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THE CLASSICAL BANACH SPACES `ϕ/hϕ
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(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we study some structural and geometric proper-
ties of the quotient Banach spaces `ϕ(I)/hϕ(S), where I is an arbitrary set,
ϕ is an Orlicz function, `ϕ(I) is the corresponding Orlicz space on I and

hϕ(S) = {x ∈ `ϕ(I) : ∀λ > 0, ∃s ∈ S such that Iϕ(x−s
λ

) < ∞}, S being
the ideal of elements with finite support. The results we obtain here extend
and complete the ones obtained by Leonard and Whitfield (Rocky Mountain
J. Math. 13 (1983), 531–539). We show that `ϕ(I)/hϕ(S) is not a dual space,
that Ext(B`ϕ(I)/hϕ(S)) = ∅, if ϕ(t) > 0 for every t > 0, that S`ϕ(I)/hϕ(S)

has no smooth points, that it cannot be renormed equivalently with a strictly
convex or smooth norm, that `ϕ(I)/hϕ(S) is a Grothendieck space, etc.

1. Notation and preliminaries

Let ϕ : R → [0,+∞] denote an Orlicz function, i.e. a function which is even,
nondecreasing, left continuous for x ≥ 0, ϕ(0) = 0 and ϕ(x) → ∞ as x → ∞.
Define a(ϕ) = sup{t ≥ 0 : ϕ(t) = 0}, τ(ϕ) = sup{t ≥ 0 : ϕ(t) < ∞} and
assume that τ(ϕ) > 0. Fix an arbitrary set I and, for x ∈ RI , define Iϕ(x) =∑
i∈I ϕ(xi). Let `ϕ(I) be the corresponding Orlicz space, i.e. `ϕ(I) = {x ∈ RI :

∃λ > 0 such that Iϕ(x/λ) < ∞}. Consider in `ϕ(I) the F-norm |x|ϕ := inf{λ >
0 : Iϕ(x/λ) ≤ λ}, ∀x ∈ `ϕ(I), and the associated distance d(x, y) = |x− y|ϕ. It is
known that (`ϕ(I), d) is a complete F-space.

Let S ⊆ `ϕ(I) be the ideal of elements of finite support. Define hϕ(S) by:

hϕ(S) = {x ∈ `ϕ(I) : ∀λ > 0, ∃s ∈ S such that Iϕ(
x− s
λ

) <∞},

and δ(x) by:

δ(x) = inf{λ > 0 : ∃s ∈ S such that Iϕ(
x− s
λ

) <∞}, x ∈ `ϕ(I).

Clearly, hϕ(S) is a closed ideal of `ϕ(I) such that hϕ(S) = {x ∈ `ϕ(I) : ∀λ >

0, Iϕ(λx) <∞}, if ϕ is finite, and S = hϕ(S), where S is the closure of S in `ϕ(I).
We are interested in the quotient space `ϕ(I)/hϕ(S). Hence we must impose the

condition `ϕ(I) 6= hϕ(S). Note that this happens if and only if I is infinite and
ϕ /∈ ∆0

2, i.e. ϕ doesn’t satisfy the ∆2 condition at 0.
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If ϕ is convex we can consider the Luxemburg norm ‖ · ‖L and the Luxemburg
distance dL:

‖x‖L = inf{λ > 0 : Iϕ(x/λ) ≤ 1}, dL(x, y) = ‖x− y‖L, x, y ∈ `ϕ(I),

as well as the Amemiya-Orlicz norm ‖ · ‖o and the Amemiya-Orlicz distance do:

‖x‖o = inf
k>0
{ 1
k (1 + Iϕ(kx))}, do(x− y) = ‖x− y‖o, x, y ∈ `ϕ(I).

It is known that, ∀x ∈ `ϕ(I), ‖x‖L ≤ ‖x‖o ≤ 2‖x‖L and that these norms define
on `ϕ(I) the same topology as | · |ϕ. Denote by BLϕ (resp. Boϕ) and SLϕ (resp. Soϕ)
the closed unit ball and unit sphere of (`ϕ(I), ‖ · ‖L) (resp. (`ϕ(I), ‖ · ‖o)). Recall
that a Banach M -space is a Banach lattice (X, ‖ · ‖) such that ‖x∨ y‖ = ‖x‖∨ ‖y‖,
whenever x, y ∈ X+.

Proposition 1.1. Let I be an infinite set and ϕ an Orlicz function such that
`ϕ(I) 6= hϕ(S). Then:

(1) For each x ∈ `ϕ(I) we have δ(x) = d(x, hϕ(S)) and, if ϕ is convex, also
δ(x) = dL(x, hϕ(S)) = do(x, hϕ(S)).

(2) δ is a monotone seminorm on `ϕ(I) such that ker(δ) = hϕ(S).
(3) Let ‖ · ‖ be the quotient F-norm on `ϕ(I)/hϕ(S). Then (`ϕ(I)/hϕ(S), ‖ · ‖) is

a Banach M-space.
(4) If ϕ is convex, the space `ϕ(I)/hϕ(S) equipped with the quotient norms cor-

responding to the Luxemburg norm as well as to the Orlicz norm is order
isomorphic and isometric to (`ϕ(I)/hϕ(S), ‖ · ‖).

