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COACTIONS OF HOPF ALGEBRAS ON CUNTZ ALGEBRAS

AND THEIR FIXED POINT ALGEBRAS

ANNA PAOLUCCI

(Communicated by Palle E. T. Jorgensen)

Abstract. We study coactions of Hopf algebras coming from compact quan-
tum groups on the Cuntz algebra. These coactions are the natural general-
ization to the coalgebra setting of the canonical representation of the unitary
matrix group U(d) as automorphisms of the Cuntz algebra Od.

In particular we study the fixed point subalgebra under the coaction of the
quantum compact groups Uq(d) on the Cuntz algebra Od by extending to any
dimension d <∞ a result of Konishi (1992).

Furthermore we give a description of the fixed point subalgebra under the
coaction of SUq(d) on Od in terms of generators.

1. Introduction

Model actions of finite-dimensional Hopf algebras on Cuntz algebra have been
investigated in [2] and [7]. In these notes we take a first step in the study of
model actions Γ of Hopf algebras coming from compact matrix quantum groups G
on a Cuntz algebra and their fixed point algebras. We consider an analogue for
coalgebras of the classical action of the unitary matrix group on a Cuntz algebra.
The fixed point subalgebra of the Cuntz algebra under this natural coaction of the
quantum Uq(d) is considered. The case d = 2 was already found in [9]. We extend
it to the general case of any d < ∞ and characterize the fixed point subalgebras
of Od under the coaction of respectively Uq(d) denoted by (Od)

Uq(d). This algebra
carries the canonical endomorphism σUq(d) which is the restriction of the canonical

endomorphism σ̂ of Od. We characterize (Od)
SUq(d) as fixed point subalgebras of

Od under the coactions of Uq(d) and SUq(d) respectively.

2. Basic definitions

Let B∞ be the infinite braid group. One of the usual models for Bn is as follows.
Fix on each of two parallel lines in 3-space, an “upper” and a “lower” one, n
points labelled by the numbers 1, 2, . . . , n. We require that this labelling respect
the natural ordering of our index set. A braid is obtained by connecting each of
the upper points with a point of the lower line by a curve going only downward.
Multiplication of two braids is defined by connecting the lower points of the first
braid with the upper points of the second braid with matching labels. Similarly

Received by the editors August 4, 1995.
1991 Mathematics Subject Classification. Primary 46M05, 16W30, 81R50.
Key words and phrases. C∗-algebras, Hilbert spaces, representation, corepresentation, duality.

c©1997 American Mathematical Society

1033



1034 ANNA PAOLUCCI

B∞ can be realized by countably many points such that all but finitely many of
them go straight downwards. Hence we see that we can realize B∞ as an inductive
limit of the groups Bn, by the inclusion maps

Bn ⊂ Bn+1 which sends gn → gn ⊗ 1

where by the tensor we mean to add an extra label on the “upper” and “lower”
line connected by a straight line and Bn will be the subgroup of B∞ generated
by g1, . . . , gn. The shift σ : Bn → Bn+1 which sends gn 7→ 1 ⊗ gn = σ(gn), by the
compatibility with the inclusion then extends to an endomorphism which we denote
by the same letter σ : B∞ → B∞.

Cuntz introduced his C∗-algebra Od in [1] and showed that isometries Si, for
i = 1, . . . , d satisfying

S∗i Sj = δij1,

d∑
i=1

SiS
∗
i = 1(1)

generate a unique C∗-algebra Od. The *-algebra over the complex numbers with
unit 1 generated by the Si with the above relations will be denoted by oOd, the
algebraic part of Od. The linear span of the Si’s for i = 1, . . . , d will be denoted
by H and it is the canonical Hilbert space. The scalar product on H is defined
by 〈S, S′〉1 = S∗S′. The linear subspace generated by Si1 · · ·Sir will be denoted
by Hr, and the linear span of terms of the form Si1 · · ·SirS∗js · · ·S∗j1 by (Hs, Hr),
where by (Hs, Hr) we mean the set of intertwiners from Hs to Hr, Si ∈ (C, H) is
an intertwiner from C to H . We consider H a Hilbert space of dimension d <∞.

