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SMOOTH REPRESENTATION OF A PARAMETRIC

POLYHEDRAL CONVEX SET WITH APPLICATION

TO SENSITIVITY IN OPTIMIZATION

DINH THE LUC

(Communicated by Joseph S. B. Mitchell)

Abstract. We show in this paper that if a polyhedral convex set is defined by
a parametric linear system with smooth entries, then it possesses local smooth
representation almost everywhere. This result is then applied to study the
differentiability of the solutions and the marginal functions of several classes
of parametric optimization problems.

1. Introduction

Let M be a polyhedral convex set in a finite dimensional space X , i.e. M can be
expressed as the set of solutions to some finite system of linear inequalities of the
form

ai(x) + αi ≤ 0, i = 1, . . . , k,

where a1, . . . , ak are vectors of the dual space X ′; α1, . . . , αk are real numbers.
Sometimes we shall write 〈ai, x〉 instead of ai(x). It is known that M is a finitely
generated convex set [14] which means that there exist vectors v1, . . . , vm ∈ X and
an integer l, 0 < l ≤ m, such that

M =

{
x ∈ X : x =

m∑
i=1

λivi,
l∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . ,m

}
.

In other words, M can be represented by the points v1, . . . , vl and the directions
vl+1, . . . , vm. Now assume that a1, . . . , ak and α1, . . . , αk depend on a parameter
ω from a parameter space Ω which is supposed to be an open subset of a finite
dimensional space. Then M,m, l, v1, . . . , vm are all functions of ω. It is interesting
to know whether one can choose smooth representing points and directions if the
entries a1, . . . , ak and α1, . . . , αk are smooth. This question is important for the
following reason. Let F be a set-valued map from Ω to X . A point-valued map
f from Ω to X is said to be a selection of F if f(ω) ∈ F (ω) for every ω ∈ Ω.
Michael’s theorem, Castaing-Valadier’s theorem, Cellina’s theorem, Lojasiewicz’s
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theorem (see [1]) are the best-known results on the existence of continuous, mea-
surable, Lipschitz selections. Moreover, under a suitable hypothesis one can find a
continuous, measurable, Lipschitz parametrization, i.e. a single-valued function f
from Ω×Λ to X , where Λ is a control space, such that F (ω) =

⋃
{f(ω, λ) : λ ∈ Λ}.

Now, what about differentiable selection and parametrization? When does F ad-
mit a differentiable selection and a differentiable parametrization? The answers
to these questions are crucial for sensitivity analysis in many problems of applied
analysis. Of particular interest is the case when F represents a solution set to gen-
eralized equations. Until now many results have been obtained for the situations
when F is locally single valued (see [5], [13] and the references given therein), and
quite recently significant efforts have been made to treat the case where F is set
valued (see [7], [9]). The paper [7] tackles the problem in a very general setting and
concentrates the study on the proto-differentiability of the set valued map F .

The purpose of the present paper is to prove the existence of local smooth rep-
resenting vectors for M introduced above, thereby showing that M admits a local
smooth parametrization as well as a local smooth selection. The result is then ap-
plied to investigate the differentiability of the solutions and the marginal functions
of several parametric optimization problems.

The paper is structured as follows. In the next section we prove that one can
find an open set U0 ⊆ U , m functions v1, . . . , vm ∈ Cr(U0, X), and an integer l,
0 < l ≤ m, where l and m do not depend on ω, such that

M(ω) =

{
x ∈ X : x =

m∑
i=1

λivi(ω),
l∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . ,m

}
,

for every ω ∈ U0. In Section 3, this result is applied to study a parametric lin-
ear optimization problem and its dual. As a consequence, a parametric version
of Farkas’ theorem is obtained. Section 4 is devoted to parametric concave and
quasiconcave problems with linear constraints. In the last section, a parametric
polyhedral convex problem is investigated.

2. A smooth representation result

Throughout this paper, a1, . . . , ap+q are supposed to be in Cr(Ω, X) and α1, . . . ,
αp+q are supposed to be in Cr(Ω, R), r ≥ 0. Let J := {j1, . . . , jl} ⊆ {1, . . . , p +
q}. Then AJ (ω) denotes the matrix whose rows are aj1(ω), . . . , ajl(ω), and αJ(ω)
denotes the vector whose components are αj1(ω), . . . , αjl(ω). The cardinality of J
is denoted by |J | (here |J | = l). The polyhedral convex set M(ω) is defined by the
following system of inequalities and equations:

〈ai(ω), x〉 + αi(ω) ≤ 0, i = 1, . . . , p;

〈aj(ω), x〉+ αj(ω) = 0, j = p+ 1, . . . , p+ q.

