Orlicz function such that
L,(I) # hy(S). Then:
(1) For each x € L,(I) we have 6(z) = d(x,hy(S)) and, if ¢ is convez, also
o) = di (. ho () = do( 1 (S)).
(2) 6 is a monotone seminorm on Ly,(I) such that ker(6) = hy(S).
(3) Let ||| be the quotient F-norm on £,(I)/hy(S). Then (bu(I)/hy(S), || - |I) s
a Banach M-space.
(4) If ¢ is convex, the space Ly(I)/h,(S) equipped with the quotient norms cor-
responding to the Luxemburg norm as well as to the Orlicz norm is order
isomorphic and isometric to (Ly,(I)/he(S), || - |I)-

Proof. (1) Let « € £,(I) and fix € > 0. Then 3s € S such that I, ( o ) < +0o0

§(x)+e
and 0 < st < 27,0 < s7 < a7. Pick {yataca, {Za}aca in hy(S)t with yo T
xt — st 24 T 27 — s7. Since I, is o-continuous, we get:
T—8— Yo+ 2a T —sT —ya+27 — 5 — 24
|- J> e} 7 0
( 5(2) + e ) ( 5(x) + e )H

with respect to (for short, wrt) o € A. Hence d(z,h,(S)) < 6(z), since € >
0 is arbitrary. If ¢ is convex, the above also proves that dr(z,h,(S)) < 6(z).

Concerning the Amemiya-Orlicz norm, since I, (%) — 0wrt « € A, we

have:
x—s—ya+za
2 =8 — Yo + 2Zallo < (6(x) +€) [1+I¢ <W>]
— 8(x) +ewrt a € A,

whence, € being arbitrary, it follows that d,(x, hy(S)) < 6(z).

For the contrary inequality, if §(z) = 0, the above proves that 0 = é(x) =
d(z,he(S)) = dr(x, hy(S)) = do(z, hy(S)). Assume that 6(x) > 0 and pick a fixed
y € hy(S). Suppose that there exists 0 < A < é(x) such that I, (:%) < +ooc.
Take A < t < é§(x) and denote r = A/t. Then 0 < r < 1 and Is € S such that

I, (ﬁ) < +00. Since £2 = r% + (1 _ 7")

7 we have:

_y=s_
(1-m)t?

(559) 21 () o ) <o
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a contradiction. Hence V0 < A < §(z), Vy € hy(S), I, (552£) = +oo, which implies
(2, 1p(S)) 2 8(z) < di @ hp(S)). As |- lo 2 I 12, we also get do(z, hy(S)) >
6(x).

(2) and (3) were proved in [15] and (4) follows easily from the above. O

In the sequel 4,(I)/h,(S) will be the Banach M-space (£,(I)/hy(S), | -]]) and Q
the quotient map @ : £,(I) — £,(I)/hy(S). Let BI denote the Stone-Weierstrass
compactification of I, when we consider in I the discrete topology. Denote by F(I)
the class of finite subsets of I. If z € Rf and A C I, define x4 = z - 14 and
A =x-1 I\A-

Proposition 1.2. Let I be an infinite set and ¢ an Orlicz function such that
Co(I) # hy(S). If a(p) > 0, then

lo(I)/ho(8) = (boo(I)/o(I), || - loo) = (C(BIND), || - [|oo)
(order isomorphism and isometry).

Proof. First of all, it is clear that £,(I) = lo(I) and hy(S) = ¢o(I), as sets and
algebraically. Consider the map ¢ : {oo(I) — £,(I) such that i(z) = a(y) - « and
the quotient map ¢ : oo (I) — Lo (I)/co(I). Note that |i(x)|, < ||z]/« and that:

inf |2*|oc,

Vo € bo(D), @) = inf

. — — inf li(zA)
1QUi(x)) || = d(i(x), hyo(S)) Al li(z )],

Clearly, |Q(i(x))[| < [lg(z)]|, whence, if [|g(x)|| = 0, we get [|[Q(i(z))]| = [[q(x)[| = O.