Proof. (1) Let x ∈ `ϕ(I) and fix ε > 0. Then ∃s ∈ S such that Iϕ

(
x−s
δ(x)+ε

)
< +∞

and 0 ≤ s+ ≤ x+, 0 ≤ s− ≤ x−. Pick {yα}α∈A, {zα}α∈A in hϕ(S)+ with yα ↑
x+ − s+, zα ↑ x− − s−. Since Iϕ is o-continuous, we get:

Iϕ

(
x− s− yα + zα

δ(x) + ε

)
= Iϕ

(
x+ − s+ − yα + x− − s− − zα

δ(x) + ε

)
→ 0

with respect to (for short, wrt) α ∈ A. Hence d(x, hϕ(S)) ≤ δ(x), since ε >
0 is arbitrary. If ϕ is convex, the above also proves that dL(x, hϕ(S)) ≤ δ(x).

Concerning the Amemiya-Orlicz norm, since Iϕ
(
x−s−yα+zα
δ(x)+ε

)
→ 0 wrt α ∈ A, we

have:

‖x− s− yα + zα‖o ≤ (δ(x) + ε)

[
1 + Iϕ

(
x− s− yα + zα

δ(x) + ε

)]
→ δ(x) + ε wrt α ∈ A,

whence, ε being arbitrary, it follows that do(x, hϕ(S)) ≤ δ(x).
For the contrary inequality, if δ(x) = 0, the above proves that 0 = δ(x) =

d(x, hϕ(S)) = dL(x, hϕ(S)) = do(x, hϕ(S)). Assume that δ(x) > 0 and pick a fixed

y ∈ hϕ(S). Suppose that there exists 0 < λ < δ(x) such that Iϕ
(
x−y
λ

)
< +∞.

Take λ < t < δ(x) and denote r = λ/t. Then 0 < r < 1 and ∃s ∈ S such that

Iϕ
(

y−s
(1−r)t

)
< +∞. Since x−s

t = r x−yrt + (1− r) y−s
(1−r)t , we have:

Iϕ

(
x− s
t

)
≤ Iϕ

(
x− y
λ

)
+ Iϕ

(
y − s

(1− r)t

)
< +∞,
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a contradiction. Hence ∀0 < λ < δ(x), ∀y ∈ hϕ(S), Iϕ
(
x−y
λ

)
= +∞, which implies

d(x, hϕ(S)) ≥ δ(x) ≤ dL(x, hϕ(S)). As ‖ · ‖o ≥ ‖ · ‖L, we also get do(x, hϕ(S)) ≥
δ(x).

(2) and (3) were proved in [15] and (4) follows easily from the above.

In the sequel `ϕ(I)/hϕ(S) will be the Banach M -space (`ϕ(I)/hϕ(S), ‖·‖) and Q
the quotient map Q : `ϕ(I) → `ϕ(I)/hϕ(S). Let βI denote the Stone-Weierstrass
compactification of I, when we consider in I the discrete topology. Denote by F(I)
the class of finite subsets of I. If x ∈ RI and A ⊆ I, define xA = x · 1A and
xA = x · 1I\A.

Proposition 1.2. Let I be an infinite set and ϕ an Orlicz function such that
`ϕ(I) 6= hϕ(S). If a(ϕ) > 0, then

`ϕ(I)/hϕ(S) ∼= (`∞(I)/co(I), ‖ · ‖∞) ∼= (C(βI\I), ‖ · ‖∞)

(order isomorphism and isometry).

Proof. First of all, it is clear that `ϕ(I) = `∞(I) and hϕ(S) = co(I), as sets and
algebraically. Consider the map i : `∞(I) → `ϕ(I) such that i(x) = a(ϕ) · x and
the quotient map q : `∞(I)→ `∞(I)/co(I). Note that |i(x)|ϕ ≤ ‖x‖∞ and that:

∀x ∈ `∞(I), ‖q(x)‖ = inf
A∈F(I)

‖xA‖∞,

‖Q(i(x))‖ = d(i(x), hϕ(S)) = inf
A∈F(I)

|i(xA)|ϕ.

Clearly, ‖Q(i(x))‖ ≤ ‖q(x)‖, whence, if ‖q(x)‖ = 0, we get ‖Q(i(x))‖ = ‖q(x)‖ = 0.
Assume that ‖q(x)‖ =: a > 0 and take 0 < ε < a. Find sequences, {An}n≥1 in
F(I) and {in}n≥1 in I, such that An ⊆ An+1, in ∈ An+1 \An and |xin | > a− ε/2.
Then:

∀n ≥ 1, Iϕ

(
i(xAn)

a− ε

)
= Iϕ

(
a(ϕ) · xAn
a− ε

)
≥
∑
k>n

ϕ

(
a(ϕ) · xik
a− ε

)
=∞,

which implies |i(xAn)|ϕ ≥ a− ε, ∀n ≥ 1, whence ‖Q(i(x))‖ ≥ a− ε. Since ε > 0 is
arbitrary, we get ‖Q(i(x))‖ ≥ a and finally ‖Q(i(x))‖ = a.

2. Proximinality

Let (X,D) be a metric linear space with a distance D and M ⊆ X a subspace
of X . Consider the distance D(x,M) = inf{D(x,m) : m ∈ M}, x ∈ X , and say
that x ∈ X is M-approximable if ∃m ∈ M such that D(x,M) = D(x,m). Denote
by Ap(M,X) the subset of M -approximable elements of X . If Ap(M,X) = X , M
is said to be proximinal in X . If M is proximinal in X then, obviously, M is closed
in X .