Recall that a set-valued map F from Ω to X is said to be lower (respectively upper)
semicontinuous at ω0 ∈ Ω if for every x0 ∈ F (ω0), for every neighborhood V of x0

(resp., for every open set V containing F (ω0)) in X , there exists a neighborhood U
of ω0 in Ω such that F (ω)∩V 6= ∅ (resp., F (ω) ⊆ V ) whenever ω ∈ U . It is said to
be closed at ω0 ∈ Ω if x0 ∈ F (ω0) whenever x0 = limn→∞ xn, where xn ∈ F (ωn),
ωn ∈ Ω, n = 1, 2, . . . , and limn→∞ ωn = ω0. If F is lower semicontinuous and
closed at every point of U , we say that it is continuous on U (see [1], [3], [11]).
In the literature F is called continuous if it is simultaneously upper and lower
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semicontinuous. The two definitions are equivalent provided F has compact values.
For the case of noncompact values, upper semicontinuity is a very restrictive notion,
so we are not going to deal with it in our study. In the sequel to avoid considering
separately the case of empty values, we shall also call F continuous on U if F (ω) = ∅
for every ω ∈ U .

The map ω 7→ M(ω) is always closed, but not lower semicontinuous in general
(and never upper semicontinuous if M(ω) is unbounded and distinct from a constant
map). There exists an extensive literature on lower semicontinuity criteria for this
kind of maps (see e.g. [2], [4], [12]). However, in this section, we shall need the
following strong result recently established in [9].

Lemma 2.1 ([9]). For every open set U ⊆ Ω, there exists an open subset U0 ⊆ U
such that M is continuous on U0.

Let A−1
J1

denote the inverse of the matrix AJ1 . We shall not indicate the trans-
position of a vector in the multiplication with a matrix, hoping that no confusion
occurs by understanding a vector as a row or as a column.

Lemma 2.2. Assume that M is continuous on U and M(ω0) possesses at least one
vertex for some ω0 ∈ U . Then there exists an open subset U0 ⊆ U , and k subsets
J1, . . . , Jk ⊆ {1, . . . , p + q} with |J1| = · · · = |Jk| = dimX such that for every
ω ∈ U0, the polyhedral convex set M(ω) possesses exactly k vertices v1(ω), . . . , vk(ω)
defined by equations :

vi(ω) = A−1
Ji

(ω)(−αJi(ω)), i = 1, . . . , k.

Proof. Let us denote by d(ω) the number of vertices of M(ω). We show that for
each ω0 ∈ U there is a neighborhood U0 ⊆ U of ω0 such that d(ω) ≥ d(ω0) for
all ω ∈ U0. In fact, since d(ω0) is finite, there can be found a positive t such
that all the vertices of M(ω0) are located in the interior of the box B := {x =
(x1, . . . , xn) ∈ Rn : maxi=1,...,n |xi| ≤ t}. We claim that around each vertex of
M(ω0) must at least one vertex of M(ω) be found, if ω is sufficiently close to ω0,
thereby establishing the required inequality. Indeed, let v0 be a vertex of M(ω0).
By the lower semicontinuity of M there is xω ∈M(ω) such that limω→ω0 xω = v0.
One can express xω = yω + zω where yω is a convex combination of vertices of
M(ω) and zω is a direction of M(ω). It is evident that limω→ω0 zω = 0. Otherwise,
one should choose a sequence {yωi}∞i=1 ⊆ B converging to some y0 ∈ M(ω0), a
sequence {zωi}∞i=1 converging to some nonzero direction z0 of M(ω0), as ωi tends
to ω0 and arrive at a contradiction v0 = y0 + z0 (remembering that v0 is a vertex).
Moreover, there is at least one vertex v(ω) in the convex combination yω such that
limω→ω0 v(ω) = v0. Otherwise, since the number of vertices of M(ω) is majorized
by Cnp+q, there should exist a sequence {yωi}∞i=1 converging to a convex combination
of some points of M(ω0) which are distinct from v0 and we again should arrive at
a contradiction that the vertex v0 is represented by a convex combination of other
points of M(ω0).

Let ω0 be a point which maximizes d(ω) on U . Such a point exists because d(ω)
is majorized, as mentioned above. Then there is a neighborhood U0 ⊆ U of ω0 such
that d(ω) = d(ω0) for all ω ∈ U0. Let vi(ω0), i = 1, . . . , d(ω0) be the vertices of
M(ω0). We may assume that U0 is so small that in a small neighborhood of each
vertex vi(ω0) there is exactly one vertex, say vi(ω) of M(ω). For every fixed index
i, let

J(vi(ω)) = {j ∈ {1, . . . , p+ q} : 〈aj(ω), vi(ω)〉+ αj(ω) = 0}.
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Then |J(vi(ω))| ≥ n and evidently, if an index j does not belong to J(vi(ω)),
neither does it belong to J(vi(ω

′)) when ω′ is sufficiently close to ω. In other
words J(vi(ω

′)) ⊆ J(vi(ω)) for every ω′ in a sufficiently small neighborhood of ω.
Choose a point ω1 which minimizes the number |J(vi(ω))| on U0. Then one can
find a neighborhood U1 ⊆ U0 of ω1 such that J(vi(ω1)) = J(vi(ω)) for all ω ∈ U1.
Pick any n indices from the set J(vi(ω1)) with the property that the corresponding
vectors aj(ω1) form a linearly independent system. There is a smaller neighborhood
U2 ⊆ U1 where these vectors are still linearly independent. The vertex vi(ω),
ω ∈ U2, is then determined by the equation given in the lemma.