Assume that |¢(z)|| =: @ > 0 and take 0 < € < a. Find sequences, {A,}n>1 in

§(I) and {in}n>1 in I, such that A, C Apt1, in € Api1 \ Ay and |z, | > a —€/2.
Then:

Vn>1, I, (%) _1, (%) de%) = oo,

k>n

which implies |i(z4")|, > a — €, ¥n > 1, whence ||Q(i(z))|| > a — ¢. Since € > 0 is
arbitrary, we get ||Q(i(z))|| > a and finally ||Q(i(z))|| = a. |

2. PROXIMINALITY

Let (X, D) be a metric linear space with a distance D and M C X a subspace
of X. Consider the distance D(z, M) = inf{D(z,m) : m € M}, x € X, and say
that © € X is M-approzimable if 3m € M such that D(x, M) = D(x,m). Denote
by Ap(M, X) the subset of M-approximable elements of X. If Ap(M,X) =X, M
is said to be proziminal in X. If M is proximinal in X then, obviously, M is closed
in X.

Let (X,] - ||) be a normed space and M C X a closed subspace. Denote by
Bx, Sx its closed unit ball and unit sphere, respectively, and by X* its topological
dual. Define Top(M, X) = {x € Sx : distance (z, M) = 1}. Clearly, Top(M, X) C
Ap(M,X)\ M and x € Top(M, X) iff v € Sx and q(x) € Sx/n, where g is the
canonical quotient map ¢ : X — X/M. In normed spaces, the proximinality has
been characterized by Godini as follows:
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Theorem 2.1 (Godini). If X is a normed space and M C X a closed subspace,
then the following are equivalent: (1) q(Bx) = Bx/m; (2) ¢(Bx) is closed in X /M ;
(8) M is proziminal in X .

Proof. See [7]. |

Proposition 2.2. Let I be an infinite set and ¢ an Orlicz function such that
L,(I) # hy(S). Then:
(a) hy(S) is proziminal in (L, (I),|-|,) and, if ¢ is convex, also in (C,(I), |- ||L)-
(b) Assume that ¢ is conver. Then:
(1) z € Top(hy(S), (e (D), || - 1)) iff || € Top(hy(S), (bo(1), 1l - II2)), for

z=1L orz=o.

(2) Top(he(S), (Le(1), [ ll0)) = Top(hy(S), (€ (D), || - [[£)) N SG-

(3) Top(ho(S). (o). |- 1)) = (@ € £o(D) : T(w) < 1, Io(Aa) = o0, VA >
1, VA e F()}.

(4) If a(p) =0, then

Top(he(S), (e (D), ]| - o)) = 0.

If a(p) > 0, then
Top(he(S), (e(D); [ - [lo)) = {x € Lo(I) « zi| <alp), Viel,

and Ve > 0, card{i € I : |x;| > a(p) — ¢} = o0}
(5) hy(S) is proziminal in (L,(I), || - |lo) iff a(e) > 0.
Proof. (a) Pickx € £,(I). If §(z) = 0, by Proposition 1.1 we get that d(z, h,(S)) =
0. Hence z € hy(S) since hy,(S) is closed in (b, (1), ] - |y)-
Assume that 6(x) > 0 and = > 0. Let €x | 1 be such that 1— i = <27k k>

1. Since I, (ﬁ) < oo and I, is o-continuous, there exists a finite subset 4; C I

such that I, (ﬁ) < 272a, where uy := - 14, and 0 < a < inf{1,8(z)} is
arbitrary. Let xo := x — u;. Then there exists a finite subset Ay C I\ A; such
that I, (ﬁ) < 273a, where ug := z - 14,. By reiteration we obtain a family
of pairwise disjoint elements {u,},>1 in ST such that, if z, = z — ZZ;& Up, T >
1,ug =0, then u, <z, and I, (f(;)fn) < 2-n—lg,

Let gr = > )0 MeUk+1, Mo = 1. We claim that {g, },>0 is a Cauchy sequence in
(lo(I),| - |p)- Indeed, fix € > 0 and take r, € N such that, Vr > r,, n,/e < W

and Zkzro 2-(k+1) < ¢/a. Then, Vs > r > r,, we have:

(27 - S g (M) < 3, () < (cfara=e.

k=r+4+1 k=r+1

Hence } 3~ omktrt1 =: g € he(S). Note also that 37, qurt1 =t f € (1),
because £, (I) is o-o-complete and 0 < f < z. Let z =z — f. Then fAz =10

and 0 < z < w41, V6 > 0. So I, (5(;)Ek> < 2—(k+1)a,wg > 1. Since I, is
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left-continuous, we get I, ( e )) = 0. Hence:

o (i) - () - (B ;Zlff“’““ =)

(B @) n ) 2opres

Thus D(z,g) < 6(x) with D = d or D = dj, and d(x,y) = ||z — y||L. Since
D(z,g) > 6(x), we get D(x,g) = 6(x).

