ON ISAACS' THREE CHARACTER DEGREES THEOREM

YAKOV BERKOVICH

(Communicated by Ronald M. Solomon)

ABSTRACT. Isaacs has proved that a finite group G is solvable whenever there are at most three characters of pairwise distinct degrees in $\mathrm{Irr}(G)$ (Isaacs' three character degrees theorem). In this note, using Isaacs' result and the classification of the finite simple groups, we prove the solvability of G whenever $\mathrm{Irr}(G)$ contains at most three monolithic characters of pairwise distinct degrees. §2 contains some additional results about monolithic characters.

§1.

Let $\operatorname{Irr}(G)$ be the set of all irreducible characters of a finite group G, and let $\operatorname{cd}(G) = \{\chi(1) \mid \chi \in \operatorname{Irr}(G)\}$. Isaacs' theorem claims that G is solvable whenever $|\operatorname{cd}(G)| \leq 3$.

A group G is said to be a monolith if it contains only one minimal normal subgroup. It is convenient to consider the group $\{1\}$ as a monolith. A character χ of G is said to be monolithic if $\chi \in \operatorname{Irr}(G)$ and $G/\ker(\chi)$ is a monolith. Obviously, a monolith possesses a faithful irreducible character (of course, this character is monolithic). Let

$$\operatorname{Irr}_m(G) = \{ \chi \in \operatorname{Irr}(G) \mid \chi \text{ is monolithic } \}, \operatorname{cd}_m(G) = \{ \chi(1) \mid \chi \in \operatorname{Irr}_m(G) \}.$$

Let p denote a prime number. Denote by G(p') the intersection of kernels of all the nonlinear irreducible characters χ of G such that $p \nmid \chi(1)$. It is easy to see that $p \mid \phi(1)$ for all nonlinear $\phi \in \operatorname{Irr}(PG(p'))$, where $P \in \operatorname{Syl}_p(G)$. Therefore G(p') is p-nilpotent and solvable (see [Isa], Corollary 12.2, and [Ber2], Proposition 9 and the Remark, following it). Let $\Phi(G)$, F(G) be the Frattini subgroup and the Fitting subgroup of G, respectively. It follows from the properties of the Frattini subgroup that G is p-nilpotent if and only if $G/\Phi(G)$ is p-nilpotent.

Note that all irreducible characters of p-groups are monolithic. $|\operatorname{cd}_m(G)| = 1$ if and only if G is abelian. Note that $\bigcap_{\chi \in \operatorname{Irr}_m(G)} \ker \chi = \{1\}$ (Lemma 2(a)), so that G is a subgroup of a direct product of monoliths. Therefore the set $\operatorname{Irr}_m(G)$ is sufficiently large to have a strong influence on the structure of G. On the other hand, the following examples show that in many cases the set $\operatorname{cd}_m(G)$ is very small compared with $\operatorname{cd}(G)$.

Received by the editors September 5, 1995.

 $^{1991\} Mathematics\ Subject\ Classification.\ {\it Primary}\ 20{\it C}15.$

Key words and phrases. Monolith, monolithic character, automorphism group, classification of finite simple groups.

The author was supported in part by the Ministry of Absorption of Israel.

Examples. 1. Let $G = SL(2,5) \times L_2(7)$. Then |Irr(G)| = 54, $|Irr_m(G)| = 14$.

- 2. Let p_1, \ldots, p_n be pairwise distinct odd primes, G_i a dihedral group of order $2p_i$ $(i = 1, \ldots, n)$, and $G = G_1 \times \cdots \times G_n$. Then $|\operatorname{cd}(G)| = n + 1$, $|\operatorname{cd}_m(G)| = 2$.
- 3. Let p_1, \ldots, p_n be pairwise distinct odd primes, $4 \mid p_i$ for i > 1. Let G_1 be a dihedral group of order $2p_1$, and G_i be a Frobenius group of order $4p_i$ ($i = 2, \ldots, n$). Put $G = G_1 \times \cdots \times G_n$. Then $|\operatorname{cd}(G)| = 2n$, $|\operatorname{cd}_m(G)| = 3$.

These examples show that in many cases $Irr_m(G)$ is a rather small subset of Irr(G).

As usual we consider Irr(G/N) as a subset of Irr(G).

This paper was inspired by Chapter 12 of Isaacs' book [Isa] and some old results of Isaacs and Passman.

We collected some known results in the following

Lemma 1. Let N be a normal subgroup of G.

