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A BIALGEBRA THAT ADMITS A HOPF-GALOIS EXTENSION

IS A HOPF ALGEBRA

PETER SCHAUENBURG

(Communicated by Ken Goodearl)

Abstract. Let k be a commutative ring. Assume that H is a k-bialgebra,
and A is an H-Galois extension of its coinvariant subalgebra B. Provided A
is faithfully flat over k, we show that H is necessarily a Hopf algebra.

Throughout the paper, let k denote a fixed commutative ring. ⊗ means ⊗k,
Hom(V,W ) means Homk(V,W ), and all maps are k-linear. We use [3] as a general
reference for Hopf algebra theory. Our version of Sweedler’s notation is ∆(h) =
h(1) ⊗ h(2) for comultiplications, δ(a) = a(0) ⊗ a(1) for right comodule structures.

Let H be a k-bialgebra. A right H-comodule algebra A is said to be an H-
Galois extension of B := AcoH := {a ∈ A|a(0) ⊗ a(1) = a ⊗ 1}, if the Galois map
κ : A ⊗B A → A ⊗ H defined by κ(x ⊗ y) = xy(0) ⊗ y(1) is a bijection. The
notion of a Hopf-Galois extension provides a unifying framework for the study of
Galois extensions of fields and rings, strongly graded algebras, and affine algebraic
principal homogeneous spaces.

In the literature on Hopf-Galois extensions (see [3] and the literature cited there),
it is common to make the assumption that H is a Hopf algebra. An exception is
[1], where cleft extensions over a bialgebra are considered. The question whether
it is possible at all for a bialgebra H which does not have an antipode to admit
Hopf-Galois extensions was brought to the attention of the author by Yukio Doi in
connection with [4].

As the main result of this paper we will show that any k-bialgebra that admits a
k-faithfully flat Hopf-Galois extension is a Hopf algebra. The proof uses a technical
lemma (a descent argument) that might be of use in other situations.

By [1, Prop. 5, (3)] a bialgebra H has to have an antipode if there is a cleft
H-comodule algebra A which is an augmented k-algebra. Since cleft extensions are
Galois by [1, Thm. 9], this is a special case of our Theorem, if A is faithfully flat.
In fact, if A is H-cleft then by [1, Prop. 5, (1)] at least the natural map H → A⊗H
is convolution invertible, and from that and our Lemma it follows that the identity
on H is also, provided A is k-faithfully flat.

To work with the inverse of the Galois map κ we use the notation κ−1(1 ⊗ h)
=:
∑
`i(h)⊗ ri(h) for h ∈ H. By definition we have∑

`i(h)ri(h)(0) ⊗ ri(h)(1) = 1⊗ h.(1)
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We will need the following three equations:∑
`i(h)⊗ ri(h)(0) ⊗ ri(h)(1) =

∑
`i(h(1))⊗ ri(h(1))⊗ h(2),(2) ∑

a(0)`i(a(1))⊗ ri(a(1)) = 1⊗ a,(3) ∑
`i(h)ri(h) = ε(h)1A.(4)

All of them are contained in a longer list of equations in [5, Rem. 3.4], and we only
prove them for the sake of completeness (and since [5] is written under the general
assumption that H is a Hopf algebra). It is enough to prove (2) after applying the
isomorphism κ⊗ idH . We have

(κ⊗ idH)(
∑

`i(h)⊗ ri(h)(0) ⊗ ri(h)(1)) =
∑

`i(h)ri(h)(0) ⊗ ri(h)(1) ⊗ ri(h)(2)

=
∑

1⊗ h(1) ⊗ h(2) =
∑

`i(h(1))ri(h(1))(0) ⊗ ri(h(1))(1) ⊗ h(2)

=
∑

(κ⊗ idH)(
∑

`i(h(1))⊗ ri(h(1))⊗ h(2)),

where both the second and third equality are applications of (1).
For (3) note that κ is obviously left A-linear if we equip both domain and

codomain with the A-module structure induced by the left tensorand. Left A-
linearity of κ−1 yields

1⊗ a = κ−1(a(0) ⊗ a(1)) = a(0)κ
−1(1⊗ a(1)) =

∑
a(0)`i(a(1))⊗ ri(a(1)).