If M(ω) 6= ∅ has no vertices, its lineality space denoted by L(ω) is nontrivial.

Lemma 2.3. Assume that M is nonvoid-valued and continuous on U . Then there
exists an open subset U0 ⊆ U and a subset J0 ⊆ {1, . . . , p + q} such that for
every ω ∈ U0, L(ω) is the orthogonal space to the space spanned by the vectors
{ai(ω) : i ∈ J0}. Consequently, if s := dimX − |J0| > 0, there can be found s
functions u1, . . . , us ∈ Cr(U0, X) such that u1(ω), . . . , us(ω) form a basis of L(ω),
for every ω ∈ U0.

Proof. Let ω0 ∈ U . We show first that there is a neighborhood U0 of ω0 in U such
that dimL(ω) ≤ dimL(ω0), for all ω ∈ U0. In fact, since the lineality space L(ω)
is defined by equations

〈ai(ω), x〉 = 0, i = 1, . . . , p+ q,

one has

dimL(ω) = dimX − rank{a1(ω), . . . , ap+q(ω)}.
For a fixed ω0 ∈ U , one can find a neighborhood U0 of ω0 in U such that

rank{a1(ω0), . . . , αp+q(ω0)} ≤ rank{a1(ω), . . . , ap+q(ω)},
whenever ω ∈ U0. Hence dimL(ω) ≤ dimL(ω0), ω ∈ U0. By this, if we take
ω0 ∈ U0 with the property that

dimL(ω0) = min{dimL(ω) : ω ∈ U},
then dimL(ω0) = dimL(ω) for every ω ∈ U0. Let J0 ⊆ {1, . . . , p+ q} be an index
subset such that {ai(ω0) : i ∈ J0} is a maximal linearly independent subsystem of
the system {ai(ω0) : i = 1, . . . , p+ q}. It is clear that

L(ω0) = {x ∈ X : 〈ai(ω0), x〉 = 0, i ∈ J0},
and that dimL(ω0) = dimX − |J0|. We have s = dimL(ω0). By taking a smaller
neighborhood if necessary, we may assume that {ai(ω) : i ∈ J0} is still a linearly
independent system whenever ω ∈ U0. Since dimL(ω0) = dimL(ω), one has

L(ω) = {x ∈ X : 〈ai(ω), x〉 = 0, i ∈ J0},
and hence L(ω) is the orthogonal space to the space spanned by {ai(ω) : i ∈ J0}.

Now assume s > 0. Let A0(ω0) be a nonsingular |J0|×|J0|-submatrix of AJ0(ω0).
Without loss of generality, one may also assume that the matrix A0(ω) is nonsin-
gular for ω ∈ U0. To facilitate the writing, assume that AJ0(ω) = (A0(ω)|B(ω)).
Denote by ei ∈ Rs, i = 1, . . . , s, the vectors whose unique nonzero component is
equal to 1 and is at the i-th place. Then it is evident that the vectors

ui(ω) = ((A0(ω))−1(−B(ω)ei), ei), i = 1, . . . , s,
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form a basis of L(ω). Trivially, the functions u1, . . . , us belong to Cr(U0, X). The
proof is complete.

Now we are able to give the main result of the paper.

Proposition 2.1. Assume as before that a1, . . . , ap+q ∈ Cr(Ω, X ′) and α1, . . . ,
αp+q ∈ Cr(Ω, R). Then for every open set U ⊆ Ω, there exists an open subset
U0 ⊆ U such that either M is empty-valued on U0, or one can find m functions
v1, . . . , vm ∈ Cr(U0, X) and an integer k, 0 < k ≤ m, such that

M(ω) =

{
x ∈ X : x =

m∑
i=1

λivi(ω),
k∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . ,m

}
,

for every ω ∈ U0.

Proof. By Lemma 2.1, we may assume that M is continuous on U . If M(ω) = ∅
for all ω ∈ U , we are done. If not, by the continuity there is a neighborhood in U
where the values of M are nonempty. Therefore without loss of generality, it can
be assumed that M(ω) 6= ∅ for all ω ∈ U . Let ω0 ∈ U be a point where dimL(ω0)
is minimal among dimL(ω), ω ∈ U .

If dimL(ω0) = 0, then M(ω0) possesses at least one vertex. Put M0(ω) := M(ω)
and s := 0. If dimL(ω0) > 0, by virtue of Lemma 2.3, there is a neighborhood U1

of ω0 in U and s functions u1, . . . , us ∈ Cr(U0, X) such that L(ω) is generated by
the vectors u1(ω), . . . , us(ω) for each ω ∈ U1. Let

M0(ω) := M(ω) ∩ {x ∈ X : 〈u1(ω), x〉 = 0, i = 1, . . . , s}.