Let (X, ‖ · ‖) be a normed space and M ⊆ X a closed subspace. Denote by
BX , SX its closed unit ball and unit sphere, respectively, and by X∗ its topological
dual. Define Top(M,X) = {x ∈ SX : distance (x,M) = 1}. Clearly, Top(M,X) ⊆
Ap(M,X) \M and x ∈ Top(M,X) iff x ∈ SX and q(x) ∈ SX/M , where q is the
canonical quotient map q : X → X/M . In normed spaces, the proximinality has
been characterized by Godini as follows:
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Theorem 2.1 (Godini). If X is a normed space and M ⊆ X a closed subspace,
then the following are equivalent: (1) q(BX) = BX/M ; (2) q(BX) is closed in X/M ;
(3) M is proximinal in X.

Proof. See [7].

Proposition 2.2. Let I be an infinite set and ϕ an Orlicz function such that
`ϕ(I) 6= hϕ(S). Then:

(a) hϕ(S) is proximinal in (`ϕ(I), | · |ϕ) and, if ϕ is convex, also in (`ϕ(I), ‖ · ‖L).
(b) Assume that ϕ is convex. Then:

(1) x ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖z)) iff |x| ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖z)), for
z = L or z = o.

(2) Top(hϕ(S), (`ϕ(I), ‖ · ‖o)) = Top(hϕ(S), (`ϕ(I), ‖ · ‖L)) ∩ Soϕ.

(3) Top(hϕ(S), (`ϕ(I), ‖ · ‖L)) = {x ∈ `ϕ(I) : Iϕ(x) ≤ 1, Iϕ(λxA) =∞, ∀λ >
1, ∀A ∈ F(I)}.

(4) If a(ϕ) = 0, then

Top(hϕ(S), (`ϕ(I), ‖ · ‖o)) = ∅.

If a(ϕ) > 0, then

Top(hϕ(S), (`ϕ(I), ‖ · ‖o)) = {x ∈ `ϕ(I) : |xi| ≤ a(ϕ), ∀i ∈ I,

and ∀ε > 0, card{i ∈ I : |xi| ≥ a(ϕ) − ε} =∞}.
(5) hϕ(S) is proximinal in (`ϕ(I), ‖ · ‖o) iff a(ϕ) > 0.

Proof. (a) Pick x ∈ `ϕ(I). If δ(x) = 0, by Proposition 1.1 we get that d(x, hϕ(S)) =
0. Hence x ∈ hϕ(S) since hϕ(S) is closed in (`ϕ(I), | · |ϕ).

Assume that δ(x) > 0 and x ≥ 0. Let εk ↓ 1 be such that 1− 1
εk

=: ηk ≤ 2−k, k ≥
1. Since Iϕ

(
x

δ(x)ε1

)
<∞ and Iϕ is o-continuous, there exists a finite subset A1 ⊆ I

such that Iϕ
(
x−u1

δ(x)ε1

)
≤ 2−2a, where u1 := x · 1A1 and 0 < a ≤ inf{1, δ(x)} is

arbitrary. Let x2 := x − u1. Then there exists a finite subset A2 ⊆ I\A1 such

that Iϕ
(
x2−u2

δ(x)ε2

)
≤ 2−3a, where u2 := x · 1A2 . By reiteration we obtain a family

of pairwise disjoint elements {un}n≥1 in S+ such that, if xn = x −
∑n−1
k=0 uk, n ≥

1, u0 = 0, then un ≤ xn and Iϕ
(
xn+1

δ(x)εn

)
≤ 2−n−1a.

Let gr =
∑r
k=0 ηkuk+1, ηo = 1. We claim that {gr}r≥0 is a Cauchy sequence in

(`ϕ(I), | · |ϕ). Indeed, fix ε > 0 and take ro ∈ N such that, ∀r > ro, ηr/ε ≤ 1
δ(x)εr

and
∑
k≥ro 2−(k+1) ≤ ε/a. Then, ∀s ≥ r > ro, we have:

Iϕ

(
gs − gr

ε

)
=

s∑
k=r+1

Iϕ
(ηkuk+1

ε

)
≤

s∑
k=r+1

Iϕ

(
uk+1

δ(x)εk

)
≤ (ε/a)a = ε.

Hence
∑
k≥0 ηkuk+1 =: g ∈ hϕ(S). Note also that

∑
k≥0 uk+1 =: f ∈ `ϕ(I),

because `ϕ(I) is σ-o-complete and 0 ≤ f ≤ x. Let z = x − f . Then f ∧ z = 0

and 0 ≤ z ≤ xk+1, ∀k ≥ 0. So Iϕ
(

z
δ(x)εk

)
≤ 2−(k+1)a, ∀k ≥ 1. Since Iϕ is



THE CLASSICAL BANACH SPACES `ϕ/hϕ 3781

left-continuous, we get Iϕ

(
z
δ(x)

)
= 0. Hence:

Iϕ

(
x− g
δ(x)

)
= Iϕ

(
x− z − g + z

δ(x)

)
= Iϕ

(∑
k≥0(1− ηk)uk+1 + z

δ(x)

)

=

∑
k≥0

Iϕ

(
uk+1

δ(x)εk

)
+ Iϕ

(
z

δ(x)

) ≤ a∑
k≥0

2−(k+1) ≤ a.