Let G be a compact quantum group which we denote with the pair (A,∆) where
A is a C∗-algebra and ∆ is the comultiplication as in [14]. Let R be the operator
from the two-fold tensor product of H into itself. We say that R satisfies the
Yang-Baxter equations if the following equation holds:

R12R13R23 = R23R13R12

where the lower indices mean the position of R in the 3-tensor. We denote by
cH,H = τ(R) the composition of R with the flip τ . Then cH,H ∈ (H2, H2). It
gives an element g0 = cH,H of the braid group B∞ and by using the shift σ, we
can write any generator of B∞ in terms of g0 and σ as follows. Let g0 = cH,H ,

g1 = σ(g0) = 1 ⊗ g0, gi = σ(i)(g0). Set θ(gi) = cHi,Hi ∈ (H i, Hi) for every
i = 1, . . . , n− 1 and similarly we define cHr ,Hs for any r, s, by the equation

cHr ,Hs =
∏
s−1

∏
s−2

· · ·
∏
r

,∏
s−1

= (τHr ,Hr (R) ◦ τHr+1,Hr+1(R) ◦ · · · ◦ τHs−1,Hs−1(R)),∏
s−2

= (τHr ,Hr (R) ◦ · · · ◦ τHs−2,Hs−2(R)), . . . ,
∏
r

= τHr ,Hr (R)

where τHr ,Hs(R) stands for a copy of R, after the flipping in the r, r + 1 position.
The image of the operator θ(g0) in terms of the generators of Od have the following
form:

θ(g0) =
∑
i1,i2

cH,H(Si1 ⊗ Si2)S
∗
ip(2)

⊗ S∗ip(1) , g0 ∈ B∞,(2)
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where we then identify Si1⊗Si2 with Si1Si2 and p stands for the unique permutation
of (1, 2) associated to the element g0 ∈ B∞ which in turn implies g0 ∈ Bn, for some
n.

In general given g ∈ Bn, the map g 7→ p(g) induces a surjective morphism of
groups from the braid group Bn onto the symmetric group S(n), hence the form of
the operator θ for any g ∈ Bn will be:

θ(g) =
∑
i1···ik

c
p(in),...,p(i1)
i1···in Si1 · · ·SinS∗p(in) · · ·S∗p(i1)

where we denote by c
p(ik),...,p(i1)
i1···ik the matrix elements of the operator cHn,Hn as

defined before.

3. Coactions of compact quantum groups on Cuntz algebras

Let (A,∆) be a compact quantum group. Let u ∈ Mn ⊗ A be a unitary corep-
resentation of A. This means that u is unitary and that (i ⊗ ∆)u = u12u13. We
write u =

∑
eij ⊗ uij . Then u unitary means

1 = u∗u =
(∑

e∗ij ⊗ u∗ij
)(∑

epq ⊗ upq

)
=
∑
i,q,p

ejq ⊗ u∗pjupq.

So
∑

p u
∗
prupq = δrq1. Similarly 1 = uu∗ will give

∑
p urpu

∗
qp = δrq1. The fact that

(1⊗∆)u = u12u13 means∑
eij ⊗∆(uij) =

∑
eijepq ⊗ uij ⊗ upq =

∑
eiq ⊗ uip ⊗ upq.