In the general case (i.e. ™ > 0,27 > 0), if 6(z) > 0 (i.e. = ¢ hy(S)), by the
above it is possible to find g1,g2 € hy(S) such that 0 < gy < 27,0 < go < 2~

and I, (”3_(;%) <¢>1, (I—(;)”ﬁ) Thus, if g = g1 — g2, we get I, (5@))

[ (5—@%) + 1, (T;L)} < a. Hence D(z,g) = 6(z).

(b)(1) Observe that, for z = L or z = o, we have ||z||, = || |z| ||. and
zzg| |h (f)))): inf{llz —yll. -y € h (5)} = inf{|| |2 —yl: : y € he(S)} =
(b)(2) I f € Top(he(S), (Lo (1), || - (o)), then 1 = d, (fahw(s)):dL(fvhw(S)) <
[flle < lIfllo = 1. Hence fETOP(h (8), (b (D), [ - 1)) N

If f € Top(hy(S), (Lo (D), || - [I2)) N S, then 1=dg(f, h ( ) = do(f, he(8)) <
[fllo = 1. HencefGTop(h (S), (Lo (D). - ).

(b)(3) It is enough to remark that x € Top(hy(S), (L, (D), || - |lz)) iff |lz)|r <1
and 6(z) > 1. But these conditions are equivalent to I, (x ) <land,VA>1, VA€
(), I,(\x?) = <.

(b)(4) First of all, note that if z € Top(hy(S),ly(I),| - |lo)), then |z;| €
[0,a(p)],Vi € I. Indeed, we have that §(x) > 1, i.e.:

*) VA > 1, VA € F(I), I,(Az?) = oo.

Since 1 = |z|l, = infrso{7(1 + I (kx))}, we get that 1 = 1+ I,(z), whence
I,(z) =0 and |z;| € [0,a(y)], Vi € I.

Therefore, if a(¢) = 0, it is clear that T'op(hy(S), (bp(I), ] - [lo)) = 0. Assume
that a(¢) > 0 and that « € Top(hy(S), (Uue(D), || - |lo))- Then by the above, |z;| <
a(p), Vi € I. By (*) it follows that ,Ve > 0, card{i € I : |z;| > a(p) — €} = 0.
Finally if x € £, (1) satisfies |z;| < a(<p), Vi e I, and card{i € I : |z;| > a(p)—€} =
00, Ve > 0, we easily conclude that ||lz[|, = infrso{7 (1 + I,(kz))} = 1 and that
6(x) > 1,1e. x € Top(hy(S), Uu(I),] - 1lo))-

(b)(5) If a(yp) = 0 it is clear, by the above, that h,(S) is not proximinal in
(€o(I),] - |lo). Assume that a(p) > 0. By Proposition 2.1, it is enough to prove
that, if @ € Top(hy(S), (ls(D),] - ||))T, then there exists f € hy(S), 0 < f <z,
such that ||z — f||, = 1. Denote h := (z — a(p)) V 0 and observe that h € hy(S)
(because, VA > 0, card{i € I : Ah; > a(p)} < Vo). Clearly I,(z —h) = 0 and,
VA > 1, I,( Az — h)) = oo (because dr.(x, hy(S)) = dr(x — h, hy(S)) = 1). Hence:

1 B B
o= Allo = inf 2(1+ L (k(z = b)) = 1+ L(z = h) = 1.
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3. EXTREMAL STRUCTURES

Denote by Ext(C') the set of extreme points of a convex set C. If a(y) > 0, we
have, by Proposition 1.2 and [10, Theorem 4.1], that the ball By_(1)/n,(s) has an
abundance of extreme points. In fact, we get

Ext(By,(1y/h,(s)) = Ext(Be (1)/co(n)) = ¢(Ext(Be (1))

and

Be, (1)1, (5) = CO(Ext(Be, (1)/h,(5)))-
If a(p) = 0 the situation is completely different.

Proposition 3.1. Let I be an infinite set and ¢ an Orlicz function such that
L,(I) # hy(S) and a(p) =0. Then Ext(ng([)/hw(s)) =10.