Thus D(x, g) ≤ δ(x) with D = d or D = dL and dL(x, y) = ‖x − y‖L. Since
D(x, g) ≥ δ(x), we get D(x, g) = δ(x).

In the general case (i.e. x+ > 0, x− > 0), if δ(x) > 0 (i.e. x /∈ hϕ(S)), by the
above it is possible to find g1, g2 ∈ hϕ(S) such that 0 ≤ g1 ≤ x+, 0 ≤ g2 ≤ x−

and Iϕ

(
x+−g1

δ(x)

)
≤ a

2 ≥ Iϕ

(
x−−g2

δ(x)

)
. Thus, if g = g1 − g2, we get Iϕ

(
x−g
δ(x)

)
=[

Iϕ
(
x+−g1

δ(x)

)
+ Iϕ

(
x−−g2

δ(x)

)]
≤ a. Hence D(x, g) = δ(x).

(b)(1) Observe that, for z = L or z = o, we have ‖x‖z = ‖ |x| ‖z and
dz(x, hϕ(S)) = inf{‖x − y‖z : y ∈ hϕ(S)} = inf{‖ |x| − y‖z : y ∈ hϕ(S)} =
dz(|x|, hϕ(S)).

(b)(2) If f ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖o)), then 1 = do(f, hϕ(S)) = dL(f, hϕ(S)) ≤
‖f‖L ≤ ‖f‖o = 1. Hence f ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖L)) ∩ Soϕ.

If f ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖L)) ∩ Soϕ, then 1 = dL(f, hϕ(S)) = do(f, hϕ(S)) ≤
‖f‖o = 1. Hence f ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖o)).

(b)(3) It is enough to remark that x ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖L)) iff ‖x‖L ≤ 1
and δ(x) ≥ 1. But these conditions are equivalent to Iϕ(x) ≤ 1 and, ∀λ > 1, ∀A ∈
F(I), Iϕ(λxA) =∞.

(b)(4) First of all, note that if x ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖o)), then |xi| ∈
[0, a(ϕ)], ∀i ∈ I. Indeed, we have that δ(x) ≥ 1, i.e.:

∀λ > 1, ∀A ∈ F(I), Iϕ(λxA) =∞.(*)

Since 1 = ‖x‖o = infk>0{ 1
k (1 + Iϕ(kx))}, we get that 1 = 1 + Iϕ(x), whence

Iϕ(x) = 0 and |xi| ∈ [0, a(ϕ)], ∀i ∈ I.
Therefore, if a(ϕ) = 0, it is clear that Top(hϕ(S), (`ϕ(I), ‖ · ‖o)) = ∅. Assume

that a(ϕ) > 0 and that x ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖o)). Then, by the above, |xi| ≤
a(ϕ), ∀i ∈ I. By (*) it follows that , ∀ε > 0, card{i ∈ I : |xi| ≥ a(ϕ) − ε} = ∞.
Finally if x ∈ `ϕ(I) satisfies |xi| ≤ a(ϕ), ∀i ∈ I, and card{i ∈ I : |xi| ≥ a(ϕ)−ε} =
∞, ∀ε > 0, we easily conclude that ‖x‖o = infk>0{ 1

k (1 + Iϕ(kx))} = 1 and that
δ(x) ≥ 1, i.e. x ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖o)).

(b)(5) If a(ϕ) = 0 it is clear, by the above, that hϕ(S) is not proximinal in
(`ϕ(I), ‖ · ‖o). Assume that a(ϕ) > 0. By Proposition 2.1, it is enough to prove
that, if x ∈ Top(hϕ(S), (`ϕ(I), ‖ · ‖L))+, then there exists f ∈ hϕ(S), 0 ≤ f ≤ x,
such that ‖x− f‖o = 1. Denote h := (x − a(ϕ)) ∨ 0 and observe that h ∈ hϕ(S)
(because, ∀λ > 0, card{i ∈ I : λhi > a(ϕ)} < ℵ0). Clearly Iϕ(x − h) = 0 and,
∀λ > 1, Iϕ(λ(x− h)) =∞ (because dL(x, hϕ(S)) = dL(x− h, hϕ(S)) = 1). Hence:

‖x− h‖o = inf
k>0

1

k
(1 + Iϕ(k(x− h))) = 1 + Iϕ(x− h) = 1.
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3. Extremal structures

Denote by Ext(C) the set of extreme points of a convex set C. If a(ϕ) > 0, we
have, by Proposition 1.2 and [10, Theorem 4.1], that the ball B`ϕ(I)/hϕ(S) has an
abundance of extreme points. In fact, we get

Ext(B`ϕ(I)/hϕ(S)) = Ext(B`∞(I)/co(I)) = q(Ext(B`∞(I)))

and

B`ϕ(I)/hϕ(S) = co(Ext(B`ϕ(I)/hϕ(S))).

If a(ϕ) = 0 the situation is completely different.