- (a) (Gallagher; [Isa], Corollary 6.17) Let $\chi \in Irr(G)$. If $\chi_N \in Irr(N)$, then $\chi \vartheta \in Irr(G)$ for all $\vartheta \in Irr(G/N)$.
 - (b) ([Ber1], Remark 1) If N is nonsolvable, then

$$|\{\chi(1) \mid \chi \in Irr(G) - Irr(G/N)\}| > 1.$$

- (c) ([BZ1], Proposition 30.18) Let p be a prime. If $p \mid \chi(1)$ for every nonlinear $\chi \in \operatorname{Irr}_m(G)$, then G is p-nilpotent and solvable.
- (d) ([BZ1], Proposition 30.18) $p \nmid \chi(1)$ for every $\chi \in \operatorname{Irr}_m(G)$ if and only if a Sylow p-subgroup is normal in G and abelian.
- (e) (Broline-Garrison, see [Isa], Theorem 12.19) Let $\chi \in Irr(G)$ and $K = ker(\chi)$. Either of the following conditions guarantees the existence of $\psi \in Irr(G)$ with $\psi(1) > \chi(1)$ and $ker(\psi) < K$:
 - (1e) $K \nleq F(G)$.
 - (2e) K = F(G), $G/K > \{1\}$ is solvable.

Proof. We prove (c) only. Let G be a counterexample of minimal order. Then G is a monolith. Let R be a minimal normal subgroup of G. Since $Y = \operatorname{Irr}(G) - \operatorname{Irr}(G/R) \subseteq \operatorname{Irr}_m(G)$, it follows that $p \mid \chi(1)$ for all $\chi \in Y$. Hence, $R \leq G(p')$ so that R is solvable. Since by induction G/R is solvable and p-nilpotent and G is a counterexample, R is a p-subgroup. Since G is not p-nilpotent, $R \nleq \Phi(G)$. Take $P \in \operatorname{Syl}_p(G)$. It follows from the modular law that $R \nleq \Phi(P)$. In particular, $R \nleq P'$. Take a linear character λ of P such that $R \nleq \ker(\lambda)$. Since $p \nmid \lambda^G(1)$, there exists $\chi \in \operatorname{Irr}(\lambda^G)$ such that $p \nmid \chi(1)$. By reciprocity $R \nleq \ker(\chi)$, so that χ is monolithic. Since $R \leq G'$, it follows that $G' \nleq \ker(\chi)$, and so $\chi \in \operatorname{Irr}_m(G)$ is nonlinear — a contradiction.

Lemma 1(c) generalizes Thompson's Theorem (see [Isa], Corollary 12.2). Lemma 1(d) is a generalization of Michler's result [Mic].

Our principal aim is to prove the following.

Theorem. If $|\operatorname{cd}_m(G)| \leq 3$, then G is solvable.

Proof. Let G be a counterexample of minimal order. Since $|\operatorname{cd}_m(G/N)| \le |\operatorname{cd}_m(G)|$, it follows from the induction hypothesis that G is a monolith. Let R be a minimal normal subgroup of G. Then G/R is solvable and $R = R_1 \times \cdots \times R_s$, where R_1, \ldots, R_s are isomorphic nonabelian simple groups. Obviously, $R = R' \le G'$.

If R = G', then every nonlinear irreducible character of G is monolithic. Therefore $|\operatorname{cd}(G)| = |\operatorname{cd}_m(G)| \le 3$, and G is solvable by Isaacs' three character degrees theorem. Thus,

(i) R < G'.

In particular, G/R is nonabelian. Let H/R be a normal subgroup of G/R such that G/H is nonabelian, but every proper epimorphic image of G/H is abelian. By [Isa], Lemma 12.3, G/H is a p-group, or G/H = (B/H, L/H) is a Frobenius group with cyclic complement B/H and kernel L/H = (G/H)'; obviously, G/H is a monolith. In what follows we fix so-defined subgroups H, B and L.

By [Isa], Lemma 12.3, $cd(G/H) = \{1, t\}, t > 1$.

Let ϕ be a nonlinear irreducible character of G/H. Then ϕ is monolithic, so that $\phi(1) = t \in \operatorname{cd}_m(G)$. Obviously, $1 \in \operatorname{cd}_m(G)$. By Lemma 1(b), there exist χ , $\tau \in \operatorname{Irr}(G) - \operatorname{Irr}(G/R)$ such that $\chi(1) \neq \tau(1)$. Obviously, χ , $\tau \in \operatorname{Irr}_m(G)$ and χ , τ are nonlinear. Thus, $\operatorname{cd}_m(G) = \{1, \chi(1), \tau(1)\}$. We assume that $\chi(1) = t$. Put $\tau(1) = h$. Thus,

(ii) $cd_m(G) = \{1, h, t\}, 1 \neq h \neq t \neq 1.$

We fix so chosen ϕ , χ , τ .

By Lemma 1(c),

(iii) (h, t) = 1.