Proof. Assume that e € Ext(By,(1)/n,(s))- Pick w € £,(I) such that Q(w) = e.
Then d(w, hy,(S)) = 1 and there exists g € h,(S) such that 1 = d(w, hy(S)) =
d(w,g) = d(w — g¢,0), whence, VA > 1, I, (%) < A. By the left-continuity of I,
we get that I,(w—g) <A, VA >1,1ie I,(w—g) <1. Let u = w— g and suppose,
without loss of generality, that I,(u) < 1/2 (if not, put w; = 0 for ¢ € A and some
A € F(I)). Since a(p) = 0, we can choose a countable subset B = {in}n>1 of I
such that u;, — 0, asn — oo, and, if h = u-1p, then h € hy(S) and Q(u—h) = e.
Since a(¢) = 0 we have that card(supp(u)) = Ro. Let supp(u) = {j,}»>1 and define
x,y € L,(I) as follows:

{u ifi¢ B {u ifi¢ B
Tq = Yi =

wj, ifi=ip, k>1" —uy,, ifi=iy k>1"

Then Q(z) # Q(y) (because z —y ¢ hy(S)), Q(x),Q(Y) € Be,(1)/n,(s) (because
Iy (2),1,(y) < 1) and £(Q(z) + Q(y)) = Q(u — h) = e, a contradiction. Hence
Eat(Be,m)/n,s)) = 0. D

If X is a normed space and = € Sx, denote Grad(z) = {z* € Sx~ : x*(z) = 1}.
We say that z € Sx is smooth iff card(Grad(zx)) = 1.

Proposition 3.2. Let I be an infinite set and ¢ an Orlicz function such that
hy(S) # Lo(I). Then Sy (1y/n,(s) has no smooth points.

Proof. Let e € Sy (1)/n,(s)- Pick x € £y(I) such that I,(r) < 1 and Q(z) = e.
Then I,(Az) = 0o, VA > 1. We claim that there exists C' C I such that, if y = z¢
and z = 2©, then Q(y), Q(z) € Se,(1)/h,(s)- Indeed, since I,((1 +27")z) = oo,
we can choose two sequences of nonempty and finite subsets {An}n>1, {Bnln>1
of I such that: (i) > ;e ©((1+27")x;) > 2" < 3 cp o((1+27")z;); (ii)
A,NB, =0=(A,UB,)N (A, UBy), n #m. Now, take C' = U,>14,. Note
that I,(y £ 2) = I,(z) <1, Qy £ 2) € St (1)/h,(s) and y + 2z = z.
There exists y* € Grad(Q(y)) and z* € Grad(Q(z)) such that:

12 y"(Qy) £ Q(2)) =y (Qy)) y"(Q(2)) = 1 £y7(Q(2)),

whence we get y*(Q(2)) = 0. In a similar way, we get z*(Q(y)) = 0. This means
that y* # z*. We have:

Y Q) =y (Qy) + Q(2)) =y"(Qy)) +y"(Q(2)) =1+0=1,
2(Q(x)) = 2" (Q(y) + Q(2)) = 2"(Qy)) + 2" (Q(2)) =0+ 1 =1,

which means that y*, 2* € Grad(e), so e is not smooth. O
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4. ORDER COMPLETENESS AND ORDER CONTINUITY

In [15] it is proved that every @ € (¢,(I)/hy(S)) \ {0} is o-o-continuous and not
o-o-complete. Recall that a vector x of a Banach lattice X is: (i) o-o-continuous if
for every decreasing sequence {x,, },,>1 in X such that z,, < |z| and inf,>1 , = 0,
we have ||z,,|| | 0; (ii) o-o-complete if for every increasing sequence {xy }n>1 in X T
such that x, < |z|, there exists sup,,~; Z,. In particular, an increasing sequence in
L,(I)/hy(S) has supremum if and only if it is a Cauchy sequence.

As a consequence, we get the following known fact: if I is an infinite set and
{A,}n>1 a sequence of closed-and-open (clopen) subsets of SI\I such that A, C
Anyiq and A, # A1, then A is not open in BINI, with A :=J,,~; An. Indeed, let
¢ be the convex Orlicz function such that ¢(t) = 0if |t| < 1, but ¢(t) = oo whenever
[t| > 1. Then €, (I)/hy(S) = (C(BINI), || - |loo) (order isomorphism and isometry).
Consider in €, (I)/h,(S) the sequence {14, }n>1, which is increasing and bounded
by 157 7. Since |[14, ,\a, [ =1, we get that {14, },>1 is not Cauchy, whence this
sequence has no supremum. But, if A were open, 154 should be the supremum of
this sequence. Hence A is not open and BI\I is not basically disconnected. Recall
that a compact Hausdorff space K is basically disconnected if the closure of every
open Fy-set (i.e. a countable union of closed sets) in K is open (see [9, pg.4]).

