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PRIMITIVE CHARACTERS OF SUBGROUPS OF M-GROUPS
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ABSTRACT. Let G be an M—group, let S be a subnormal subgroup of G, and
let H be a Hall subgroup of S. If the character v € Irr(H) is primitive, then
~(1) is a power of 2. Furthermore, if |G : S| is odd, then (1) = 1.

1. INTRODUCTION

Combining Theorems A of [5] and [13], Isaacs has proved that if G is an M-
group and S is a subnormal subgroup of G, then the primitive characters of S all
have degrees that are powers of 2, and if S has odd index in G, then the primitive
characters of G are all linear. Using the techniques found in [12] and [13], we have
found the following improvement of this result.

Theorem A. Let G be an M —group, let S be a subnormal subgroup of G, and let
H be a Hall subgroup of S. If the character v € Irr(H) is primitive, then v(1) is a
power of 2. Furthermore, if |G : S| is odd, then v(1) = 1.

In fact, we are able to use these techniques to prove even more. If G is an M-
group, then by Taketa’s theorem (Corollary 5.13 of [3]), we know that G is solvable.
Thus, if S is a subnormal subgroup of G, then there exist subgroups S; so that

§=5CS5C..CS5, =G

and S; has prime index in S;y1. If S is any subgroup of G for which such a chain
exists, then we will say that S is reachable by primes in G. When G is a solvable
group, subnormality is a special case of reachable by primes. Therefore, Theorem
A is a consequence of the following result.

Theorem B. Let G be an M —group, let S be a subgroup of G that is reachable by
primes, and let H be a Hall subgroup of S. If the character v € Irr(H) is primitive,
then (1) is a power of 2. Furthermore, if |G : S| is odd, then (1) = 1.

We can generalize this result further by removing the hypothesis that H be a
Hall subgroup. As such, this next result also generalizes Theorem B of [16].

Theorem C. Let G be an M —group, let S be a subgroup of G that is reachable by
primes, let H be a subgroup of S, and let 7 be the set of prime divisors of |S : H|.
If the character v € Irr(H) is primitive, then v has U {2} —degree. Furthermore,
if |G : S| is odd, then v has m—degree.
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We can use Theorem C to prove Theorem B.

Proof of Theorem B. Let m be the set of prime divisors of |S : H|. Thus, H is a
Hall 7’—subgroup of S, and so, v has n'-degree. By Theorem C, we know that ~
has 7 U {2}—degree. The only way that this can occur is if v has 2-power degree.
If |G : S| is odd, then 7 has m—degree, and so, v is linear. O

We can generalize Theorem C still further. In [7], given a m—separable group G
for a set of primes 7 with 2 € 7, Isaacs defined a class of characters for G that we
call D-(G). In [13], for an odd prime p, Isaacs said that a group G was a D, M—
group if all the elements of D,(G) are monomial. If G is an M—group, then G is
solvable and is a D, M—group for every odd prime p. Thus, the following theorem
is a generalization of Theorem C.

Theorem D. Let G be a solvable group, and assume that G is a DM —group for
every odd prime p. Let S be a subgroup of G that is reachable by primes, let H
be a subgroup of S, and let w be the prime divisors of |S : H|. If the character
v € Irr(H) is primitive, then v has m U {2} —degree.

The proof of Theorem D is broken into two main parts. We believe that these
two results are interesting themselves. In the first result, we will consider a solvable
group G.

Theorem E. Let p be an odd prime, let G be a solvable group, and assume that G
is a DM —group. If S is a subgroup of G that is reachable by primes, then S is a
Dy M —group.

For the final result, we assume that G is a p—solvable group for some odd prime p.
Thus, we may use the idea of a m—special character that was defined for m—separable
groups in [1]. In Corollary 7.2 of [7], Isaacs proved that the m—special characters of
G are exactly the characters in D (G) that have m—degree.