Thus ∆(uij) =
∑

p uip⊗upj . Observe that the classical compact group U(d) acts on
the Cuntz algebra Od as an automorphism group. When dealing with coalgebras in
the quantum group setting, the following coaction is the natural choice. Consider
the elements Ti =

∑
Sj ⊗ uji ∈ Od ⊗A. We have

T ∗i Tj =
(∑

S∗p ⊗ u∗pi
)(∑

Sq ⊗ uqj

)
=
∑

S∗pSq ⊗ u∗piuqj =
∑

1⊗ u∗piupj = δij1

and∑
TiT

∗
i =

(∑
Sp ⊗ upi

)(∑
S∗q ⊗ u∗qi

)
=
∑

SpS
∗
q ⊗ upiu

∗
qi =

∑
SpS

∗
q ⊗ 1 = 1.

Thus there exists a ∗-homomorphism Γ: Od → Od⊗A defined by Γ(Si) =
∑

p Sp⊗
upi. Then

Definition 1. Let B be a C∗-algebra and π be a ∗-homomorphism from B to
B⊗A. We say that π is a coaction of a compact quantum group G = (A,∆) on B
if

(π ⊗ idA)π = (id⊗∆)π

where ∆ is the comultiplication. This is equivalent to saying that the following
diagram commutes:

B ⊗A
π⊗idA−−−−→ B ⊗A⊗A

π

x xidB ⊗∆

B
π−−−−→ B ⊗A
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Then, the ∗-homomorphism Γ defined before is a coaction. In fact we have
(i⊗∆)Γ(Sp) =

∑
Sp ⊗ uqr ⊗ urp and (Γ⊗ i)Γ(Sp) =

∑
Sp ⊗ uqr ⊗ urp. It follows

that (i⊗∆)Γ = (Γ⊗ i)Γ. Thus Γ is a coaction of A on Od. We have the following
result [9].

Theorem 2. For a given unitary corepresentation w ∈Md⊗A of a compact quan-

tum group G = (A,∆) there is a coaction Γ determined by Γ(Si) =
∑d

j=1 Sj ⊗ wji

for any 1 ≤ i ≤ d.

We now want to describe the fixed point subalgebra under this coaction Γ. It is
an analogue to the fixed point subalgebra for the U(d) group action in Od.

Definition 3. Let B be a C∗-algebra and let π be a coaction of G on B. We define
the fixed point subalgebra Bπ of B by π as

Bπ = {x ∈ B : π(x) = x⊗ 1A}.
Denote by Mk

d the k-times tensor product of the d × d matrix algebra Md and
define a canonical embedding η : Mk

d → Od by

η(ei1j1 ⊗ · · · ⊗ eikjk) = Si1 · · ·SikS∗jk · · ·S∗j1
where {eij}di,j=1 is a system of matrix units of Md. This embedding is compatible

with the canonical inclusion of Mk
d into Mk+1

d . We denote by M∞
d the UHF algebra

which is the inductive limit of {Mk
d }∞k=1. Observe that the UHF algebra M∞

d

can be considered as a C∗-subalgebra of Od through the embedding η. Define
wk = w ⊗ · · · ⊗ w to be the tensor product of the unitary corepresentation w with
itself k times. Clearly wk is a unitary corepresentation if w is. The restriction of
the coaction Γ to the UHF algebra M∞

d is also a coaction of the compact quantum
group G on M∞

d . Set φ = Γ|UHF . Then it satisfies

φ(ei1j1 ⊗ · · · ⊗ eikjk)

=
∑

a1,...,ak,b1,...,bk

ea1b1 ⊗ · · · ⊗ eakbk ⊗ wa1i1 · · ·wakikw
∗
akjk · · ·w∗a1j1 ,

for every k a positive integer. Therefore φ can be represented in the form φ(x) =
wk(x ⊗ 1A)(wk)∗, for every x ∈ Mk

d . In [9] φ of this form is called a product
type coaction of the compact quantum group G = (A,∆) on the UHF algebra
M∞

d . Let us turn now to the fixed point subalgebra related to the coaction Γ of a
matrix quantum group on Od. Clearly the fixed point subalgebra will depend on
the unitary corepresentation u.

Lemma 4. The canonical endomorphism σ of the Cuntz algebra Od leaves the fixed
point subalgebra in Od invariant under Γ.