5. ROTUNDITY AND SMOOTHNESS

Proposition 5.1. If I is an infinite set and ¢ is an Orlicz function such that
Lo(I) # hy(S), then there exists an order isomorphic isometric copy of C'(SN\N)

in £o(1)/hy(S).

Proof. Pick x € £y(I)* such that I,(z) < 1, Q(x) € Sy (1y/n,(s) and, if A :=
supp(z), then card(A) = Rg. Let {\,},>1 be a sequence in R* such that A, | 1.
Note that I,(A\,(z — s)) = 0o, Vn > 1, Vs € S. Choose a sequence {A,},>1 of
pairwise disjoint finite subsets of A such that A = U,>1 A4, and I,(A\, -z -14,) >
L, n>1 Ifa= (an)w>1 € loo, put a* = (0,...,0,a41,ar42...) and define
T:lo = Ll,(I)by Ta=>",~ an-x-1a,. Clearly, T is continuous and we have
ﬁ”a’“”OO < ||Ta*||1, < ||a*||oo- Observe that, if a = (ay,as,...,ax,0,0,...), then
Ta € hy(S), whence, by hy(S) being closed in £,(I), we get that T'(co) C hy(S).
Hence, if ¢ is the quotient map q : oo — foo/co, we have the map i : £oo/co —
L,(I)/hy(S) such that i(g(a)) = QT (a), Ya € L. Clearly, this map preserves
the order and satisfies ||g(a)|| = limy_ oo |a¥]|oc = limp_oo |Ta?| = ||QT(a)]-
Therefore ¢ is an order isomorphic isometry between £o./c, and i(¢so/co). O

Corollary 5.2. Let I be an infinite set and ¢ an Orlicz function such that £, (1) #
hy(S). Then:

(1) £,(I)/he(S) is not realcompact and cannot be renormed equivalently in order
to be rotund or smooth.

(2) £,(I)/hy(S) does not have property (C), it is not WCD, it is not w-Lindeldf
and (L,(1)/hy(S))* = hy(S)* is not w*-angelic.

Proof. (1) This follows from the fact that C(SN\N) is not realcompact (see [13, p.
146], [3]) and cannot be renormed in order to be rotund or smooth (see [2], [10]).
(2) This is a consequence of (1) (see [6]).
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6. €,(I)/hy(S) IS NOT A DUAL SPACE

Let I be an infinite set, m =card(l) and P,(I) = {A C I : card(4) = No}.
Then, clearly, card(P,(I)) = m® =: n. Note that n > ¢, where ¢ =card(R).
Also there exists a family {A;}ien in P, () such that card(4; N As) < N, for
t # s. Indeed, let {I;}tem be a family of pairwise disjoint subsets of I such that
card(I;) = m, Vt € m. Pick i; € I;, t € m, and choose a pairwise disjoint family
{Iis}sem of subsets of L\{i;:} such that card(l;s) = m, s € m. Pick izs € I
and choose a pairwise disjoint family {Iisr}rem of subsets of Iis\{i;s} such that
card(Lis) = m, r € m. Pick is5r € L1, r € m. By reiteration we obtain families
of elements {i;}rem, {%ts}t,sem, €tc., of I. Now, consider the family T of sequences
of the form (is,,d¢,t0, it1tatss- - - )5 t; € My j > 1. It is clear that card(T) = m®o =n,
card(T) = Ny, VT € X, and that, if T, S € T, T # S, then card(T' N S) < V.

Lemma 6.1. Let I be an infinite set and ¢ an Orlicz function such that £,(I) #
hy(S). Ifn =mY and m =card(I), there exists an order isomorphic isometric copy
of (co(n), || - lloo) i £o(1)/he(S).

Proof. Let {A:}ten be a family of subsets of I such that card(A:;) = Ny and
card(A; N Ag) < Vg, when ¢ # s. Pick x € £,(I)* such that I,(z) < 1, Q(z) €
Se,(1)/hy(s) and card(supp(z)) = RVo. Let supp(z) = {jr},>1. If t € n and
Ay = {ik}tr>1, define e’ such that Vi € I, e} = 0, if i ¢ A, and e = x;,,
if ¢+ = 4., » > 1. Then clearly, Vii,ta,...,t, € n, Vai,...,a, € R, we have
| >, aQ(e')|| = sup{lag| : k = 1,...,n}, i.e. {Q(e")}ten is order isomorphi-
cally and isometrically equivalent to the unit basis of ¢o(n). O

Proposition 6.2. If I is an infinite set and ¢ an Orlicz function such that £,(I) #
ho(S), then £y,(I)/hy(S) is not a dual space.