Theorem F. Let p be an odd prime, let G be a p—solvable group, and assume that
G is a DyM—group. Let H be a subgroup of G such that p does not divide |G : H|.
If the character 0 € Irr(H) is p—special and primitive, then 6 is linear.

2. PRELIMINARIES

We begin this section by proving a result regarding the structure of subgroups
having prime index.

Lemma 2.1. Let G be a p—solvable group and suppose H C G such that |G : H| =p
for some prime p. If coreq(H) = 1, then H is a cyclic group with order dividing
p—1.

Proof. Let K be a minimal normal subgroup of G, and observe that G = HK. Since
G = HK, it follows that p divides | K|, and because G is p-solvable, this implies
that K is a p—group. Thus, H N K is normal in both H and K, and so, we conclude
that H N K is trivial. In particular, we know that |K| = p. Let C = Cg(K), and
note that K C C. Since K is normal in G, it follows that C is normal in G. Thus,
Cy(K)= HNC is normal in H. On the other hand, K centralizes C, and so, K
centralizes C N H. Therefore, G = HK normalizes C N H. Since coreg(H) = 1,
we have C N H = 1, and we see that C = (CN H)K = K because K C C. By the
N/C-Theorem (see Problem 3.09 of [10]), G/C' is isomorphically contained in the
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automorphism group of K. We know that Aut(K) is cyclic of order p — 1 because
K is cyclic of order p. Thus, G/K is cyclic of order dividing p — 1 and since H is
isomorphic to G/K we have proved the lemma. |

We now review some results from Isaacs’ m—theory. For a more detailed under-
standing of m—theory, the reader may wish to consult the expository papers [8], [9],
and [12].

We fix a set of primes 7 and a m—separable group G. The m—partial characters
of G are the restrictions of the ordinary characters to the set G° of melements of
G. (Given an ordinary character x € Char(G), we write x° for the restriction of x
to G°.) A m-partial character is irreducible if it cannot be written as a sum of
two nonzero m—partial characters, and we write I:(G) for the set of all irreducible
m—partial characters of G. Given a m—partial character v, we say that the ordinary
character x is a lift for ¢ if X" = 4. If H is a subgroup of G and ¢ € I,(H), then
we write I:(G|¢) for those partial characters ¢ € I.(G) such that ¢ is a constituent
of p. We now assume that 2 ¢ m. In Theorem B of [13], Isaacs proved that
D, (G) is a subset of Irr(G) with the property that restriction to G is bijection
between D, (G) and I(G). In [13], given an odd prime p and a p—solvable group
G, Isaacs proved another connection between D,(G) and I,(G). Given a character
X € D,(G), he proved, in Theorem F of that paper, that x is monomial if and only
if ¥ is monomial. Using this fact, we have the next result.

Lemma 2.2. Let G be a p—solvable group for some odd prime p, and let K be
a subnormal subgroup of G. Consider the partial character ¥ € I,(G). If ¢ is
monomial, then every irreducible constituent of Y is monomial.

Proof. Let x be the lift for 1 that lies in D,,(G). By Theorem F of [13], 1 monomial
implies that x is monomial. Let p € I,(K) be an irreducible constituent of ¢,
and let v be the lift of u that lies in D, (K). By Theorem 7.10 of [7], we know that
every constituent of yx lies in D,(K). Since p is a constituent of ¢k, it follows
that some constituent of x x lifts u. This implies that v is a constituent of xx. By
Theorem 5.2 of [13], we know that v is monomial, and by Theorem F of [13], we
conclude that y is monomial. O

3. THEOREM E

In this section, we prove Theorem E of the Introduction. Most of the work is
found in this next theorem. We have used the hypothesis that G is a solvable group
in Theorem 3.1 in order to keep the statement simple. In fact, the proof that we
include works if we assume that G is a p—solvable and g-solvable group, where p
and ¢ are the two primes mentioned in the theorem.