Suppose that G/H is a p-group. Then $t = p^{\alpha}$, $p \nmid h$, and $\tau_H \in \operatorname{Irr}(H)$ by Clifford theory. Therefore $\tau \phi \in \operatorname{Irr}(G)$ by Lemma 1(a) (recall that ϕ is a nonlinear irreducible character of G/H). Since $R \nleq \ker(\phi \tau)$, it follows that $\phi \tau \in \operatorname{Irr}_m(G)$, and so $p^{\alpha}h \in \operatorname{cd}_m(G) = \{1, p^{\alpha}, h\}$ — a contradiction. Therefore,

(iv) G/H = (B/H, L/H) is a Frobenius group, L/H = (G/H)' is the unique minimal normal subgroup of G/H, B/H is cyclic of order t, and L/H is a p-group, where p is a prime number.

Let a nonprincipal $\psi \in \operatorname{Irr}(R)$, $\vartheta \in \operatorname{Irr}(\psi^G)$. Since $R \nleq \ker(\vartheta)$, it follows that ϑ is monolithic and $\vartheta(1) \in \{t, h\}$. By Clifford's theorem $\psi(1) \mid t$ or $\psi(1) \mid h$. By (iii), $\operatorname{cd}(R) = M \cup N$ is a nontrivial partition such that inclusions $a \in M, \ b \in N$ imply (a, b) = 1. It follows from the description of irreducible characters of direct products that

(v) s = 1, i.e., R is a simple group.

Since χ_R is reducible by Lemma 1(a), we have, by Clifford's theorem,

(vi) There is a nonprincipal character λ in Irr(R) such that $\lambda(1) \mid t$ and $\lambda(1) < t$. In particular, t > 3.

If λ is as in (vi), then $\lambda(1) > 2$ (Klein's theorem; see [Isa], Theorem 14.23), hence we obtain the following stronger inequality:

(vii) $t \geq 6$.

Since G is a monolith, $C_G(R) = \{1\}$, where $C_G(R)$ is the centralizer of R in G. Therefore, G/R is a nonabelian subgroup of A = Out(R) = Aut(R)/R. In particular, A is nonabelian.

In what follows, we use some information about outer automorphism groups of simple groups (see [Gor], §4.15A, and [LPS], Table 2.1).

Let X be a simple group of Lie type defined over a Galois field $GF(p^e)$. Then A = Out(X) = Aut(X)/X is a solvable group with normal subgroups D and DF, where D, the group of diagonal automorphisms, is abelian of order d, and F, the group of field automorphisms, is cyclic of order e. Also, $A/DF \cong \{1\}$, C(2), S_3 , where C(2) is cyclic of order 2, and 3 is the symmetric group of degree 3. Next,

A/D is abelian, unless $A/DF \cong S_3$. If $A/DF \cong S_3$, then A/D contains an abelian subgroup of index 2.

If X is sporadic or alternating, then A is abelian. By (i), R is neither sporadic nor alternating.

Putting $q = p^e$ we have to consider as R the following groups (see [LPS], Table 2.1):

$$L_n(q), n \geq 3; U_n(q), n \geq 3; P\Omega_{2m}^{\pm}(q), m \geq 4;$$

$$E_6(q)$$
, $3 \mid q-1$; ${}^2E_6(q)$, $3 \mid q+1$.

It follows from (iv) that $t \mid |L/H| - 1$. By (vii), $t \ge 6$. Therefore by [LPS], Table 2.1, we have $R \cong L_n(q)$, $n \geq 3$, or $R \cong U_n(q)$, $n \geq 3$. Then |A| = 2ed, |D| = d(where A = Out(R)). In the first case d = (n, q-1), in the second one d = (n, q+1). In particular, d < n. If DF is abelian (we use for G the same notation as before for X), then t=2 by Ito's theorem on degrees of irreducible characters (see [Isa], Theorem 6.15), contradicting (vii). Thus, DF is nonabelian. In particular (recall that F is cyclic), $D \nleq Z(DF)$, d > 2. Now, G/H = T is an epimorphic image of a subgroup of A, and T is a Frobenius group with kernel T' of prime order $r \mid d$ by (iv) (recall that in the case under consideration D is cyclic and A' < D). Then $\operatorname{cd}_m(T) = \{1, t\}, t \mid r-1. \text{ Since } r \leq d \leq n, \text{ it follows that } t \leq n-1. \text{ Therefore, by }$ (vii), $2 < \lambda(1) \le \frac{n-1}{2}$ and $n \ge 7$ (recall that a nonprincipal $\lambda \in Irr(\chi_R)$). Obviously, R contains a subgroup $S \cong A_n$ (recall that a permutation matrix is unitary). Since R is simple, $S \nleq \ker(\lambda)$, hence $\operatorname{Irr}(\lambda_S)$ contains a nonlinear character μ . Since $\mu(1) \le \lambda(1) \le \frac{n-1}{2}$, it follows that $\operatorname{Irr}(A_n)$ contains a nonlinear irreducible character of degree at most $\frac{n-1}{2}$, but this is impossible (we use the representation theory of the symmetric groups). The proof is completed.

Conjecture 1. Let N be a normal subgroup of G. If

$$c(G, N) = |\{\chi(1) \mid \chi \in Irr(G) - Irr(G/N)\}| < 3,$$

then N is solvable.

