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HARMONIC MEASURE, INFINITE KERNELS,

AND SYMMETRIZATION

JOHN A. VELLING

(Communicated by Albert Baernstein II)

Abstract. The vanishing of area for the infinite Nielsen kernel of an arbitrary
open Riemann surface is shown to follow from iteration of a natural geometric
operation on the unit disk. This operation compares the distribution of har-
monic measure on the boundaries of two related simply connected domains,
and is not yet sufficiently well understood.

1. A problem in harmonic measure

This paper is an attempt to bring to the attention of the mathematical com-
munity a problem which the author has found rather interesting. Consider the
following:

Let D denote the unit disc in the complex plane, and S1 its boundary. We will
want to think of D as furnished with the Poincaré metric, making it a complete
metric space of constant curvature −1. Let In, n ∈ Z, be a collection of disjoint
arcs in S1, each with length < π. Let them be indexed by decreasing length. Each
In is the boundary in S1 of a hyperbolic half-plane, Hn, whose other boundary
component is a hyperbolic geodesic Jn inside D. The indexing may then be thought
of as the order of decreasing distance of Jn from 0 ∈ D. Since X = D\

⋃
nHn is an

intersection of hyperbolically convex regions, it is hyperbolically convex and hence
simply connected. The condition on length implies that 0 is in the interior of X ,
whence we can map X conformally to D with 0 7→ 0. Evidently X has rectifiable
boundary, so that this Riemann mapping extends to ∂X and Jn → I ′n, a new arc
in S1.

The relationship between the lengths of the In, denoted by `(In), and the lengths
`(I ′n) is far from clear. A lemma of Loewner implies that `(

⋃
n In) ≤ `(

⋃
n I
′
n), but

examples can easily be constructed where some of the In are shorter than the
corresponding I ′n. One may also construct examples where I ′1 is not the longest of
the I ′n, so that there is no immediate geometric interpretation of the index on the
I ′n. The issue of interest is then the following

Problem. Is `(I1) ≤ `(I ′1)?

It is believed that the answer to this is ‘yes’. We will first present a nice conse-
quence of an affirmative answer, and then several pieces of evidence in support of
this conclusion.
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2. Several consequences of an affirmative answer

Let R0 be a finite type Riemann surface with boundary, and R−∞ denote its
infinite Nielsen kernel (the meaning of which will be reviewed below). The following
is a theorem of J. Cao [2]:

Theorem ([2]). If R0 is a finite type Riemann surface with boundary, R−∞ has
no interior.

Based on the positive resolution of the above problem, we may offer an extension
of the above theorem.

Theorem 1. For any Riemann surface R0 of the second kind there is no interior
to R−∞.

Our proof, by much the same reasoning as Cao’s but with emphasis on Schwarz’s
lemma, shows that the topology of R0 is inessential.

We also obtain the following stronger version of Theorem 1, which we distinguish
because of the brevity of the respective proofs.

Theorem 2. For any Riemann surface R0 of the second kind, R−∞ has no area.

Before demonstrating the above results, we explain several terms.

3. Riemann surfaces of the second kind and Nielsen kernels

A Riemann surface of the second kind is conformally a quotient of D = {z ∈ C :
|z| < 1} by a group of orientation preserving Möbius transformations preserving
D and acting discontinuously on S1 = ∂D. We will give such surfaces hyperbolic
geometry inherited from D as a model of H2. The groups acting here are said to
be of the second kind, and the domain of discontinuity in S1 for such a group is a
union of disjoint arcs. Examples of such surfaces include infinite volume hyperbolic
surfaces of finite type.

Henceforth let R0 = D
/

Γ0 be a Riemann surface of the second kind and assume
for the moment that the group is non-elementary. The Nielsen kernel of such a Rie-
mann surface, denoted by R−1, is a new Riemann surface of the same topological
type as R0. It is constructed as follows: Let {Ik} denote the collection of arcs in
the domain of discontinuity for the action of Γ0 on S1. Denote by Jk the hyperbolic
geodesic spanning the corresponding Ik. On deleting from D the hyperbolic half-
planes bounded by the Ik and Jk we are left with a connected, simply connected,
Γ0-invariant domain in D. The quotient of this domain by Γ0 is conformally the
desired surface R−1. The Nielsen kernel of R0 is empty when Γ0 is elementary.
For more background on this, see any of Halpern’s papers concerning this: [7], for
example. We will henceforth assume Γ0 is non-elementary.