Theorem 3.1. Let p be an odd prime, q be any prime, and G be a solvable group.
Suppose H is a subgroup of G such that |G : H| = q. Consider a p—partial char-
acter v € I,(H), and assume that all the p—partial characters lying in I,(G|y) are
monomial. Then v is monomial.

Proof. We assume that G, H, and v form a counterexample with |G| as small
as possible. Let L = coreq(H), and let the p—partial character € I,(L) be a
constituent of vr.

Step 1. « is invariant in H.
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Proof of Step 1. Write S for the stabilizer of  in H, and assume that S < H.
In particular, we know that L. < H, and so, H is not normal in G. Let K be
a normal subgroup of G containing L such that K/L is a G—chief factor. It is
easy to see that G = HK and H N K = L. This implies that SK < G and that
|[SK :S|=|K:L|=|G: H| =gq. By Proposition 3.2 of [6] (Clifford’s theorem for
partial characters), we know that there is a p—partial character o € I,(S) so that
ol =~ and note that v is the only partial character lying in I,(H|o). By part b of
that proposition, we know that o is a constituent of vs and that the multiplicities
of a in 7 and o, are equal.

Consider partial characters p € I,(SK|o) and v € I,(G|u). We observe that o
is a constituent of vg, and so, some constituent of vy lies over o. It follows that
~ is a constituent of vy, and so, v € I,(G|y). Hence, by hypothesis, we have that
v is monomial. On the other hand, we know by Lemma 2.1 that H/L is cyclic,
and so, G/K is cyclic. This implies that SK is normal in G, and by Lemma 2.2,
we now have that p is monomial. Thus, every partial character lying in I,(SK|o)
is monomial, and so, SK, S, and o satisfy the hypotheses of the theorem. Since
|SK| < |G|, we have that o is monomial. This implies that + is monomial, but this
is a contradiction. O

Step 2. « is invariant in G.

Proof of Step 2. Let T be the stabilizer of « in G, and assume that T' < G. By
Step 1, we know that H C T. Since H has prime index in G, this implies that
H=TorG=T. Because T' < G, we see that T'= H. Using Proposition 3.2 of [6],
we have that y = v is irreducible and that v is a constituent of xz. This implies
that x € I,(G|y), and by hypothesis, x is monomial. Applying Theorem F of [13],
we see that every character inducing y is monomial, and since + induces x, we
conclude that v is monomial. This contradicts the choice of counterexample. [

Write 6 for the character in D,,(H) such that 8 = ~.
Step 8. 0 does not extend to G.

Proof of Step 3. Assume that y € Irr(G) is an extension of §, and we write ¢ = x°.
It is easy to see that

Y =" =)’ =60° =1,

and so, we have that 1 extends v and lies in I,(G|y). Therefore, ¢ is monomial,
and since Y extends v, we conclude that v is monomial. O

Step 4. Final contradiction:

Proof of Step 4. Let the character ¢ € D,(L) be such that ¢° = a. Since a is a
constituent of (61,), since ¢ is the unique D,,-lift of o, and since all the constituents
of 0, lie in D, (L), it follows that ¢ is a constituent of 6. We know that ¢ is G—
invariant because « is G—invariant. Suppose that H is normal in G, so that ¢ = 6.
Since H has prime index, it follows that 6 extends to G and by Step 3, this is a
contradiction. Thus, H is not normal in G.

Let K be a normal subgroup of G containing L so that K/L is a G—chief factor.
It is easy to see that G = HK and H N K = L. Since L has prime index in K,
we know that ¢ extends to K. By Corollary 2.2 of [14], we know that ¢ has an
H-invariant extension € € Irr(K). We may now use Lemma 10.5 of [2], to see that
f extends to G. Since this contradicts Step 3, we have completed the proof. O



PRIMITIVE CHARACTERS OF SUBGROUPS OF M-GROUPS 31

Observe that the following result is a strong form of Theorem E in the Introduc-
tion.