Equation (4) follows from (A⊗ ε)κ(x⊗ y) = xy.

Theorem. Let H be a k-bialgebra and A a right H-Galois extension of B := AcoH

such that A is faithfully flat over k. Then H is a Hopf algebra.

Proof. Define Ŝ : H → A⊗H by Ŝ(h) =
∑
`i(h)(0)ri(h)⊗ `i(h)(1). We claim that

Ŝ is a convolution inverse for the map η0 : H 3 h 7→ 1 ⊗ h ∈ A ⊗H. This means
that we have to verify:∑

`i(h(1))(0)ri(h(1))⊗ `i(h(1))(1)h(2) = ε(h)1A ⊗ 1H ,(5) ∑
`i(h(2))(0)ri(h(2))⊗ h(1)`i(h(2))(1) = ε(h)1A ⊗ 1H ,(6)

for all h ∈ H. For (5), we apply the mapA⊗A⊗H 3 x⊗y⊗g 7→ x(0)y⊗x(1)g ∈ A⊗H
to both sides of (2) to find∑

`i(h(1))(0)ri(h(1))⊗ `i(h(1))(1)h(2) =
∑

`i(h)(0)ri(h)(0) ⊗ `i(h)(1)ri(h)(1)

=
∑

(`i(h)ri(h))(0) ⊗ (`i(h)ri(h))(1) = ε(h)1⊗ 1,

the last equality being (4).
For (6) we use the π-method of [2]; recall that for any left A-module M , we have

a bijection

π : Hom(H,M)→ HomB(A,M)

given by π(f)(a) = a(0)f(a(1)). We apply this for M = A⊗H to the maps

f : H 3 h 7→
∑

`i(h(2))(0)ri(h(2))⊗ h(1)`i(h(2))(1) ∈ A⊗H,
g : H 3 h 7→ ε(h)1⊗ 1 ∈ A⊗H,
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and find

π(f)(a) =
∑

a(0)`i(a(2))(0)ri(a(2))⊗ a(1)`i(a(2))(1)

=
∑

(a(0)`i(a(1)))(0)ri(a(1))⊗ (a(0)`i(a(1)))(1) = a⊗ 1 = π(g)(a),

where the third equality results from applying the mapA⊗A 3 x⊗y 7→ x(0)y⊗x(1) ∈
A⊗H to both sides of (3). We conclude f = g.

Once we have found a convolution inverse Ŝ for η0, the proof of our theorem is
a direct application of the following lemma.

Lemma. Let C be a k-coalgebra and H a k-algebra. Let f : C → H be a map. If
there is a k-faithfully flat k-algebra A such that the map f̂ : C 3 c 7→ 1⊗f(c) ∈ A⊗H
is convolution invertible, then f is convolution invertible.

Proof. Let ĝ be a convolution inverse for f̂ . By faithful flatness,

0→ H
η0→ A⊗H

η1

⇒
η2

A⊗A⊗H

is an equalizer, where η0(h) = 1⊗h, η1(a⊗h) = 1⊗a⊗h and η2(a⊗h) = a⊗1⊗h.

Since η1 is an algebra map and ĝ is a convolution inverse for f̂ , the map η1ĝ : C →
A⊗A⊗H is a convolution inverse for η1f̂ . Similarly, η2ĝ is a convolution inverse
for η2f̂ . Since η1f̂ = η2f̂ , it follows that η1ĝ = η2ĝ. The universal property of
the equalizer implies that there is a unique map g : C → H satisfying ĝ = η0g,
that is, ĝ(h) = 1A ⊗ g(h). Since ĝ is a left convolution inverse for f̂ , we have

ε(h)1A ⊗ 1H = ĝ(h(1))f̂(h(2)) = 1A ⊗ g(h(1))f(h(2)). Now injectivity of η0 implies
that g is a left convolution inverse for f . Similarly g is a right convolution inverse
for f .

While the Lemma seems to be a fairly straightforward application of faithfully
flat descent, we have not found it in the literature. Note that the only part of
faithful flatness used in this paper is exactness of the equalizer diagram in the
proof of the lemma. This holds of course if tensoring with A only reflects exactness;
A does not have to be flat.
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