Proof. Let σ(x) =
∑d

i=1 SixS
∗
i , and let x be a fixed point so that Γ(x) = x ⊗ 1.

Then

Γ(σ(x)) =

d∑
i=1

Γ(SixS
∗
i ) =

d∑
i=1

Γ(Si)(x⊗ 1)Γ(S∗i )

=
∑
i,p,q

(Sp ⊗ upi)(x⊗ 1)(S∗q ⊗ u∗qi)

=
∑
p,q

SpxS
∗
q ⊗

∑
i

(upiu
∗
qi) =

∑
p

SpxS
∗
p ⊗ 1 = σ(x) ⊗ 1.
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To investigate the fixed point algebra, let us consider the following action Φ of
T on Od given by Φz(Si) = zSi; this action commutes with Γ:

Γ(Φz(Si)) = zΓ(Si) = z
∑

Sp ⊗ upi =
∑

zSp ⊗ upi = (Φz ⊗ 1)(Γ(Si)).

Thus if x is a fixed point, then Φzx is a fixed point. This means that the fixed
point algebra consists of homogeneous parts. The map Γ(Si) =

∑
Sp ⊗ upi is a

map from H to H ⊗A. This is a corepresentation of A on H . The tensor product
is obtained by taking H2, this means

Si ⊗ Sj →
∑

Sp ⊗ Sq ⊗ upi ⊗ uqj , i.e. SiSj →
∑

SpSq ⊗ upiuqj .

Thus Γ(SiSj) = Γ(Si)Γ(Sj). The trivial corepresentation is given by λ ∈ C →
λ ⊗ 1 ∈ C ⊗ A. Observe that a fixed point x ∈ Hk can be considered as an
intertwiner by the following:

C −−−−→ Hk

Γ

y yΓ

C⊗A −−−−→ Hk ⊗A

Hence an intertwiner (H,H) is given by a map T (Si) =
∑

ajiSj and satisfies

Γ(T (Si)) =
∑

ajiΓ(Sj) =
∑

ajiSp ⊗ upj ,

(T ⊗ 1)Γ(Sj) = (T ⊗ 1)
∑

Sp ⊗ upi =
∑

apqSp ⊗ uqi.

This implies that for all i and p, we have
∑

q a
p
quqi =

∑
j a

j
qupj or

∑
i a

p
i uiq =∑

j a
j
qupj. Similarly, an intertwining between H2 and itself gives relations between

the products uijupq. Consider the quantum Uq(d) as in [6]. It is the algebra
generated by upq satisfying the relations∑

k,l

Rkl
ijukmulp =

∑
k,l

Rmp
kl uikujl

for all i, j,m, p where

Rii
ii = q−1, Rji

ij = 1 for i 6= j,

Rij
ij = q−1 − q for i > j, Rij

mp = 0 otherwise.

These equations mean precisely that R is an intertwiner between H2 and H2. In
this algebra we have the quantum determinant

D =
∑

σ∈S(d)

(−q)l(σ)uσ11 · · ·uσdd.

This D is in the centre. We have ∆(D) = D⊗D, where ∆(uij) =
∑

uip⊗ upj. We
obtain Uq(d) if we require D to be invertible. Then we get a Hopf *-algebra. The
antipode can be expressed in terms of the u’s and D−1.