Corollary 3.2. Let p be an odd prime, let G be a solvable group, and let the sub-
group S of G be reachable by primes. Consider the character 6 € D,(S). If all the
characters lying in D,(G|6) are monomial, then 6 is monomial.

Proof. Work by induction on |G|. If S = G, then we are done because we know that
6 lies in D,(G), and by hypothesis, this implies that ¢ is monomial. Now assume
that S < G. Then, there is a subgroup S such that S < S; C G and S has prime
index in S7. Consider a character ¢ € D,(51]0). Observe that D,(G|¥) C D,(G|0),
and so, all the characters lying in D, (G|¢) are monomial. By the inductive hypoth-
esis, we conclude that ¢ is monomial. Thus, every character lying in D,(S1|6) is
monomial. Since 6 € D, (S), we know that 6° lies in I,(S). We apply the fact that
all the characters in D, (S1]0) are monomial to see that all the p—partial characters
in 1,(51]6°) are monomial. By Theorem 3.1, we know that ° is monomial, and
using Theorem F of [13], we conclude that 6 is monomial. |

4. THEOREM F

We begin this section by proving that Theorem D implies Theorem C. In order
to do this we need Theorem 4.7 of [16]. In that theorem Navarro proved that if G
is an M—group, 7 is a set of primes, and J is a subgroup of G having 7’—index,
then the m—special primitive characters of J must be linear.

Proof of Theorem C. It is obvious that Theorem D implies all of Theorem C except
for the last sentence, and so, we may assume that |G : S| is odd. In particular,
Theorem D implies that § has 7U{2}—-degree. If |S : H|is not odd, then 7 = 7U{2},
and there is nothing to prove. Hence, we assume that |S : H| is odd, and so, |G : H|
is odd. Let v be the prime divisors of |G : H|, and note that 2 ¢ v. Since G is
solvable, we have, by Corollary 2.7 of [4], that § = 0,0V, where 6, and 0, are
primitive v-special and v/~special characters, respectively. We know that (,/)° is
irreducible as a v/—partial character, and by Lemma 4.4 of [15], it is primitive. By
Theorem 4.7 of [16], 6,/ is linear, and so, § has v—degree. Since 2 ¢ v, this implies
that 6(1) is odd, and the result follows. O

In order to prove the remaining theorems we will need a stronger version of
Theorem 4.7 of [16]. We believe that the proof Navarro employed in that paper
proves the following theorem, but the result presented there is weaker than the
result found here. In particular, we do not need to assume that G is an M—group.
Consider the situation that G is a m—separable group for some set of primes m, J is
a subgroup having n’~index in G, and 6 is a mspecial primitive character of J. In
order to prove that 6 is linear, we only need to assume that the characters lying in
D, (G|#) are monomial. Thus, for all the m—special primitive characters of J to be
linear, it suffices to assume that all the characters lying in D, (G) are monomial. If
7 = {p}, then this implies that G is a D, M—group.

The proof that we present is inspired by the simplification of the arguments
employed by Navarro that are found in Theorem 7.1 of [12]. As in that paper, we
set the following notation. Let m be a set of primes, and let G be a m—separable
group. Fix the m—partial character ¢ € I.(G). A pair (U, u) is called a 7—inducing
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pair for ¢ if the following conditions are satisfied: (i) U C G, (ii) u € I (U), (iii)
u® = ¢, and (iv) (1) is a 7 number. We construct the undirected graph G = G(¢)
whose vertex set is the collection of all 7—inducing pairs for ¢. We join two distinct
pairs (U, 1) and (V,v) in G if either U CV and ¥ =v or VC U and Y = p. In
Theorem 6.2 of [12], Isaacs proved that the connected components of G(¢) are all
conjugate in G.

Theorem 4.1. Letw be a set of primes and G be a m—separable group. Suppose that
J is a subgroup of G such that |G : J| is a ©’'—number, and consider a primitive
m—partial character 0 € 1.(H). If every m—partial character lying in 1.(G|0) is
monomial, then 0 is linear.