In other words, M0(ω) := M(ω) ∩ L⊥(ω), where L⊥(ω) is the orthogonal space to
L(ω). It is known (see [14]) that M(ω) = M0(ω) + L(ω), and M0(ω) has no lines
which means that it has at least one vertex (extreme point). Using Lemma 2.1 we
may assume that the map M0 is continuous on U1. By Lemma 2.2, one can find
an open subset U2 ⊆ U1 and k functions v1, . . . , vk ∈ Cr(U0, X) such that for every
ω ∈ U2, the polyhedral set M0(ω) has exactly k vertices: v1(ω), . . . , vk(ω). Recall
that v is a recession direction (or say simply a direction) of M(ω) if M(ω) + tv ⊆
M(ω) for every t ≥ 0 (see [14]), i.e. it is a solution to the system

〈ai(ω), v〉 ≤ 0, i = 1, . . . , p;

〈aj(ω), v〉 = 0, j = p+ 1, . . . , p+ q.

If for some ω ∈ U2, the set M0(ω) has no nonzero recession directions, i.e. it is a
polytope, then by the continuity ofM there is a neighborhood U of ω in U2 such that
M(ω) is a polytope, too, ω ∈ U . In this event, v1, . . . , vk, u1, . . . , us,−u1, . . . ,−us
are the functions we need to represent M . In the other case, we fix any ω in U2

and denote the recession cone of M0(ω) by RecM0(ω). We claim that one can
find a neighborhood U of ω in U2 and a vector d ∈ X ′ such that 〈d, v〉 > 0 for
every v ∈ RecM0(ω) \ {0}, ω ∈ U . Indeed, since RecM0(ω0) is convex, closed and
contains no lines, there is a vector d ∈ X ′ such that the latter inequality holds
for every v ∈ RecM0(ω0) \ {0}. If the statement was not true, one should find a
sequence {ωi}∞i=1 converging to ω0 and vi ∈ RecM0(ωi) such that 〈d, vi〉 ≤ 0 for
all i ≥ 1. It may be assumed that {vi}∞i=1 converges to some nonzero vector v
which is a direction of M0(ω0) due to the continuity of M and one should have a
contradiction 〈d, v〉 ≤ 0.
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Let us consider the polytopes

M1(ω) := RecM0(ω) ∩ {x ∈ X : 〈d, x〉 = 1},

for ω ∈ U . In view of Lemma 2.2, we can find an open subset U0 ⊆ U2 and l
functions vk+1, . . . , vk+l ∈ Cr(U0, X) such that for every ω ∈ U0, the polytope
M1(ω) has exactly l vertices vk+1(ω), . . . , vk+l(ω). It is evident that

RecM0(ω) =

{
x ∈ X : x =

k+l∑
i=k+1

λivi(ω), λi ≥ 0, i = k + 1, . . . , k + l

}
,

and also

M0(ω) =

{
x ∈ X : x =

k+l∑
i=1

λivi(ω),
k∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , k + l

}
.

The functions v1, . . . , vk+l, u1, . . . , us,−u1, . . . ,−us are those we look for. The proof
is complete.

We conclude this section by observing that under the assumption of Proposition
2.1, λ := (λ1, . . . , λm) can be regarded as a control and a parametrization of M can
be given by

f(ω, λ) :=
m∑
i=1

λivi(ω).

This function is of class Cr on U0 with respect to the variable ω for every fixed

control. The control space Λ consists of vectors λ satisfying
∑k
i=1 λi = 1, λi ≥ 0,

i = 1, . . . ,m.
Observe also that if M(ω) possesses vertices, the lineality space L(ω) must be

zero. Moreover, all the vertices of M(ω) must be among v1, . . . , vk; while all its
extreme directions must appear among vk+1, . . . , vk+l. Nonextreme points and
directions of the system {v1, . . . , vk+l} become superfluous in the representation of
M(ω). Thus, in this case M(ω) may be represented by extreme points and extreme
directions only.

3. Parametric linear problem

Let us consider the following parametric linear optimization problem, denoted
by P (ω):

inf 〈c(ω), x〉,
subject to x ∈M(ω)

where c ∈ Cr(Ω, X ′); M is as in the previous section. The marginal function of the
problem is defined as

ϕ(ω) := inf{〈c(ω), x〉 : x ∈M(ω)},
and the solution map is defined as

S(ω) := {x ∈M(ω) : 〈c(ω), x〉 = ϕ(ω)},
whenever ϕ(ω) is finite. The following proposition is a strengthened version of a
result previously given in [9].
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Proposition 3.1. Assume that M(ω) 6= ∅ for all ω from an open set U ⊆ Ω.
Then there exists an open subset U0 ⊆ U with the following property : either one
can find a function v ∈ Cr(Ω, X) such that for every ω ∈ U0, v(ω) is a recession
direction of M(ω) and

〈c(ω), v(ω)〉 < 0,(1)

in which case ϕ(ω) = −∞; or one can find l functions v1, . . . , vl ∈ Cr(U0, X) and
an integer k, 0 < k ≤ l, such that

S(ω) =

{
x ∈ X : x =

l∑
i=1

λivi(ω),
k∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , l

}
,(2)

〈c(ω), vj(ω)〉 = 0, j = k + 1, . . . , l,(3)

〈c(ω), vi(ω)〉 = ϕ(ω), i = 1, . . . , k,(4)

for every ω ∈ U0. In particular, ϕ is of class Cr on U0.