One may iterate this procedure to obtain a sequence of Riemann surfaces R0,
R−1,R−2, . . . with Rn−1 the Nielsen kernel of Rn (n ≤ 0). There are thus
natural injections ιnm : Rn → Rm obtained from the above procedure, so that
∂(ι(n−1)n(Rn−1)) ⊂ Rn is a collection of simple geodesics (with respect to the
hyperbolic geometry of Rn) homotopic to ideal boundary components of Rn. Ev-
idently ιnm ◦ ιml = ιnl. Identifing Rn with all of its images ιnm(Rn), we see that
{Rk}n−1

−∞ is a nested sequence of open sets in Rn. The intersection of these will be
called R−∞, the infinite Nielsen kernel. As a topological space with an induced
conformal structure (even though R−∞ may not be a Riemann surface) from the
embeddings into the Rn, R−∞ is independent of the Rn in which it is embedded.



HARMONIC MEASURE, INFINITE KERNELS, AND SYMMETRIZATION 3741

4. Proofs of the ‘theorems’

This development assumes an affirmative answer to the problem. We will also
make use of the following versions of Schwarz’s lemma:

Lemma 1. Let A,B be subdomains of D such that 0 ∈ B ⊂ A. If f : D
1−1−→A ⊂ D

and g : A→ B with f(0) = g(0) = 0, then |f ′(0)| ≥ |(g ◦ f)′(0)|.

Lemma 2. Let f : D
1−1−→D with f(0) = 0 and Dr = {rz : |z| ∈ D} ⊂ f(D) for

some r < 1. Then |f ′(0)| > r.

Proof of ‘Theorem’ 1. Let R0 be any non-elementary Riemann surface of the sec-
ond kind. Let p ∈ Rn ⊂ Rm ⊂ R0 for fixed n. Let ι̃nm : D → D be the lifts of
ιnm : Rn → Rm such that 0 is always a lift of p. By the problem and Lemma 1,
there exists a constant c < 1 such that |ι̃′n(n−1)(0)| < c. (One may take as A in

Lemma 1 the domain D\ (the largest half-plane, as viewed from p ∈ R0, deleted
on the creation of R−1). Thus |ι̃′n1(0)| < cn. The theorem now follows by the
contrapositive of Lemma 2.

To prove ‘Theorem’ 2 we will need

Lemma 3. Let D(n) be a family of disks indexed by the nonnegative integers, and
fn : D(n) → D(n − 1) be univalent injections with fn(0) = 0. Assume there is an
r < 1 such that fn(D(n)) always misses a piece of definite area in Dr ⊂ D(n− 1).
With gn = f1 ◦ f2 ◦ · · · ◦ fn, 0 is not a point of Lebesgue density for

⋂∞
1 gn(D(n))

⊂ D(0).

Proof of Lemma 3. Our hypothesis of missing area in Dr at each step implies, by
the Koebe 1

4 -theorem, that there is some c < 1 so that f ′n(0) < c for all n. We
suppose that there is an ε > 0 such that, for every n > 0, Xn−1 = Dr \ fn(D(n)) ⊂
D(n− 1) has area > ε(πr2). Then the Koebe distortion theorem tells us that∫

Xi

|g′i|2 dx dy∫
Br(0)

|g′i|2 dx dy
≥ (1− r)8

(1 + r)8 ·

∫
Xi

1 dx dy∫
Br(0)

1 dx dy
≥ (1− r)8

(1 + r)8 ε,

i.e., inside of arbitrarily small balls about 0 (since |g′n(0)| < cn → 0) a definite
proportion of the area is missing.

Proof of ‘Theorem’ 2. We apply Lemma 3 at each point of R−∞ ⊂ · · · ⊂ R−2 ⊂
R−1 ⊂ R0 by lifting to the universal covers of the Rn (n ∈ Z−) to see that no point
of R−∞ is a point of Lebesgue density. The problem furnishes the area deficiency
needed in Lemma 3.

It appears that one can continue in this vein to obtain bounds on the local
Hausdorff dimension of R−∞, since not only are we excising a substantial piece of
area at every level but these pieces are very regular. One would thus be able to
bound the Hausdorff dimension of the infinite Nielsen kernel for finite type surfaces
strictly away from 2.
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5. A comment on the infinite Nielsen extension

One further consequence of a positive resolution of our conjecture is the ability
to state conclusively that the infinite Nielsen extension (reviewed below) cannot
arise from certain naive constructions.