Proof. By Theorem 4.2 of [16], there is a subgroup U containing J and a quasi-
primitive 7—partial character y € I (U) such that puy = 6. If we write y = u, then
X € I:(G). Since u extends the primitive character 6, it follows that p is primitive.
By Proposition 3.4 of [6], since p is primitive, ;1 must have 7—degree. In particular,
(U, ) is a minducing pair for x.

Suppose that some pair (V, v) is joined to (U, p) in G(x). There are two possibil-
ities: either U C V and v = p¥ or V C U and pu = vY. Since the two pairs (U, )
and (V,v) are distinct, it follows that U # V.

In the first case, where U < V', we know that |V : U| divides v(1), and so, this
index is a nontrivial 7—number. On the other hand, since U has n’~index in G, we
have that U contains a full Hall 7—subgroup of G. Thus, we have a contradiction.
In the other case, V < U and p = Y, and this contradicts the fact that p is
primitive. Therefore, no pair is joined to (U, u) in G(x).

We conclude that the connected component of G(x) containing (U, ) consists
of just that one node. By Theorem 6.2 of [12], every m—inducing pair (V,v) for x
is conjugate to (U, u) via G. In particular, it follows that v(1) = p(1) whenever
v = x and v(1) is a 7-number.

By Lemma 3.3 of [11], u is a constituent of xy. Thus, we know that 6 is a
constituent of x s, and so, by hypothesis, that x is monomial. Consequently, there
is some subgroup W C G and linear m—partial character A € I.(WW) such that
A4 = . Now, A(1) = 1is a 7-number, and so, (W, \) is a vertex in G(x), and thus,
0(1) = p(1) = A(1) = 1, as required. |

Let w be a set of primes, let G be a m—separable group, and let H be a subgroup
of G. Consider a character § € D, (H). We know that §° € I,(H). Thus, we may
consider the set I;(G|0°). We define the set D, (G|6) = {x € D, (G)|x" € L(G|6°)}.
Observe that the following result contains Theorem F of the Introduction.

Corollary 4.2. Let p be an odd prime, and let G be a p—solvable group. Consider
a subgroup H of G such that |G : H| is p'. Assume that the character 6 € Irr(H) is
primitive and p-special. If all the characters lying in Dp(G|6) are monomial, then
0 is linear.

Proof. Since 6 is p-special, we know that §° € 1,(H). By Lemma 4.4 of [15], it
follows that 6° is primitive. Consider a partial character v € I,(G|6°), and write x
for the character in D,,(G|6) such that x° = . By Theorem F of [13], ~ is monomial.
Therefore, every partial character lying in I,(G|6") is monomial, and so, we may
apply Theorem 4.1 to see that €° is linear. This implies that @ is linear. O
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5. THEOREM D

We will finish by proving Theorem D, but first, we prove a combination of Corol-
laries 3.2 and 4.2.

Theorem 5.1. Let p be an odd prime, and let G be a solvable group. Suppose that
the subgroup S of G is reachable by primes. Consider a subgroup H of S such that
|S : H| is a p'—number. Let the p—special character 6 € Irr(H) be primitive. If all
the characters lying in D,(G|0) are monomial, then 0 is linear.

Proof. Consider a character v € D,(510). It is easy to see that D,(G|vy) C D,(G|6).
By Corollary 3.2, we know that v is monomial. Therefore, every character lying in
D, (S]6) is monomial. Since 6 is primitive and |S : H| is p/, we may use Theorem
4.2 to conclude that 6 must be linear. O

Proof of Theorem D. By [4], we know that 6 can be fully factored as a product of
primitive p;,—special characters for distinct primes p;. By Theorem 5.1, we see that
each of these p;—special primitive characters is linear if p; is an odd prime not in 7.
Therefore, 6 has 7 U {2}—degree. O
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