Proof. Use Proposition 2.1 to have smooth representing points and directions of
M on an open subset U1 of U . If for some ω0 ∈ U1, and for some j, k < j ≤ m,
one has 〈c(ω0), vj(ω0)〉 < 0, then in a sufficiently small neighborhood U0 of ω0 in
U1, it is also true that 〈c(ω), vj(ω)〉 < 0, ω ∈ U0. This shows that ϕ(ω) = −∞,
ω ∈ U0. Now, we may assume that 〈c(ω), vj(ω)〉 ≥ 0, for all j = k + 1, . . . ,m,
and for all ω ∈ U1. In this case, evidently ϕ(ω) is finite. Observe that if at some
ω0 ∈ U1, and for some j, k < j ≤ m, one has 〈c(ω0), vj(ω0)〉 > 0, then as above, in a
sufficiently small neighborhood U2 of ω0 in U1, it is also true that 〈c(ω), vj(ω)〉 > 0,
ω ∈ U2. Thus, without loss of generality, it can be assumed that 〈c(ω), vi(ω)〉 = 0,
for i = k + 1, . . . , l, and 〈c(ω), vj(ω)〉 > 0, for j = l + 1, . . . ,m, for some l with
k + 1 ≤ l ≤ m, whenever ω in U1.

Denote by J(ω) ⊆ {1, . . . , k} the index set of those representing points which
minimize the objective function c(ω) on M(ω), i.e.

ϕ(ω) = 〈c(ω), vi(ω)〉 < 〈c(ω), vj(ω)〉
for i ∈ J(ω), j ∈ {1, . . . , k} \ J(ω). It is clear that J(ω′) ⊆ J(ω) if ω′ is sufficiently
close to ω. Consequently, if we take ω0 in U2 to be a point with

|J(ω0)| = min{|J(ω)| : ω ∈ U2},
then in a sufficiently small neighborhood U0 of ω0 in U2 one must have

ϕ(ω) = 〈c(ω), vi(ω)〉 < 〈c(ω), vj(ω)〉
for all i ∈ J(ω0), j ∈ {1, . . . , k} \ J(ω0), ω ∈ U0.

With a suitable change of indices and of the numbers k and l, the solution set
S(ω) is then presented in the formula of the proposition.

Corollary 3.1. The set of the points where ϕ is finite and not of class Cr is
nowhere dense.

Proof. It is immediate from the previous proposition.

Now let us denote by D(ω) the dual of the problem P (ω). It is also a parametric
linear problem which is given in the following form:

sup 〈α(ω), y〉,

subject to y ∈ M̂(ω)
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where α(ω) := (α1(ω), . . . , αp+q(ω)) and

M̂ := {y := (y1, . . . , yp+q) ∈ Y : yA(ω) + c(ω) = 0, yi ≤ 0, i = 1, . . . , p}
(here Y is the (p + q)-dimensional space, A is the matrix whose rows are a1, . . . ,

ap+q). The marginal function ψ and the solution map Ŝ of the dual problem
are defined in a similar way as those of the primal problem. Under the common
hypothesis that α1, . . . , αp+q and a1, . . . , ap+q are of class Cr, we have the following
result for the dual parametric problem.

Proposition 3.2. Assume that M̂(ω) 6= ∅ for all ω from an open set U ⊆ Ω.
Then there exists an open subset U0 ⊆ U with the following property : either one
can find a function u ∈ Cr(Ω, Y ) such that for every ω ∈ U0, u(ω) is a recession

direction of M̂(ω) and

〈α(ω), u(ω)〉 > 0,(5)

in which case ψ(ω) = ∞; or one can find n functions u1, . . . , un ∈ Cr(U0, Y ) and
an integer m, 0 < m ≤ n, such that

Ŝ(ω) =

{
y ∈ Y : y =

n∑
i=1

λiui(ω),
m∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , n

}
,(6)

〈α(ω), uj(ω)〉 = 0, j = m+ 1, . . . , n,(7)

〈α(ω), ui(ω)〉 = ψ(ω), i = 1, . . . ,m,(8)

for every ω ∈ U0. In particular, ψ is of class Cr on U0.

Proof. The technique used in the proof of Proposition 3.1 goes through without
change.