Of course, Conjecture 1 implies the Theorem. If N is nonsolvable, then Lemma 1(b) implies $c(G, N) \ge 2$.

Considering a minimal counterexample G to Conjecture 1, we may assume that G is a monolith such that its minimal normal subgroup R = N. As in the proof of the Theorem, we can prove that R is simple. Further on, $C_G(R) = \{1\}$ so G/R is solvable by the classification of the finite simple groups. We consider this Conjecture as a very difficult one.

Conjecture 2. If $|\operatorname{cd}_m(G)| \leq 3$, then the derived length of G does not exceed 3 (Proposition 4(d) gives a weaker result in our case).

We note that the derived length of G does not exceed 3 if $|\operatorname{cd}(G)| \leq 3$ (Isaacs; see [Isa], Theorem 12.15), but there is yet an unproven conjecture that the inequality $\operatorname{dl}(G) \leq |\operatorname{cd}(G)|$ is true for all solvable groups G.

Question 1. Let N be a proper normal subgroup of G. Suppose that

$$|\{\chi(1) \mid \chi \in \operatorname{Irr}_m(G) - \operatorname{Irr}(G/N)\}| = 1.$$

Describe the structure of N and G in detail.

We note that Question 1 is very difficult even if N is a minimal normal subgroup of G (it follows from Lemma 1(b) that N is solvable). Recently the pairs $N \triangleleft G$ were classified such that $|\operatorname{Irr}(G) - \operatorname{Irr}(G/N)| = 1$ (Burtzev and Kazarin; first results about the structure of such G were proved by Gagola [Gag]; see also [BCZ], Lemma 2).

Question 2. Prove the Theorem without using the classification of the finite simple groups.

 $\S 2.$

In this section we prove some additional results about monolithic characters. Let $Irr_1(G)$ be the set of all nonlinear irreducible characters of G. Put

$$Irr_{1,m}(G) = Irr_m(G) \cap Irr_1(G),$$

$$\mathfrak{D}_m(G) = \bigcap_{\chi \in \mathrm{Irr}_m(G)} \ker(\chi), \, \mathfrak{D}_{1,m}(G) = \bigcap_{\chi \in \mathrm{Irr}_{1,m}(G)} \ker(\chi).$$

Since G' is the intersection of the kernels of the linear monolithic characters of G, $\mathfrak{D}_m(G) = \mathfrak{D}_{1,m}(G) \cap G'$.

Lemma 2. (a)
$$\mathfrak{D}_m(G) = \{1\}.$$
 (b) $\mathfrak{D}_{1,m}(G) \leq \operatorname{Z}(G).$

Proof. We may assume that $G > \{1\}$. Let R be a minimal normal subgroup of G. Take in G a maximal normal subgroup L such that $R \cap L = \{1\}$. Then G/L is a monolith with minimal normal subgroup RL/L. Let χ be a faithful irreducible character of G/L. Since R is arbitrary and $R \nleq \ker(\chi)$, it follows that $\mathfrak{D}_m(G) = \{1\}$, and this proves (a). Furthermore, $\mathfrak{D}_{1,m}(G) \cap G' = \mathfrak{D}_m(G) = \{1\}$ by (a). Take $d \in \mathfrak{D}_{1,m}(G)$ and $x \in G$. Then $[x, d] \in \mathfrak{D}_{1,m}(G) \cap G' = \{1\}$, and this proves (b).

The group $G = \mathrm{SL}(2,5) \times \mathrm{C}(3)$, where $\mathrm{C}(3)$ is a cyclic group of order 3, shows that the inclusion $\mathfrak{D}_{1,m}(G) < \mathrm{Z}(G)$ is possible.

Proposition 3. If G is nonabelian and $|\operatorname{Irr}_{1,m}(G)| = 1$, then one of the following assertions holds:

- (a) $G = ES(m, 2) \times A$, where ES(m, 2) is an extraspecial group of order 2^{1+2m} and A is abelian of odd order.
- (b) $G/Z(G) \cong AGL(1, p^{\alpha}), G' \cap Z(G) = \{1\}, G' \cong E(p^{\alpha}), the elementary group of order <math>p^{\alpha}, G = G_1 \times P$, where $P \in Syl_p(Z(G))$.

Proof. Put $\operatorname{Irr}_{1,m}(G) = \{\chi\}$. Then $\ker(\chi) \leq \operatorname{Z}(G)$ (Lemma 2(b)) and $G/\ker(\chi)$ is a monolith. Let $H/\ker(\chi)$ be a normal subgroup of $G/\ker(\chi)$ such that G/H is nonabelian, but every proper epimorphic image of G/H is abelian. Then G/H is a monolith, so there exists $\tau \in \operatorname{Irr}_{1,m}(G/H)$. By assumption, $\chi = \tau$, hence $H = \ker(\chi)$.