Suppose now that x is a fixed point in Od for the action of Uq(d). Consider the
homomorphism

γ : Uq(d) → Uq(d)

defined by

γ(upq) = 0 if p 6= q; γ(upp) = D, γ(D) = Dd.
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Let us recall here also the definition of the compact quantum group SUq(d) as in
[13], [8]. It is the algebra generated by elements (upq) such that (upq) is a unitary
matrix and ∑

E(k0, k1, . . . , kd)ul0k0ul1k1 · · ·uldkd = E(l0, l1, . . . , ld)

where E(k0, k1, . . . , kd) = 0 if two indices are equal and otherwise

E(k0, k1, . . . , kd) = (−1)I(k0,k1,...,kd)

where I(k0, k1, . . . , kd) is the number of inverted pairs in the permutation (k0,
k1, . . . , kd). Set Sq =

∑
E(k0, . . . , kd)Sk0 · · ·Skd . This implies∑

E(k0, . . . , kd)Γ(Sk0 · · ·Skd) =
∑

E(k0, . . . , kd)Sl0 · · ·Sld ⊗ ul0k0 · · ·uldkd
=
∑

E(e0, . . . , ed)Sl0 · · ·Sld ⊗ 1.

Hence Sq =
∑

E(k0, . . . , kd)Sk0 · · ·Skd is a fixed point for the coaction Γ of SUq(d)
on Od.

Theorem 5. The fixed point subalgebra (Od)
Uq(d) of Od by coaction Γ coincides

with the fixed point subalgebra (M∞
d )SUq(d) of the UHF algebra M∞

d by the coaction
of SUq(d). In particular

(Od)
Uq(d) = (M∞

d )Uq(d) = (M∞
d )SUq(d).

Proof. Consider the homomorphism γ : Uq(d) → Uq(d) defined by γ(upq) = 0 if
p 6= q and γ(upp) = D, γ(D) = Dd. We have

(i⊗ γ)Γ(Si) =
∑

Sp ⊗ γ(upi) = Si ⊗D,

(i⊗ γ)Γ(S∗i ) = S∗i ⊗D∗.

Thus (i⊗γ)Γ(y) = y⊗1, y ∈ UHF . If x is a fixed point for the action of Uq(d), then
(i⊗ γ)Γ(x) = x⊗ γ(1) = x⊗ 1. Since x may be expanded as a linear combination
of elements,

Si1 · · ·Sipy, z, wS∗i1 · · ·S∗ip ,
where y, z, w are in the UHF algebra, and

(i⊗ γ)Γ(Si1 · · ·Siny) = Si1 · · ·Siny ⊗Dd,

(i⊗ γ)Γ(wS∗i1 · · ·S∗in) = wS∗i1 · · ·S∗in ⊗D−d,

we must have that x ∈ UHF subalgebra. Next we show that, if x ∈ UHF subalgebra
and is fixed for SUq(d), then it is also fixed for Uq(d). Let x ∈ UHF and assume
(i⊗Φ)Γ(x) = x⊗1, where Γ is the coaction of Uq(d) on Od and Φ: Uq(d) → SUq(d),
mapping D to 1. We claim that Γ(x) = x ⊗ 1. Define the quotients of Uq(d)
with D = λ, and call these quotients Aλ. Thus A1 = SUq(d). Call the quotient
map πλ : Uq(d) → Aλ. Let the automorphisms γz : Uq(d) → Uq(d) be given by
γz(upq) = zupq. Then γz(D) = zdD. Because x ∈ UHF we have (i⊗γz)Γ(x) = Γ(x).
Now, πλγz(D) = πλ(zdD) = zdλ, so that πλγz = πzdλ. If zdλ = 1, then we have

(i⊗ πλ)Γ(x) = (i⊗ πλγz)Γ(x) = (i ⊗ π1)Γ(x) = (i ⊗ Φ)Γ(x) = x⊗ 1.

This is true for all λ. Hence Γ(x) = x⊗ 1.

The statement of our main result is as follows.
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Corollary 6. The fixed point subalgebra (Od)
Uq(d) is generated as a C∗-algebra by

θ(g), g ∈ B∞.

Proof. Consider an element T in (Od)
Uq(d): it is then a fixed point under the coac-

tion of Uq(d) on Od. Note that any element in the fixed point subalgebra (M∞
d )Uq(d)

or, equivalently in (M∞
d )SUq(d) by Theorem 5, is an intertwiner of (Hk, Hk).