Proposition 3.1. Let I be an infinite set and ϕ an Orlicz function such that
`ϕ(I) 6= hϕ(S) and a(ϕ) = 0. Then Ext(B`ϕ(I)/hϕ(S)) = ∅.
Proof. Assume that e ∈ Ext(B`ϕ(I)/hϕ(S)). Pick w ∈ `ϕ(I) such that Q(w) = e.
Then d(w, hϕ(S)) = 1 and there exists g ∈ hϕ(S) such that 1 = d(w, hϕ(S)) =

d(w, g) = d(w − g, 0), whence, ∀λ > 1, Iϕ
(
w−g
λ

)
≤ λ. By the left-continuity of Iϕ

we get that Iϕ(w− g) ≤ λ, ∀λ > 1, i.e. Iϕ(w− g) ≤ 1. Let u = w− g and suppose,
without loss of generality, that Iϕ(u) ≤ 1/2 (if not, put ui = 0 for i ∈ A and some
A ∈ F(I)). Since a(ϕ) = 0, we can choose a countable subset B = {in}n≥1 of I
such that uin → 0, as n→∞, and, if h = u ·1B, then h ∈ hϕ(S) and Q(u−h) = e.
Since a(ϕ) = 0 we have that card(supp(u)) = ℵ0. Let supp(u) = {jr}r≥1 and define
x, y ∈ `ϕ(I) as follows:

xi =

{
ui, if i /∈ B
ujk , if i = ik, k ≥ 1

, yi =

{
ui, if i /∈ B
− ujk , if i = ik, k ≥ 1

.

Then Q(x) 6= Q(y) (because x − y /∈ hϕ(S)), Q(x), Q(y) ∈ B`ϕ(I)/hϕ(S) (because

Iϕ(x), Iϕ(y) ≤ 1) and 1
2 (Q(x) + Q(y)) = Q(u − h) = e, a contradiction. Hence

Ext(B`ϕ(I)/hϕ(S)) = ∅.

If X is a normed space and x ∈ SX , denote Grad(x) = {x∗ ∈ SX∗ : x∗(x) = 1}.
We say that x ∈ SX is smooth iff card(Grad(x)) = 1.

Proposition 3.2. Let I be an infinite set and ϕ an Orlicz function such that
hϕ(S) 6= `ϕ(I). Then S`ϕ(I)/hϕ(S) has no smooth points.

Proof. Let e ∈ S`ϕ(I)/hϕ(S). Pick x ∈ `ϕ(I) such that Iϕ(x) ≤ 1 and Q(x) = e.
Then Iϕ(λx) =∞, ∀λ > 1. We claim that there exists C ⊆ I such that, if y = xC
and z = xC , then Q(y), Q(z) ∈ S`ϕ(I)/hϕ(S). Indeed, since Iϕ((1 + 2−n)x) = ∞,
we can choose two sequences of nonempty and finite subsets {An}n≥1, {Bn}n≥1

of I such that: (i)
∑
i∈An ϕ((1 + 2−n)xi) ≥ 2n ≤

∑
i∈Bn ϕ((1 + 2−n)xi); (ii)

An ∩ Bn = ∅ = (An ∪ Bn) ∩ (Am ∪ Bm), n 6= m. Now, take C = ∪n≥1An. Note
that Iϕ(y ± z) = Iϕ(x) ≤ 1, Q(y ± z) ∈ S`ϕ(I)/hϕ(S) and y + z = x.

There exists y∗ ∈ Grad(Q(y)) and z∗ ∈ Grad(Q(z)) such that:

1 ≥ y∗(Q(y)±Q(z)) = y∗(Q(y))± y∗(Q(z)) = 1± y∗(Q(z)),

whence we get y∗(Q(z)) = 0. In a similar way, we get z∗(Q(y)) = 0. This means
that y∗ 6= z∗. We have:

y∗(Q(x)) = y∗(Q(y) +Q(z)) = y∗(Q(y)) + y∗(Q(z)) = 1 + 0 = 1,

z∗(Q(x)) = z∗(Q(y) +Q(z)) = z∗(Q(y)) + z∗(Q(z)) = 0 + 1 = 1,

which means that y∗, z∗ ∈ Grad(e), so e is not smooth.
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4. Order completeness and order continuity

In [15] it is proved that every x ∈ (`ϕ(I)/hϕ(S)) \ {0} is σ-o-continuous and not
σ-o-complete. Recall that a vector x of a Banach lattice X is: (i) σ-o-continuous if
for every decreasing sequence {xn}n≥1 in X+ such that xn ≤ |x| and infn≥1 xn = 0,
we have ‖xn‖ ↓ 0; (ii) σ-o-complete if for every increasing sequence {xn}n≥1 in X+

such that xn ≤ |x|, there exists supn≥1 xn. In particular, an increasing sequence in
`ϕ(I)/hϕ(S) has supremum if and only if it is a Cauchy sequence.

As a consequence, we get the following known fact: if I is an infinite set and
{An}n≥1 a sequence of closed-and-open (clopen) subsets of βI\I such that An ⊆
An+1 and An 6= An+1, then A is not open in βI\I, with A :=

⋃
n≥1An. Indeed, let

ϕ be the convex Orlicz function such that ϕ(t) = 0 if |t| ≤ 1, but ϕ(t) =∞ whenever
|t| > 1. Then `ϕ(I)/hϕ(S) ∼= (C(βI\I), ‖ · ‖∞) (order isomorphism and isometry).
Consider in `ϕ(I)/hϕ(S) the sequence {1An}n≥1, which is increasing and bounded
by 1βI\I . Since ‖1An+1\An‖ = 1, we get that {1An}n≥1 is not Cauchy, whence this

sequence has no supremum. But, if A were open, 1A should be the supremum of
this sequence. Hence A is not open and βI\I is not basically disconnected. Recall
that a compact Hausdorff space K is basically disconnected if the closure of every
open Fσ-set (i.e. a countable union of closed sets) in K is open (see [9, pg.4]).