Assume that G/H is nilpotent. As a monolith, G/H is primary. Since $\operatorname{Irr}_{1,m}(G/H) = \operatorname{Irr}_1(G/H)$, we have $G/H \cong \operatorname{ES}(m,2)$ by [Sei]. Since $H \leq \operatorname{Z}(G)$ (Lemma 2(b)), G is nilpotent. In this case $G = P \times A$, where $P \in \operatorname{Syl}_2(G)$, A is abelian. Since $|\operatorname{Irr}_{1,m}(P)| = |\operatorname{Irr}_{1,m}(G/A)| \leq |\operatorname{Irr}_{1,m}(G)| = 1$, we have $P \cong \operatorname{ES}(m,2)$, and G is a group from (a).

Assume that G/H is nonnilpotent. Then by [Isa], Theorem 12.3, and [Sei], $G/H \cong \mathrm{AGL}(1,\ p^{\alpha})$. By Lemma 2(b), $H = \mathrm{Z}(G) = Q \times P$, where $P \in \mathrm{Syl}_p(\mathrm{Z}(G))$ (in fact, $\mathrm{Z}(G/H) = \{1\}$ implies $\mathrm{Z}(G) \leq H$). Suppose that $Q = \{1\}$. Then $P = \mathfrak{D}_{1,m}(G)$ and $P \cap G' = \{1\}$ (see the proof of Lemma 2). Then $G' \cong \mathrm{E}(p^{\alpha})$ and $G'P = G' \times P$ is abelian. By [Hup], Satz 1.17.4(a), $G = G_1 \times P$. Analogously we consider the case $Q > \{1\}$.

Let $G = G_1 \times P$, $G_1/\mathbb{Z}(G_1) \cong \mathrm{AGL}(1, p^{\alpha})$, $P \in \mathrm{Syl}_p(\mathbb{Z}(G))$. It is easy to check that $|\mathrm{Irr}_{1,m}(G)| = 1$.

Question 3. Classify the groups G such that $|\operatorname{Irr}_{1,m}(G)| \leq 3$.

Question 4. Classify the groups G such that any two distinct characters in $Irr_{1,m}(G)$ have distinct degrees.

If any two distinct characters in $Irr_1(G)$ have distinct degrees, then

$$G \in \{ ES(m, 2), AGL(1, p^{\alpha}), (Q(8), E(9)) \},$$

where Q(8) is the ordinary quaternion group, E(9) is elementary of order 9, and (A, B) is a Frobenius group with kernel B and complement A [BCH].

Let dl(G) and nl(G) denote the derived length and the nilpotent length of a solvable group G, respectively.

Proposition 4. (a) If $|\operatorname{Irr}_{1,m}(G)| \leq 4$, then G is solvable, unless $G = G' \times A$, where $G' \cong L_2(5)$.

- (b) If $|\operatorname{cd}_m(G)| = 2$, then $\operatorname{dl}(G) = 2$.
- (c) If all characters in $Irr_{1,m}(G)$ have distinct degrees, then G is solvable.
- (d) If G is solvable, then $|\operatorname{cd}_m(G)| \ge \operatorname{nl}(G)$.

Proof. Assume that in all cases G is a counterexample of minimal order. Then, in cases (b), (c) and (d), G is a monolith. Let R be a minimal normal subgroup of G. Set $|R| = r^{\alpha}$ if R is solvable, where r is a prime.

- (a) If $Irr_1(G) = Irr_{1,m}(G)$, then $G \cong L_2(5)$ by [Ber3] or [Ber4]. Thus, $Irr_{1,m}(G) \subset Irr_1(G)$.
 - (a.i) Suppose that G is a monolith.

It follows from $\operatorname{Irr}_{1,m}(G) \subset \operatorname{Irr}_1(G)$ that R < G', and so G/R is nonabelian. In particular, $|\operatorname{Irr}_{1,m}(G/R)| \geq 1$.

Assume that R is nonsolvable. Let $\phi_1,\ldots,\phi_k\in\operatorname{Irr}_1(R)$ be such that $\phi_1(1)<\cdots<\phi_k(1)$. If $\chi^i\in\operatorname{Irr}(\phi_i^G)$ for all i, then χ^1,\ldots,χ^k are distinct nonlinear monolithic characters of G by reciprocity. By Isaacs' three character degree theorem (or by the Theorem), $k\geq 3$. It follows from $|\operatorname{Irr}_{1,m}(G)|\leq 4$ that $|\operatorname{Irr}_{1,m}(G/R)|=1$, and so k=3. Therefore, R is simple, and, by Proposition 3, G/R is solvable. Let H/R be a maximal normal subgroup of G/R. Then |G:H|=p, a prime number. If, say, $(\chi^1)_H\in\operatorname{Irr}(H)$, then $((\chi^1)_H)^G=\chi_1^1+\cdots+\chi_p^1$, where $\chi_j^1\in\operatorname{Irr}_{1,m}(G)$ are distinct of the same degree for all j. Since $\chi^2,\ \chi^3\not\in\{\chi_1^1,\ldots,\chi_p^1\}$, it follows that $|\operatorname{Irr}_{1,m}(G)|\geq 3+1+p-1>4$ — a contradiction. Analogously, $(\chi^2)_H,\ (\chi^3)_H$ are reducible. Then $(\chi^i)_H=\lambda_1^i+\cdots+\lambda_p^i$, where $\lambda_j^i\in\operatorname{Irr}(H)$ are distinct of the same degree for all $i,\ j$ (by Clifford theory). Therefore $p\mid\chi^i(1)$ for $i=1,\ 2,\ 3$. This means that $R\leq G(p')$. Since G(p') is solvable, R is solvable as well — a contradiction.