Let T ∈ (Hk, Hk) for some 1 ≤ k ≤ d. Let Sq be as defined before, and note
that Sq ∈ (i,Hd). For any T ∈ (Hk, Hk) form T ′k = T ⊗ 1Hd−k , 1 ≤ k ≤ d, T ′k is an
intertwiner of (Hd, Hd).

Set T̃k = T ′kSq. Let T̃k and T̃ ′k be any two such intertwiners. It follows that

T̃ ∗k T̃k ∈ (C,C), so it is a scalar. As in [3] we can define the scalar product by:

T̃ ∗k T̃
′
k = 〈T̃k, T̃ ′k〉1.(3)

This will give the structure of Hilbert space to the set of intertwiners.
An orthonormal basis can be described as follows. Let G be a graph whose

vertices correspond to the labels, i.e. configurations of tensor powers appearing in
the specific intertwiner. We denote the generic source vertex by α ≡ α0 and by
β ≡ αn the generic “sink”.

Let ei be the directed edge that goes from the label αi−1 to the label αi, i =
1, . . . , n. Each of these directed edges is an intertwiner. We denote it by Tei =
Tαi−1,αi . It is the intertwiner that represents the ith edge ei from αi−1 to αi, i.e.
ei = (αi−1, αi). We say, as in [7], that a path ξ of length n from α to β is a sequence
ξ = (e1, . . . , en) of edges, where e1 starts at α0, and the endpoint of each eh, for
h = 1, . . . , n − 1, is the initial point of eh+1, and en ends at αn. We denote the

set of these paths by Path
(n)
α,β. In our situation the number of terms in labels (or

configuration) α and β will be the same, since the intertwiners are between objects

with equal tensor power. Denote by H
(n)
α,β the Hilbert space with inner product

given by (3), and let n denote the minimal number of steps (or edges) needed to

go from α to β. A convenient orthonormal basis in H
(n)
α,β is the set of products of

the distinguished basis elements in the spaces H
(i)
α,β . Thus the intertwiners T (ξ) =

Te1 · · ·Ten with ξ ∈ Paths
(n)
α,β are an orthonormal basis. Observe that to any

intertwiner A ∈ (Hk, Hk), there is associated a permutation which we denote by
pA ∈ S(k), where S(k) represents the symmetric group on k letters, which allows
us to go from the labels α to the labels β. Every pA can be decomposed as products
of at most k disjoint cycles, i.e. pA = σi1 · · ·σik . Hence for every σij there exists
an edge ej connecting the top configuration to the one immediately below. Thus
to each A there is associated a path, say ξA. The composition law for paths is the
following: ξ ◦ ξ′ is possible if the bottom number of labels of ξ and the top number
of labels of ξ′ agree. Observe that we have the following multiplication rule for the
operator A(ξ)A(ξ′)∗:

A(ξ)A(ξ′)∗A(η)A(η′)∗ = δξ′ηA(ξ)A(η′)∗

which is the analogue of the discrete Witten’s product for strings [10]. To actually
compute the expression of any A(ξ) ∈ (Hk, Hk) let us proceed as follows. Consider
ξ to be an elementary path. Hence

〈A(ξ)T̃k(ξ
′), T̃k(η′)〉 = T̃k(η

′)∗A(ξ)T̃k(ξ
′).(4)
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This means project A(ξ) on paths given by Sq, i.e. T̃k(η
′)∗A(ξ)T̃k(ξ

′) = c(ξ′, η)δξ′,η.
In the above formula, we denote by c(ξ′, η) the scalar associated to the operator on
the edges of ξ′, η. Denote the operator and its values by the same symbol c(ξ′, η)
since it can be viewed as an operator on paths. We want to prove that it satisfies
the Yang-Baxter equation. We may think of ξ′, η as elementary paths for simplicity,
i.e. paths that move only a pair of indices, the rest of the indices acting just like
the identity. Thus c(ξ′, ξ′)(h1 ⊗ h2) =

∑
skh1 ⊗ tih2, sk, ti ∈ C, associated to ξ′.