5. Rotundity and smoothness

Proposition 5.1. If I is an infinite set and ϕ is an Orlicz function such that
`ϕ(I) 6= hϕ(S), then there exists an order isomorphic isometric copy of C(βN\N)
in `ϕ(I)/hϕ(S).

Proof. Pick x ∈ `ϕ(I)+ such that Iϕ(x) ≤ 1, Q(x) ∈ S`ϕ(I)/hϕ(S) and, if A :=

supp(x), then card(A) = ℵ0. Let {λn}n≥1 be a sequence in R+ such that λn ↓ 1.
Note that Iϕ(λn(x − s)) = ∞, ∀n ≥ 1, ∀s ∈ S. Choose a sequence {An}n≥1 of
pairwise disjoint finite subsets of A such that A = ∪n≥1An and Iϕ(λn · x · 1An) >
1, n ≥ 1. If a = (an)n≥1 ∈ `∞, put ak = (0, . . . , 0, ak+1, ak+2 . . . ) and define
T : `∞ → `ϕ(I) by Ta =

∑
n≥1 an · x · 1An . Clearly, T is continuous and we have

1
λk
‖ak‖∞ ≤ ‖Tak‖L ≤ ‖ak‖∞. Observe that, if a = (a1, a2, . . . , ak, 0, 0, . . . ), then

Ta ∈ hϕ(S), whence, by hϕ(S) being closed in `ϕ(I), we get that T (c0) ⊆ hϕ(S).
Hence, if q is the quotient map q : `∞ → `∞/c0, we have the map i : `∞/c0 →
`ϕ(I)/hϕ(S) such that i(q(a)) = QT (a), ∀a ∈ `∞. Clearly, this map preserves
the order and satisfies ‖q(a)‖ = limk→∞ ‖ak‖∞ = limk→∞ ‖Tak‖L = ‖QT (a)‖.
Therefore i is an order isomorphic isometry between `∞/co and i(`∞/co).

Corollary 5.2. Let I be an infinite set and ϕ an Orlicz function such that `ϕ(I) 6=
hϕ(S). Then:

(1) `ϕ(I)/hϕ(S) is not realcompact and cannot be renormed equivalently in order
to be rotund or smooth.

(2) `ϕ(I)/hϕ(S) does not have property (C), it is not WCD, it is not w-Lindelöf
and (`ϕ(I)/hϕ(S))∗ = hϕ(S)⊥ is not w∗-angelic.

Proof. (1) This follows from the fact that C(βN\N) is not realcompact (see [13, p.
146], [3]) and cannot be renormed in order to be rotund or smooth (see [2], [10]).

(2) This is a consequence of (1) (see [6]).
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6. `ϕ(I)/hϕ(S) is not a dual space

Let I be an infinite set, m =card(I) and Pω(I) = {A ⊆ I : card(A) = ℵ0}.
Then, clearly, card(Pω(I)) = mℵ0 =: n. Note that n ≥ c, where c =card(R).
Also there exists a family {At}t∈n in Pω(I) such that card(At ∩ As) < ℵ0, for
t 6= s. Indeed, let {It}t∈m be a family of pairwise disjoint subsets of I such that
card(It) = m, ∀t ∈ m. Pick it ∈ It, t ∈ m, and choose a pairwise disjoint family
{Its}s∈m of subsets of It\{it} such that card(Its) = m, s ∈ m. Pick its ∈ Its
and choose a pairwise disjoint family {Itsr}r∈m of subsets of Its\{its} such that
card(Itsr) = m, r ∈ m. Pick itsr ∈ Itsr, r ∈ m. By reiteration we obtain families
of elements {it}t∈m, {its}t,s∈m, etc., of I. Now, consider the family T of sequences
of the form (it1 , it1t2 , it1t2t3 , . . . ), tj ∈ m, j ≥ 1. It is clear that card(T) = mℵ0 = n,
card(T ) = ℵ0, ∀T ∈ T, and that, if T, S ∈ T, T 6= S, then card(T ∩ S) < ℵ0.

Lemma 6.1. Let I be an infinite set and ϕ an Orlicz function such that `ϕ(I) 6=
hϕ(S). If n = mℵ0 and m =card(I), there exists an order isomorphic isometric copy
of (co(n), ‖ · ‖∞) in `ϕ(I)/hϕ(S).

Proof. Let {At}t∈n be a family of subsets of I such that card(At) = ℵ0 and
card(At ∩ As) < ℵ0, when t 6= s. Pick x ∈ `ϕ(I)+ such that Iϕ(x) ≤ 1, Q(x) ∈
S`ϕ(I)/hϕ(S) and card(supp(x)) = ℵ0. Let supp(x) = {jr}r≥1. If t ∈ n and

At = {ik}k≥1, define et such that ∀i ∈ I, eti = 0, if i /∈ At, and eti = xjr ,
if i = ir, r ≥ 1. Then clearly, ∀t1, t2, . . . , tn ∈ n, ∀a1, . . . , an ∈ R, we have
‖
∑n
k=1 akQ(etk)‖ = sup{|ak| : k = 1, . . . , n}, i.e. {Q(et)}t∈n is order isomorphi-

cally and isometrically equivalent to the unit basis of c0(n).

Proposition 6.2. If I is an infinite set and ϕ an Orlicz function such that `ϕ(I) 6=
hϕ(S), then `ϕ(I)/hϕ(S) is not a dual space.