Thus, R is solvable. Since G/R is nonsolvable, we see that $|\operatorname{Irr}_{1,m}(G/R)| \ge 4$ by induction. G as a monolith has a faithful irreducible character; therefore, $|\operatorname{Irr}_{1,m}(G)| \ge |\operatorname{Irr}_{1,m}(G/R)| + 1 \ge 4 + 1 = 5$ — a contradiction.

(a.ii) Suppose that G is not a monolith. Let R_1 be a minimal normal subgroup of G, $R_1 \neq R$.

Suppose that one of the subgroups R, R_1 , say R, is nonsolvable. Since $RR_1/R_1 \cong R$ is a minimal normal subgroup of G/R_1 , we have, by induction, $R \cong L_2(5)$. Since $\operatorname{Aut}(R) \cong S_5$ satisfies $|\operatorname{Irr}_{1,m}(S_5)| = 5$, it follows that $G = R \times C_G(R)$. Since $|\operatorname{Irr}_{1,m}(G/C_G(R))| = 4 = |\operatorname{Irr}_{1,m}(G)|$, we obtain $C_G(R) = Z(G)$ by Lemma 2(b), and the result follows.

Thus, we may assume that all minimal normal subgroups of G are solvable. Then by induction, $G/S(G) \cong L_2(5)$, and, as in the previous paragraph, S(G) = Z(G) (here we use Lemma 2(b)). Obviously, G'' = G'. Since, by the above, G' is not a minimal normal subgroup of G, it is a representation group of $L_2(5)$, i.e., by a known result of I. Schur, $G' \cong SL(2,5)$. We have G = G'Z(G). Instead of G we may consider its epimorphic image G such that Z(G) is a nonidentity cyclic 2-group. Without loss of generality we may assume that Z(G) is a cyclic 2-subgroup. It is easy to check that $|\operatorname{Irr}_{1,m}(G)| \geq |\operatorname{Irr}_{1,m}(SL(2,5))| = 8$ — a contradiction. The proof of (a) is complete.