Duality relations between the primal and dual problems can be seen in the next
proposition.

Proposition 3.3. For every open set U ⊆ Ω, there exists an open subset U0 ⊆ U
such that exactly one of the following holds

(i) M(ω) = ∅ and M̂(ω) = ∅ for all ω ∈ U0;
(ii) M(ω) = ∅ for all ω ∈ U0, and there can be found a function u ∈ Cr(Ω, Y )

satisfying (5);

(iii) M̂(ω) = ∅ for all ω ∈ U0, and there can be found a function v ∈ Cr(Ω, X)
satisfying (1) ;

(iv) M(ω) 6= ∅, M̂(ω) 6= ∅ for all ω ∈ U0, and there can be found l functions
v1, . . . , vl ∈ Cr(U0, X); n functions u1, . . . , un ∈ Cr(U0, Y ) and two integers m, k
with 0 < m ≤ n, 0 < k ≤ l such that (2)–(4) and (6)–(8) hold. In this event
φ(ω) = ψ(ω) for every ω ∈ U0.

Proof. Applying Proposition 2.1 to M and M̂ we can find an open subset U0 ⊆ U
such that either (i) holds, or at least one of these maps has nonempty values on U0.

If M(ω) = ∅ while M̂(ω) 6= ∅ for all ω ∈ U0, by duality, ψ(ω) = ∞ for all

ω ∈ U0. Since M̂ is also determined by a parametric system of linear inequalities
and equations, by Proposition 2.1, we may assume that it is represented by points
and directions u1, . . . , un ∈ Cr(U0, Y ). Now, the second conclusion follows from
Proposition 3.2. The third one is proven dually. For the last conclusion, observe
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that if both M(ω) and M̂(ω) are nonempty, by duality, the two optimal values must
be finite and equal. The result is then derived from Propositions 3.1 and 3.2.

It should be noted that since the optimal solution set of the dual problem is
exactly the Kuhn-Tucker multiplier set of the primal problem ([14]), it follows from
(iv) of Proposition 3.3 that if the primal problem P (ω) possesses optimal solutions
for all ω ∈ U , its Kuhn-Tucker multiplier set admits representation of class Cr on
an open dense subset of U .

As a consequence of Proposition 3.3 we also have the following parametric version
of Farkas’ theorem (see also [8] for the measurable case). For the sake of simple
presentation, suppose that M(ω) is defined by a system of inequalities only, which
corresponds to the case q = 0. Given a vector u := (u1, . . . , un) ∈ Rn, by writing
u ≥ 0 we mean ui ≥ 0 for all i = 1, . . . , n.

Corollary 3.2. Let a0 ∈ Cr(Ω, X ′), α0 ∈ Cr(Ω, R) and assume that M(ω) 6= ∅
and 〈a0(ω), x〉 + α0(ω) ≤ 0 for every x ∈ M(ω) and for every ω from an open set
U ⊆ Ω. Then there exists an open subset U0 ⊆ U and a function u ∈ Cr(U0, Y )
such that

u(ω) ≥ 0, 〈u(ω), α(ω)〉 ≤ −α0(ω) and u(ω)A(ω) = a0(ω),

for all ω ∈ U0.

Proof. Let us consider the linear problem P (ω) with the objective function c(ω) :=
−a0(ω). By the hypothesis of the corollary, the feasible set of this problem is
nonempty and the objective function is bounded from below on it. Hence, the
optimal value ϕ(ω) is finite and minorized by α0(ω). By Proposition 3.3, there
exists an open subset U0 ⊆ U1 such that the dual D(ω) possesses optimal solutions
represented in the form of (6). Pick any uj among u1, . . . , un ∈ Cr(U0, Y ) and set
u := −uj. Since uj(ω) is a feasible solution of the dual problem, u(ω) ≥ 0, and
u(ω)A(ω) = a0(ω). Moreover, by virtue of Proposition 3.3(iv), the optimal values
of the primal and dual problems are equal, hence

〈u(ω), α(ω)〉 = −〈uj(ω), α(ω)〉 = −ϕ(ω) ≤ −α0(ω).

This is true for all ω ∈ U0 and the proof is complete.

4. Parametric concave problem

In this section let us study the following parametric concave optimization prob-
lem:

inf f(ω, x),

subject to x ∈M(ω)

where f ∈ Cr(Ω ×X,R) is concave in the second variable whenever the first one
is fixed, M is as in Section 2. The marginal function ϕ and the solution map are
defined in the same way as in the previous section. We recall that a real function g
on X is said to be concave (respectively quasiconcave) if for any x, y ∈ X , for any
number λ ∈ (0, 1) one has

g(λx+ (1− λ)y) ≥ λg(x) + (1− λ)g(y)

(respectively, g(λx+ (1− λ)y) ≥ min{g(x), g(y)}).
One of the most important features of a concave function is that it attains its

minimum on a closed convex set at boundary points if the minimum exists at
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all. This fact is still true for quasiconcave functions provided the constraint set is
bounded (we refer the reader to [6] for concave optimization problems and related
topics). We shall adopt the convention ϕ(ω) =∞ if M(ω) = ∅.