Proof. If a(ϕ) > 0, we have by Proposition 1.2 that `ϕ(I)/hϕ(S) ∼= C(βI\I).
Grothendieck (see [8]) has shown that, for a compact Hausdorff space T , T must
be hyperstonian in order for C(T ) to be a dual space (see [11, p. 95]). But βI\I is
not hyperstonian because it is not basically disconnected.

Assume that a(ϕ) = 0. Then card(supp(x)) ≤ ℵ0 for each x ∈ `ϕ(I). Hence
card(`ϕ(I)) ≤ n := mℵ0 , with m =card(I). By Lemma 6.1, there exists a copy
of co(n) in `ϕ(I)/hϕ(S) and, by a classical Rosenthal’s result ([12, Cor. 1.2]), if
`ϕ(I)/hϕ(S) were a dual space, it should contain a copy of `∞(n). But this is a
contradiction because card(`∞(n)) = 2n > n ≥card(`ϕ(I)/hϕ(S)).

7. `ϕ(I)/hϕ(S) is a Grothendieck space

If I is an infinite set, denote by M(I) the Banach lattice of finitely additive
signed measures on I (see [14]). It is known that this space is order isomorphic
and isometric to C(βI)∗ (i.e. the space of Radon measures on βI). Let T be this
isometry. Then:

(1) If ν ∈M(I) and T (ν) = µ ∈ C(βI)∗, we have, ∀A ⊆ I, ν(A) = µ(A), where
A is the closure of A in βI.

(2) T ({ν ∈ M(I) : ν({i}) = 0, ∀i ∈ I}) = C(βI \ I)∗ (=Radon measures of
C(βI)∗ supported on βI \ I).

If a(ϕ) > 0, let M = {ν ∈ M(I) : ν({i}) = 0, ∀i ∈ I} = T−1(C(βI \ I)∗). If
a(ϕ) = 0, define M ⊆M(I) as the subspace such that ν ∈M iff ν({i}) = 0, ∀i ∈ I,
and there exists a sequence {Gk}k≥1 of pairwise disjoint subsets of I satisfying:
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(1) |ν|(I \
⋃
k≥1 Gk) = 0;

(2)
∑
k≥1 ϕ(1/k) · |Gk| <∞, where |Gk| =card(Gk);

(3)
∑
k≥1 ϕ

(
1
k [1 + 1

n ]
)
· |Gk ∩ E| =∞, ∀n ≥ 1, ∀E ⊆ I such that |ν|(E) > 0.

Proposition 7.1. Let I be an infinite set and ϕ an Orlicz function such that
`ϕ(I) 6= hϕ(S). Then (`ϕ(I)/hϕ(S))∗ is order isomorphic and isometric to M
and M is 1-complemented in C(βI)∗.

Proof. The proof is essentially the one given by Ando [1]. LetX = `ϕ(I)/hϕ(S) and
pick x∗ ∈ X∗+. If E ⊆ I, define x∗E as x∗E(Q(h)) = x∗(Q(hE)), ∀h ∈ `ϕ(I), with
hE = h · 1E . Then x∗E ∈ X∗+ and for disjoint subsets E,F of I we have x∗E∪F =
x∗E + x∗F , ‖x∗E∪F ‖ = ‖x∗E‖ + ‖x∗F ‖. So, we can define the measure νx∗ ∈ M(I)+

as follows: ∀E ⊆ I, νx∗(E) = ‖x∗E‖. Note that this map X∗+ 3 x∗ → νx∗ ∈
M(I)+ is linear, monotone (i.e. x∗ ≥ y∗ ≥ 0 implies νx∗ ≥ νy∗) and ‖νx∗‖ = ‖x∗‖
(see Lemmas 2 and 3 of [1]).

We claim that νx∗ ∈ M+. Clearly, νx∗({i}) = 0, ∀i ∈ I, whence, if a(ϕ) > 0,
we get νx∗ ∈M+. Assume that a(ϕ) = 0 and pick f ∈ `ϕ(I)+ such that Iϕ(f) ≤ 1
and ‖x∗E‖ = x∗(Q(fE)), ∀E ⊆ I (see Lemma 2 of [1]). Define G1 = {i ∈ I : |fi| ≥
1}, Gk = {i ∈ I : 1

k ≤ |fi| <
1

k−1}, k ≥ 2, and observe that |Gk| < ∞, k ≥ 1,

because we suppose that a(ϕ) = 0. We have:
(a) νx∗(I \

⋃
k≥1 Gk) = ‖x∗I\∪k≥1Gk

‖ = x∗(Q(fI\∪k≥1Gk)) = x∗(0) = 0.

(b)
∑
k≥1 ϕ( 1

k ) · |Gk| ≤ Iϕ(f) <∞.