The operation of taking Nielsen kernels has an inverse. Thus if we have a Rie-
mann surface, R0, of the second kind, we may find its Nielsen extension, R1, into
which R0 naturally injects as Nielsen kernel. For a full description of this process,
see [4], [5], or [6], for example. There are again special cases when R0 = D/Γ0 for
Γ0 elementary, so we still assume that Γ0 is non-elementary.

With this assumption, R1 is a surface of the second kind, of the same topological
type as R0, and we may iterate the extension operation. We obtain a sequence of
surfaces R1,R2, . . . where we may consider Rn ⊂ Rn+1. Thus we also have the
limiting surface R+∞ =

⋃
n∈ZRn. This is called the infinite Nielsen extension of

R0. Bers [1] showed that when R0 is of finite type, i.e. of finite genus with a finite
number of boundary curves and punctures,R+∞ is a surface of the same topological
type as R0 but it is quasiconformally distinct — it has punctures where R0 has
boundary curves. In particular, it is still hyperbolic. The Nielsen extension map,
with R0 7→ R+∞, is surjective to the space of punctured surfaces of the appropriate
topological type [6]. We will further restrict ourselves to this setting where R0 is
of finite type.

It is reasonable to ask if either the infinite Nielsen extension, with R0 7→ R+∞,
or the inverse, which identifies the R0 giving rise to a specific punctured surface as
R+∞, occur in a more naive geometric way. Two possibilities for such in this latter
case are:

1. Horocyclic excision: With R+∞ = D/Γ+∞, every puncture on R+∞ corre-
sponds to an equivalence class of parabolic fixed points for the action of Γ+∞.
We may obtain surfaces with boundary curves where R+∞ has punctures by
cutting along horocycles about the punctures.

2. Disk excision: In [3], Haas showed that for a finite genus Riemann surface
with boundary curves, R0, there is a unique extension to a surface of the
same genus such that the boundary curves of R0 are boundaries of geometric
disks. (Geometry is spherical, planar, or hyperbolic depending on genus.) We
obtain a punctured surface by removing the centers of these disks, and may
reverse this process by excising geometric disks about the centers.

These operations are clearly conformally natural. We ask if the R0 giving rise to
R+∞ through the infinite Nielsen extension may be obtained from R+∞ by either
of these excisions. In both cases, as a corollary of Theorem 1, the answer is seen
to be ‘no’. This is because the complement of a locally finite collection of disjoint
disks in any of D, C, or Ĉ necessarily has interior. Thus we have

Corollary. The family of R0 yielding a fixed R+∞ by the infinite Nielsen extension
is obtained neither by the horocyclic extension nor by the hyperbolic disk extension.

6. Some supporting evidence

To obtain an affirmative answer to the problem, it would suffice, by subordination
and a normal families argument, to establish the following conjecture:

Conjecture. Let I1, I2, . . . , In be a finite collection of disjoint arcs filling out S1,
each of length < π, and ordered by decreasing length. Let I ′k be as described in §1.
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Then `(I1) ≤ `(I ′1), with strict inequality unless the Ik are all of the same length
and fill out S1 (i.e. the full symmetric case).

We can see that this is true for Möbius images of the full symmetric case as
follows.

First note that in the full symmetric case, we may assume that the endpoints of

our arcs are at the n-th roots of 1, ρkn = e
2πki
n . Let Ik be the arc in S1 from ρk−1

n

to ρkn, Jk the hyperbolic geodesic between these two points, and Hk the hyperbolic
half-plane bounded between Ik and Jk. There is a Riemann map from D\

⋃n
1 Hk to

D preserving 0 and the ρkn, mapping the radius from 0 to ρkn (call this Rk) bijectively
to itself. Let f denote this map. Let p ∈ D be a point in the hyperbolic triangle
bounded by R0, R1, and J1. Now let h1 be the harmonic function on D which is 1
on I1 and 0 on the rest of S1, so that h2 = h1 ◦ f is harmonic on D \

⋃n
1 Hk. In

this setting, our problem is equivalent to showing that h1(p) ≤ h2(p), with equality
holding only when p = 0.

This is now straightforward by subordination. Since h1 < 0 in D, we have h1 <
h2 on J1. Also, since h1 is increasing radially on R0 and R1, and f is an expansion
with respect to the hyperbolic metric (Schwarz-Pick lemma), h1 ≤ h1 ◦ f = h2 on
R0 and R1, with equality only at the origin. Subordination now gives the result in
this special case.

One may also show that the above conjecture is true for any four disjoint arcs
filling S1, using elliptic functions. A general proof, however, eludes this author.
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