Proposition 4.1. Suppose that f ∈ Cr(Ω×X,R) is concave in the second variable
for every ω in an open set U ⊆ Ω. Then there exists an open subset U0 of U and a
function v ∈ Cr(U0, X) such that exactly one of the following holds :

(i) ϕ(ω) =∞ for all ω ∈ U0;
(ii) ϕ(ω) = −∞ for all ω ∈ U0;
(iii) one can find a function v ∈ Cr(U0, X) such that v(ω) is a vertex of M(ω)

and ϕ(ω) = f(ω, v(ω)), for every ω ∈ U0. In particular, the marginal function is
of class Cr on U0.

Proof. Without loss of generality we may assume that M is nonvoid-valued and
represented as in Proposition 2.1 (otherwise the marginal function takes the value
∞ on U). Suppose that at some ω0 ∈ U,ϕ(ω0) = −∞. Since f(ω0, ·) is concave,
there exists vi0 for some i0 ∈ {1, . . . , k} and vj0 for some j0 ∈ {k + 1, . . . ,m} such
that

lim
t→∞

f(ω0, vi0(ω0) + tvj0(ω0)) = −∞.(9)

We state that there exists a neighborhood U0 of ω0 in U such that

lim
t→∞

f(ω, vi0(ω) + tvj0(ω)) = −∞,

for all ω ∈ U0, which implies that ϕ(ω) = −∞ on U0. In fact, if not, there can be
found a sequence {ωn : n = 1, 2, . . .} in U converging to ω0, such that

lim
t→∞

f(ωn, vi0(ωn) + tvj0(ωn)) > −∞,

for every n = 1, 2, . . . . Again, by the concavity of f the latter inequality shows
that f(ωn, vi0(ωn)) ≤ f(ωn, vi0(ωn) + tvj0(ωn)) for all t ≥ 0. Fixing t and passing
to the limit when n tends to ∞, we have f(ω0, vi0(ω0)) ≤ f(ω0, vi0(ω0) + tvj0(ω0)),
which contradicts (9). Hence, in fact such U0 exists.

For the case where the optimal value is finite on U , let us denote by J(ω) ⊆
{1, . . . , k} the index set of representing points of M(ω) at which the objective
function attains its minimum. It is evident that J(ω) is nonempty on U . By the
continuity of f , for any fixed ω0 ∈ U , there exists a neighborhood U0 of ω0 in U
such that J(ω) ⊆ J(ω0) for all ω ∈ U0. Hence, if we choose ω0 a point with

|J(ω0)| = min{|J(ω)| : ω ∈ U},
then J(ω0) = J(ω) for all ω ∈ U0. Fixing any i0 ∈ J(ω0) we have ϕ(ω) =
f(ω, vi0(ω)), for every ω ∈ U0 and the proof is complete.

For quasiconcave problems we have the following result.
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every fixed ω ∈ U , the function f(ω, ·) attains its minimum at some vertices. The
set J(ω) defined in the proof of Proposition 4.1 is nonempty for every ω ∈ U , and
the technique used there goes through without change.

5. Parametric polyhedral problem

The fact that the optimal values in the problems attacked in the two preced-
ing sections can be attained at some vertices of the constraint domains, makes
it possible to characterize solution sets by using the representation established in
Proposition 2.1. In this section we consider another type of problems which also
can lead to this situation. Namely, we shall study problems with polyhedral convex
objective and linear constraints. Recall that a convex function is said to be poly-
hedral if its epigraph is polyhedral, i.e. is the intersection of finitely many closed
half-spaces in X × R which are either vertical or the epigraphs of affine functions
(see [14]). Analytically, a polyhedral convex function f on X can be given as

f(x) = max{〈bi, x〉+ βi : i = 1, . . . , s}+ δN (x),

where b1, . . . , bs ∈ X ′; β1, . . . , βs ∈ R, and δN (x) is the indicator function of a
polyhedral set N ⊆ X .

From now on we assume that b1, . . . , bs, β1, . . . , βs are functions of the parameter
ω ∈ Ω and of class Cr, and that N is given by a parametric system of inequalities
and equations whose entries are of class Cr too. For us M is as in Section 2. Let
us consider the following problem, denoted by P (ω):

inf f(ω, x),

subject to x ∈M(ω).

The marginal function ϕ and the solution map S are defined in the same way as in
the previous sections. Note that in this problem f is continuous, but generally not
differentiable in the second variable. Moreover, the solution set S(ω) may contain
no vertices of M(ω). To overcome these difficulties, let us consider the “extended”

problem, denoted by P̂ (ω):

inf t,

subject to (x, t) ∈ M̂(ω)

where M̂(ω) is the intersection of the set M(ω) × R with the epigraph of f(ω, ·).
The marginal function of P̂ (ω) is denoted by ϕ̂ and its solution map is denoted by

Ŝ.
It is evident that M̂(ω) is a polyhedral convex set and is determined by a system

of inequalities and equations whose entries are of class Cr. We still keep the con-
vention that the optimal value of a minimization problem is +∞ if the constraint
set is empty. The following result is standard.