Proof. If a(p) > 0, we have by Proposition 1.2 that £,(I)/hy(S) = C(BI\I).
Grothendieck (see [8]) has shown that, for a compact Hausdorff space T', T must
be hyperstonian in order for C(T) to be a dual space (see [11, p. 95]). But SI\I is
not hyperstonian because it is not basically disconnected.

Assume that a(¢) = 0. Then card(supp(z)) < Ng for each z € ¢,(I). Hence
card({,(I)) < n := m™, with m =card(I). By Lemma 6.1, there exists a copy
of ¢o(n) in £,(I)/hy(S) and, by a classical Rosenthal’s result ([12, Cor. 1.2]), if
L,(I)/hy(S) were a dual space, it should contain a copy of ¢o(n). But this is a
contradiction because card({o(n)) = 2" > n >card({,(I)/hy(S)). O

7. L,(I)/hy(S) 1S A GROTHENDIECK SPACE

If I is an infinite set, denote by 2(I) the Banach lattice of finitely additive
signed measures on I (see [14]). It is known that this space is order isomorphic
and isometric to C(BI)* (i.e. the space of Radon measures on 3I). Let T be this
isometry. Then:

(1) If v € M(I) and T(v) = p € C(BI)*, we have, VA C I, v(A) = u(A), where
A is the closure of A in 31.
(2) T{v € M) : v({i}) =0, Vi € I}) = C(BI \ I)* (=Radon measures of
C(BI)* supported on GBI\ I).
If a(p) > 0,let M = {v e M) : v({i}) =0, Vi € I} = T-HC(BI\ I)*). If
a(p) = 0, define M C M(I) as the subspace such that v € M iff v({i}) =0, Vi € I,
and there exists a sequence {Gy}r>1 of pairwise disjoint subsets of I satisfying:
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(1) [/(I\ Upz1 Gi) = 0;
(2) Doks1 ¢(1/k) - |Gi| < 0o, where |G| =card(Gk);
(3) Ys1 9 (F14 2]) - |GL N E| = 00, ¥n > 1, VE C I such that [v|(E) > 0.

Proposition 7.1. Let I be an infinite set and ¢ an Orlicz function such that
Co(I) # hy(S). Then (Ly(I)/hy(S))* is order isomorphic and isometric to M
and M is 1-complemented in C(BI)*.

Proof. The proof is essentially the one given by Ando [1]. Let X = £,(I)/h,(S) and
pick z* € X**. If E C I, define x%;, as 25(Q(h)) = 2*(Q(hg)),Vh € L,(I), with
hg = h-1g. Then z3, € X** and for disjoint subsets E, F' of I we have x5, p =

oy + @, 2gupll = 2kl + |z5]l. So, we can define the measure vy« € M(1)™
as follows: VE C I, v+ (E) = ||z%]]. Note that this map X** 3 2* — v, €
()T is linear, monotone (i.e. z* > y* > 0 implies vy > 1vyy+) and [[vg«|| = ||z*|]

(see Lemmas 2 and 3 of [1]).

We claim that v,- € M*T. Clearly, v,«({i}) = 0, Vi € I, whence, if a(¢) > 0,
we get vy« € M. Assume that a(p) = 0 and pick f € £,(I)" such that I,(f) <1
and ||| = 2*(Q(fr)), YVE C I (see Lemma 2 of [1]). Define Gy ={i € I:|f;| >
1}, Gy ={iel:+ <|fil <5}, k> 2, and observe that |G| < oo, k > 1,
because we suppose that a(p) = 0. We have:

(@) v (1\ Uy Gi) = 155100l = 2 (QUnonar ) = 2°(0) = 0.