- (b) The group G is solvable by the Theorem. If G is nilpotent, it is an r-group (recall that R is an r-group), $Irr_m(G) = Irr(G)$, so that dl(G) = 2 by Taketa's Theorem (see [Isa], Theorem 5.12). Thus, G is not nilpotent. Let $cd_m(G) =$ $\{1, t\}$. Since G is a monolith, it is not r-nilpotent so, by Lemma 1(c), $r \nmid t$. By Lemma 1(d), $T \in Syl_{r}(G)$ is normal in G and abelian. Since G is a monolith, T = F(G). Since $R \leq G'$, G'/R is abelian by induction, and G' is nonabelian by the induction hypothesis, $G' \nleq T$ (in particular, G' is nonnilpotent); it follows from the properties of the Frattini subgroup that $R \not \leq \Phi(G)$. Then there exists a maximal subgroup M of G such that G = MR, $M \cap R = \{1\}$. If R < T, then $N_G(M \cap T) = G$ and $M \cap T > \{1\}$, and so G is not a monolith. Thus, R = T = F(G). Let H/R be a normal subgroup of G/R such that G/H is nonabelian, but every proper epimorphic image of G/H is abelian. Then G/H is a monolith so that $\operatorname{cd}_m(G/H) = \operatorname{cd}_m(G) = \{1, t\}.$ There exists $\chi_1 \in \operatorname{Irr}(G)$ such that $\ker(\chi_1) = H$ (in particular $\chi_1 \in \operatorname{Irr}_{1,m}(G)$). By Lemma 1(e) there exists $\chi_2 \in \operatorname{Irr}(G)$ such that $\chi_2(1) > \chi_1(1) = t$ and $\ker(\chi_2) < H$. By assumption χ_2 is not monolithic so that $R < \ker(\chi_2)$. Since R = F(G), there exists (by Lemma 1(e)) $\chi_3 \in \operatorname{Irr}(G)$ such that $\chi_3(1) > \chi_2(1) > t$ and $\ker(\chi_3) < \ker(\chi_2)$. By assumption, χ_3 is not monolithic, so that $R < \ker(\chi_3)$. Continuing in this way we obtain an infinite sequence of nonmonolithic irreducible characters $\{\chi_i\}$ $(i=1,2,\ldots)$ of G/R such that $\chi_1(1) < \chi_2(2) < \dots$ — a contradiction.
- (c) By induction, G/R is solvable. If G/R is abelian, then $\mathrm{Irr}_{1,m}(G) = \mathrm{Irr}_1(G)$, and G is solvable by [BCH]. Hence, G/R is nonabelian. Let H/R be a normal subgroup of G/R such that |G:H|=p is a prime number. Let $\chi\in\mathrm{Irr}(G)-\mathrm{Irr}(G/R)$. If $\chi_H\in\mathrm{Irr}(H)$, then $(\chi_H)^G=\chi_1+\cdots+\chi_p$, where $\chi_1=\chi,\ldots,\chi_p\in\mathrm{Irr}_1(G)-\mathrm{Irr}(G/R)$ are distinct of the same degree by reciprocity and Clifford theory. Therefore, $\chi_1,\ldots,\chi_p\in\mathrm{Irr}_{1,m}(G)$ a contradiction. Then, by Clifford theory, $\chi_H=\lambda_1+\cdots+\lambda_p$, where $\lambda_1,\ldots,\lambda_p\in\mathrm{Irr}(H)$ are distinct of the same degree. Thus, $p\mid\chi(1)$ for all $\chi\in\mathrm{Irr}(G)-\mathrm{Irr}(G/R)$. Hence, $R\leq G(p')$, and R is solvable a contradiction.
- (d) Since $\operatorname{nl}(G/\Phi(G)) = \operatorname{nl}(G)$, we obtain $R \nleq \Phi(G)$ (in fact, by induction, $\operatorname{nl}(G/R) \leq |\operatorname{cd}_m(G/R)| < |\operatorname{cd}_m(G)|$). Let M be a maximal subgroup of G such that $R \nleq M$. If $R < \operatorname{F}(G)$, then $M \cap \operatorname{F}(G) > \{1\}$, $\operatorname{N}_G(M \cap \operatorname{F}(G)) \geq M$ and

 $N_R(M \cap F(G)) > \{1\}$. So $N_G(M \cap F(G)) = G$, G is not a monolith — a contradiction. Thus, F(G) = R. Then, by Lemma 1(e), G has a faithful irreducible character τ such that $\tau(1) > \chi(1)$ for all $\chi \in Irr(G/R)$. Thus, $|\operatorname{cd}_m(G/R)| \le |\operatorname{cd}_m(G)| - 1 = n - 1$. Therefore, by induction, $\operatorname{nl}(G/R) \le |\operatorname{cd}_m(G/R)| \le n - 1$. Hence, $\operatorname{nl}(G) = 1 + \operatorname{nl}(G/R) \le 1 + (n-1) = n$ — a contradiction.

Proposition 4(d) generalizes Garrison's result (see [Isa], Corollary 12.21). Proposition 4(b) generalizes [Isa], Corollary 12.6.

Remark. Let G be a solvable group such that $\operatorname{nl}(G) = |\operatorname{cd}(G)| = n$. Take a normal subgroup H in G such that $\operatorname{nl}(G/H) = n$, but $\operatorname{nl}(\bar{G}) < n$ for every proper epimorphic image \bar{G} of G/H. It follows from Lemma 1(e) that $H < \operatorname{F}(G)$. But if $\operatorname{nl}(G) = |\operatorname{cd}_m(G)|$, then H is not necessarily nilpotent (see Example 2).

For a monolith G, let

$$\mu(G) = \min{\{\chi(1) \mid \chi \in Irr(G), \chi \text{ is faithful}\}}.$$

A subset X of $\operatorname{Irr}_{1,m}(G)$ is said to be fundamental if whenever $\chi \in X$, then $X \cap \operatorname{Irr}_{1,m}(G/\ker(\chi)) = \{\chi\}$ and $\chi(1) = \mu(G/\ker(\chi))$. By construction, |X| is the number of normal subgroups N of G such that G/N is a nonabelian monolith.

Let S be a set of simple groups. A tower of groups from S is said to be an S-group. We consider $\{1\}$ as an S-group.

Proposition 5. Let X be a fundamental subset of $\operatorname{Irr}_{1,m}(G)$. If for every $\chi \in X$ there exist $H \leq G$ and $\lambda \in \operatorname{Irr}(H)$ such that $H/\ker(\lambda)$ is an S-group and $\chi = \lambda^G$, then G is an S-group.