Lemma 5.1. For a fixed parameter ω ∈ Ω, we have the following:
(i) ϕ̂(ω) = ϕ(ω);
(ii) a point x ∈ X is an optimal solution of P (ω) if and only if (x, f(ω, x)) is an

optimal solution of P̂ (ω).

Proof. Observe that if M(ω) is empty, then so is M̂(ω). Conversely, if M̂(ω)
is empty, then either M(ω) is empty, or f(ω, ·) takes values +∞ on it. Hence,
ϕ̂(ω) = +∞ if and only if ϕ(ω) = +∞.
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Now, if ϕ(ω) = −∞, one can find a sequence {xn : n = 1, . . . } in M(ω) such
that limn→∞ f(ω, xn) = −∞. This implies that ϕ̂(ω) = −∞, because the sequence

{(xn, f(ω, xn)) : n = 1, . . . } belongs to M̂(ω). A similar argument shows that
ϕ̂(ω) = −∞ implies ϕ(ω) = −∞.

Furthermore, if x0 is an optimal solution of P (ω), then f(ω, x0) ≤ f(ω, x) ≤ t,

for every x ∈ M̂(ω), t ≥ f(ω, x). Hence (x0, f(ω, x0)) is an optimal solution of

P̂ (ω) and both of the optimal values are equal. The converse part is proven in a
similar way.

Proposition 5.1. For every open set U ⊆ Ω, there exists an open subset U0 ⊆ U
such that exactly one of the following holds :

(i) ϕ(ω) = +∞ for all ω ∈ U0;
(ii) there exist functions v1, v ∈ Cr(Ω, X) such that

v1(ω) ∈M(ω), v(ω) ∈ RecM(ω),

lim
t→∞

f(ω, xv1(ω) + tv(ω)) = −∞

for all ω ∈ U0;
(iii) there exist l functions v1, . . . , vl ∈ Cr(U0, X), an integer k with 0 < k ≤ l,

and some j ∈ {1, . . . , s} such that

v1(ω), . . . , vk(ω) ∈M(ω), vk+1(ω), . . . , vl(ω) ∈ RecM(ω),

S(ω) =

{
x ∈ X : x =

l∑
i=1

λivi(ω),
k∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , l

}
,

〈bj(ω), vi(ω)〉+ βi(ω) = ϕ(ω), i = 1, . . . , k,

(10)

for every ω ∈ U0. In particular, the marginal function is of class Cr on U0.

Proof. In view of Proposition 2.1, there exists an open subset U1 in U such that

either M̂(ω) is empty for all ω ∈ U1, or it is nonvoid-valued there. The first case
corresponds to the first assertion of the proposition. In the other case we apply

Proposition 3.1 to Problem P̂ (ω). There exists an open subset U2 ⊆ U1 such that
either (1) or (2)–(4) hold. We use “hat” over the corresponding functions in these

formulas for Problem P̂ (ω). Thus, in our case, by (1), v̂(ω) := (v(ω), τ(ω)) is a

recession direction of M̂(ω), satisfying the inequality τ(ω) < 0. It is clear that
v(ω) is a recession direction of M(ω). Moreover, let v̂1(ω) := (v1(ω), τ1(ω)) be

the first point in the representation of M̂(ω) according to Proposition 2.1. Then
v1(ω) ∈ M(ω), and limt→∞ f(ω, v1(ω) + tv(ω)) ≤ limt→∞(τ1(ω) + tτ(ω)) = −∞.
This is true for all ω ∈ U2, hence (ii) follows by setting U0 := U2.

In the case where the optimal value is finite, as above, we express v̂i(ω) =
(vi(ω), τi(ω)), i = 1, . . . , l. Here too, one sees that v1(ω), . . . , vk(ω) ∈ M(ω) and
vk+1(ω), . . . , vl(ω) ∈ RecM(ω). By Lemma 5.1, the solution set of P (ω) is repre-
sented by the points v1(ω), . . . , vk(ω) and the directions vk+1(ω), . . . , vl(ω). Fur-
thermore, let I(ω) be the set of all the indices i ∈ {1, . . . , s} which satisfy the
relation 〈bi(ω), vj(ω)〉 + βi(ω) = ϕ̂(ω) for j = 1, . . . , k. Then if we choose a point
ω ∈ U2 with the property that |I(ω)| = min{|I(ω)| : ω ∈ U2}, it follows that the
sets I(ω0) and I(ω) coincide for all ω in a sufficiently small neighborhood U0 of ω0

in U2. Pick any j among I(ω0) to obtain (10). The proof is complete.
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