(b) Yz #(5) - |Gl < I (f) < oo
(c) Let E C I be such that vy« (E) > 0. Then:

0 <vpe(E) = |l2g| = 2"(Q(fr)) = 25(Q(fr)) < QB - =kl

whence we get 1 < ||Q(fg)||, i-e., d(fg,hy(S)) > 1. Hence, VA > 1, Vg € hy(S),

we have I,(A(fg — g)) = oco. Pick n € N and choose k, € N such that, Yk >
11 1y 1 . .

ko, (1+ )% = (14 55) %= Then, since Frnre, 6y € S, we have:

S oM+ 1GNE > > o1+ &]:27) - Gk N Bl
k>1 >k,

> Iw([l + %][fE - fEﬂ(UfilGi)]) = 00,

and this completes the proof of the claim.
If v € M(I)", define z}; : XT — R as follows:

Vh € ((I)*, 23(QM) = inf Y 8(h,) - v(EL)
k=1

where the infimum is taken over all finite pairwise disjoint partitions {Ej}7_, of I.
By Lemmas 4, 5 and 6 of [1] and defining

Vh € Ly(I), 23 (Q(h)) = z3(Q(hT)) — 23(Q(R7)),

we have that z} € X*T and ||2%| < ||v|]| = v(). In addition, if v € M and
x* € X*T (see [1, Theorems 2 and 3]), then: (i) ||(z})k| = v(E), VE C I; (i)

x¥ = a*, vy = v. Hence the positive cones M and X*T are order isomorphic

Vg*

and isometric. If v € M(I) and 2* € X*, define vp» = Vot — e, @) = 25, — 5 _.

With this extension we obtain an order isomorphism and isometry between X* and
M. The projection P : (1) — M is defined as P(v) = vpx, Yv € M(I). O
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Proposition 7.2. Let I be an infinite set, p an Orlicz function such that £,(I) #
ho(S), {2} }n>1 a sequence in (Ly,(I)/hy(S))* and € > 0. Then there exists f €
L,(I)T such that I,(f) < e and:

(1) va: (E) = 22 (Q(fz)), ¥n > 1, VE C I;

(2) ves (9) = 23(Q(af)). Y= 1, Vg € b (1).
Proof. (A) If z* € ({,(I)/hy(S))*, by Lemma 2 of [1], there exists f € L (I)*
such that I,(f) <e and Vgt (E) T (Q(fE)), Ve (E) = 2" (Q(fE)), VE CcI
Hence:

VE C I, g+ (E) = vpes (E) — vy (E) = 2 7(Q(f)) — 2" (Q(f)) = " (Q(fr))-

So, considering v, as a member of C(81)*, we get that v+ (g) = 2*(Q(gf)), Vg €
loo(I).

(B) For each z}, take f, € £,(I)" satisfying (A) and such that I,(f,) < e/2"
Let f = sup,,>1 fn. Then we have I,(f) < e (see Lemma 1 of [1]) and (1), (2) ar
fulfilled, Vn > 1. I:l

A Banach space is said to be a Grothendieck space (see [4]) if for each sequence
{z} }n>0 in X* such that 2} — zfj in the w*-topology, we have that x} — z§ in
the w-topology of X*.

Proposition 7.3. Let I be an infinite set and ¢ an Orlicz function such that
Co(I) # hy(S). Then L,(I)/hy(S) is a Grothendieck space.

Proof. Let {x}},,>0 be a sequence in (¢,(I)/hy(S))* such that x}; — z{ in the w*-
topology. By Proposition 7.2 there exists f € £, (I)" such that, Vg € loo(I), Vn >
0, ve: (9) = 23,(Q(g/)). Since Q(gf) € £y(I)/hy(S), we have

Jim 27, (Q(gf)) = 25(Q(g1))-

Hence v, — vy in the w*-topology as members of C(BI)*. Since C(BI) is
Grothendleck we get Vgx — Vgs in the w-topology of C'(8I)*. Therefore z;, — 7
in the w-topology, because (¢ ( )/hy(S))* is a subspace of C(B1)*. O

Remarks. Since £,(I)/hy(S) has the Dunford-Pettis property (M -spaces have the
Dunford-Pettis property because they are Li-preduals) and is a Grothendieck space,
we obtain that £,(I)/hy(S) has no infinite dimensional complemented subspaces
Y with By« w*-sequentially compact. Also from Proposition 7.3 we get again that
L,(I)/hy(S) cannot be renormed in order to be smooth, because a Grothendieck
smooth space is reflexive ([4, p. 215]) and ¢,(I)/hy(S) is not, containing a copy of
C(AN\N).

Question. Is £, (I)/hy(S) primary? Recall that Drewnowski and Roberts proved,
under CH, that ¢, /cp is primary (see [5]).
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