Proof. Let G be a counterexample of minimal order. Then G is a monolith. Let R be a minimal normal subgroup of G. By induction, G/R is an S-group and, by assumption, R is not an S-group. Let $\chi \in X \cap \operatorname{Irr}_{1,m}(G)$. By hypothesis, there exist $H \leq G$ and $\lambda \in \operatorname{Irr}(H)$ such that $H/\ker(\lambda)$ is an S-group and $\chi = \lambda^G$. Since χ is a faithful character of G of minimal degree and $(1_H)^G$ is reducible, $R \leq \ker((1_H)^G) \leq H$. Since $H/\ker(\lambda)$ is an S-group but R is not an S-group, it follows that $R \leq \ker(\lambda)$. Then $\{1\} < R \leq \ker(\lambda^G) = \ker(\chi) = \{1\}$ — a contradiction.

Of course, this proof is a small modification of one of two known proofs of Taketa's Theorem. Proposition 5 generalizes [Ber1], Theorem 2.

Conjecture 3. If G is as in Proposition 4(c), then $dl(G) \leq 3.1$

Note that $|\operatorname{cd}_m(G)|$ is not bounded for such groups G.

Conjecture 4. If $cd_m(G)$ is a chain under divisibility, then G has an ordered Sylow tower.

Conjecture 5. If every monolithic character of G is monomial, then $dl(G) \leq |cd_m(G)|$.

Conjecture 6. There exists a constant c such that $|\operatorname{cd}_m(G)| \leq c \cdot \operatorname{dl}(G)$.

Conjecture 7. Let G be nonsolvable. If only two characters in $\operatorname{Irr}_{1,m}(G)$ have equal degrees, then $G = L \times H$, where $L \cong L_2(5)$ or $L_2(7)$, $\operatorname{cd}_m(L) \cap \operatorname{cd}_m(H) = \{1\}$ and all characters in $\operatorname{Irr}_{1,m}(H)$ have distinct degrees.

¹As proved by L. S. Kazarin and the author, $nl(G) \leq 3$.

If G is nonsolvable and only two characters in $Irr_1(G)$ have equal degrees, then $G \in \{L_2(5), L_2(7)\}$ [BK].

For further information on monolithic characters see [BZ1], Chapter 30 and [BZ2].

I am indebted to the referee for corrections, useful comments and suggestions.

References

- [Ber1] Y. Berkovich, Generalizations of M-groups, Proc. Amer. Math. Soc. 123, 11 (1995), 3263–3268. CMP 95:16
- [Ber2] Y. Berkovich, Finite groups with small sums of some non-linear irreducible characters, J. Algebra 171 (1995), 426–443. MR 96c:20015
- [Ber3] Y. Berkovich, Finite groups with few nonlinear irreducible characters, Izv. Severo-Kavkazskogo Tzentra Vyschei Shkoly, estestvennye nauki 1 (1987), 8–13 (Russian). MR 88k:20021
- [Ber4] Y. Berkovich, Finite groups with few nonlinear irreducible characters, Problems in group theory and homological algebra, Yaroslav. Gos. Univ., Yaroslavl, 1990, pp. 97–107 (Russian). MR 93d:20015
- [BCH] Y. Berkovich, D. Chillag, and M. Herzog, Finite groups in which the degrees of the nonlinear irreducible characters are distinct, Proc. Amer. Math. Soc. 115 (1992), 955– 959. MR 92j:20006
- [BCZ] Y. Berkovich, D. Chillag, and E. Zhmud', Finite groups in which all nonlinear irreducible characters have three values, Houston Math. J. 21 (1) (1995), 17–28. MR 96i:20005
- [BK] Y. Berkovich and L. Kazarin, Finite groups in which only two nonlinear irreducible characters have equal degrees, J. of Algebra 184 (1996), 538–560.
- [BZ1] Y. Berkovich and E. Zhmud', *Characters of Finite Groups*, 2, Amer. Math. Soc. (to appear).
- [BZ2] Y. Berkovich and E. Zhmud', On monolithic characters, Houston Math. J. 22 (1996), 263–278.
- [Gag] S.C. Gagola, Characters vanishing on all but two conjugacy classes, Pacific J. Math 109 (1983), 263–285. MR 85e:20009
- [Gor] D. Gorenstein, Finite Simple Groups. An Introduction to Their Classification, Plenum Press, New York, 1982. MR 84j:20002
- [Hup] B. Huppert, Endliche Gruppen, Bd. 1, Springer, Berlin, 1967. MR 37:302
- [Isa] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976. MR 57:417
- [LPS] M.W. Liebeck, C.E. Praeger, and J. Saxl, The Maximal Factorizations of the Finite Simple Groups and Their Automorphism Groups, Memoirs of the American Mathematical Society, no. 432,, Providence, RI, 1990.
- [Mic] G.O. Michler, Modular representation theory and the classification of finite simple groups, Proc. Symp. Pure Math. 47 (1987), 223–232. MR 89b:20034
- [Sei] G. Seitz, Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc. 19 (1968), 459–461. MR 36:5212

Department of Mathematics and Computer Science, University of Haifa, Haifa 31905, Israel