(c) Let E ⊆ I be such that νx∗(E) > 0. Then:

0 < νx∗(E) = ‖x∗E‖ = x∗(Q(fE)) = x∗E(Q(fE)) ≤ ‖Q(fE)‖ · ‖x∗E‖,

whence we get 1 ≤ ‖Q(fE)‖, i.e., d(fE , hϕ(S)) ≥ 1. Hence, ∀λ > 1, ∀g ∈ hϕ(S),
we have Iϕ(λ(fE − g)) = ∞. Pick n ∈ N and choose ko ∈ N such that, ∀k >
ko, (1 + 1

n ) 1
k ≥ (1 + 1

2n ) 1
k−1 . Then, since fE∩(∪koi=1Gi)

∈ S, we have:∑
k≥1

ϕ([1 + 1
n ] 1
k ) · |Gk ∩ E| ≥

∑
k>ko

ϕ([1 + 1
2n ] 1

k−1 ) · |Gk ∩ E|

≥ Iϕ([1 + 1
2n ][fE − fE∩(∪koi=1Gi)

]) =∞,

and this completes the proof of the claim.
If ν ∈M(I)+, define x∗ν : X+ → R as follows:

∀h ∈ `ϕ(I)+, x∗ν(Q(h)) = inf
n∑
k=1

δ(hEk) · ν(Ek),

where the infimum is taken over all finite pairwise disjoint partitions {Ek}nk=1 of I.
By Lemmas 4, 5 and 6 of [1] and defining

∀h ∈ `ϕ(I), x∗ν(Q(h)) = x∗ν(Q(h+))− x∗ν(Q(h−)),

we have that x∗ν ∈ X∗+ and ‖x∗ν‖ ≤ ‖ν‖ = ν(I). In addition, if ν ∈ M+ and
x∗ ∈ X∗+ (see [1, Theorems 2 and 3]), then: (i) ‖(x∗ν)E‖ = ν(E), ∀E ⊆ I; (ii)
x∗νx∗ = x∗, νx∗ν = ν. Hence the positive cones M+ and X∗+ are order isomorphic
and isometric. If ν ∈M(I) and x∗ ∈ X∗, define νx∗ = νx∗+−νx∗−, x∗ν = x∗ν+−x∗ν− .
With this extension we obtain an order isomorphism and isometry between X∗ and
M . The projection P : M(I)→M is defined as P (ν) = νx∗ν , ∀ν ∈M(I).
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Proposition 7.2. Let I be an infinite set, ϕ an Orlicz function such that `ϕ(I) 6=
hϕ(S), {x∗n}n≥1 a sequence in (`ϕ(I)/hϕ(S))∗ and ε > 0. Then there exists f ∈
`ϕ(I)+ such that Iϕ(f) ≤ ε and:

(1) νx∗n(E) = x∗n(Q(fE)), ∀n ≥ 1, ∀E ⊆ I;
(2) νx∗n(g) = x∗n(Q(gf)), ∀n ≥ 1, ∀g ∈ `∞(I).

Proof. (A) If x∗ ∈ (`ϕ(I)/hϕ(S))∗, by Lemma 2 of [1], there exists f ∈ `ϕ(I)+

such that Iϕ(f) ≤ ε and νx∗+(E) = x∗+(Q(fE)), νx∗−(E) = x∗−(Q(fE)), ∀E ⊆ I.
Hence:

∀E ⊆ I, νx∗(E) = νx∗+(E)− νx∗−(E) = x∗+(Q(fE))− x∗−(Q(fE)) = x∗(Q(fE)).

So, considering νx∗ as a member of C(βI)∗, we get that νx∗(g) = x∗(Q(gf)), ∀g ∈
`∞(I).

(B) For each x∗n take fn ∈ `ϕ(I)+ satisfying (A) and such that Iϕ(fn) ≤ ε/2n.
Let f = supn≥1 fn. Then we have Iϕ(f) ≤ ε (see Lemma 1 of [1]) and (1), (2) are
fulfilled, ∀n ≥ 1.

A Banach space is said to be a Grothendieck space (see [4]) if for each sequence
{x∗n}n≥0 in X∗ such that x∗n → x∗0 in the w∗-topology, we have that x∗n → x∗0 in
the w-topology of X∗.

Proposition 7.3. Let I be an infinite set and ϕ an Orlicz function such that
`ϕ(I) 6= hϕ(S). Then `ϕ(I)/hϕ(S) is a Grothendieck space.

Proof. Let {x∗n}n≥0 be a sequence in (`ϕ(I)/hϕ(S))∗ such that x∗n → x∗0 in the w∗-
topology. By Proposition 7.2 there exists f ∈ `ϕ(I)+ such that, ∀g ∈ `∞(I), ∀n ≥
0, νx∗n(g) = x∗n(Q(gf)). Since Q(gf) ∈ `ϕ(I)/hϕ(S), we have

lim
n→∞

x∗n(Q(gf)) = x∗0(Q(gf)).

Hence νx∗n → νx∗0 in the w∗-topology as members of C(βI)∗. Since C(βI) is
Grothendieck, we get νx∗n → νx∗0 in the w-topology of C(βI)∗. Therefore x∗n → x∗0
in the w-topology, because (`ϕ(I)/hϕ(S))∗ is a subspace of C(βI)∗.

Remarks. Since `ϕ(I)/hϕ(S) has the Dunford-Pettis property (M -spaces have the
Dunford-Pettis property because they are L1-preduals) and is a Grothendieck space,
we obtain that `ϕ(I)/hϕ(S) has no infinite dimensional complemented subspaces
Y with BY ∗ w∗-sequentially compact. Also from Proposition 7.3 we get again that
`ϕ(I)/hϕ(S) cannot be renormed in order to be smooth, because a Grothendieck
smooth space is reflexive ([4, p. 215]) and `ϕ(I)/hϕ(S) is not, containing a copy of
C(βN \ N).

Question. Is `ϕ(I)/hϕ(S) primary? Recall that Drewnowski and Roberts proved,
under CH, that `∞/c0 is primary (see [5]).
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