We need then to prove

c23(ξ
′, ξ′)c13(ξ′, ξ′)c12(ξ′, ξ′) = c12(ξ

′, ξ′)c13(ξ′, ξ′)c23(ξ′, ξ′)(5)

where the lower indices denote the position of c(ξ′, ξ′) on a string of a 3-tensor. To
prove (5) we need to check that the left hand side and the right hand side agree.
Hence, calculating the left hand side we have

c23(ξ
′, ξ′)c13(ξ′, ξ′)c12(ξ′, ξ) =

∑
k,k′

r,s,i′,i

sk′skh1 ⊗ srtih2 ⊗ tsti′h3.

However, on the right hand side

c12(ξ
′, ξ′)c13(ξ′, ξ)c23(ξ′, ξ′) =

∑
k,k′

r,s,i′,i

srsk′h1 ⊗ tsskh2 ⊗ ti′tih3.

Looking at the two expressions, we observe that the only difference is in the middle
part. Since the cycles of the permutations are disjoint no matter which edge we
apply first, we get the same result. Hence c(ξ′, ξ′) is a Yang-Baxter operator. Hence
it gives an element of the braid group.

Therefore the space of intertwiners carries a representation of the braid group
given by the Yang-Baxter operator c(ξ′, ξ′). By Theorem VIII.6.4 of [5] we have
c(ξ′, ξ′) = cH,H = τ ◦ R, with R the R-matrix associated to Uq(d), when ξ′ = η is
the path from H ⊗H → H ⊗H . It follows that to any intertwiner A ∈ (Hk, Hk)
we can associate a path ξ which corresponds to a braid group generator g with the
permutation p = p(g). From [9] and [13] it is already known that the algebra of the
linear intertwiners (Hk, Hk) under the coaction of quantum SU(d) is generated by
a representation of the braid group B∞.

Then A(ξ) can be expressed as a combination of the braid group representation
θ(g) and by using the relations (1) on the generators of the Cuntz algebra, we can
express

θ(g) =
∑
i1···ik

c
p(ik),...,p(i1)
i1···ik Si1 · · ·SikS∗p(ik) · · ·S∗p(i1)

where we denote by c
p(ik),··· ,p(i1)
i1···ik the matrix elements of the operator c(ξ′, ξ′) asso-

ciated to the path corresponding to the braid group element g. By using Lemma 6
of [9] we conclude that (Od)

Uq(d) = C∗(θ(g)).

Lemma 7. (Od)
SUq(d) is the smallest σ-stable C∗-subalgebra of Od containing θ(g),

g ∈ B∞, and Sq.

Proof. We want to prove that every element in the fixed point subalgebra (Od)
SUq(d)

is obtained from elements of (Od)
Uq(d) plus the additional element Sq. Let X ∈

(Od)
SUq(d) so that Γ(X) = X ⊗ 1. Now by Lemma 5 and Lemma 6 of [9] it is

enough to prove for x ∈ Pd ∩ (Od)
SUq(d) where Pd is the dense *-subalgebra of Od
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generated by S1, . . . , Sd. Thus by [1] we can write any x as a linear combination of
elements Si1 · · ·Sipy, z, wS∗i1 · · ·S∗ip where y, z, w ∈ UHF subalgebra of Od.

We need to show that if X ∈ (Od)
Uq(d), then X contains a part in (Od)

Uq(d)

and a part in (Od)
SUq(d) which includes Sq. Let us proceed as follows. We need

to have grading. The grading in (Od)
SUq(d) is defined as follows. Let the auto-

morphism γz : Uq(d) → Uq(d) be given by γz(upq) = zkupq; then γz(D) = zdkD,

z ∈ T. Let Γz(X) = (id⊗γz)Γ(X). Then we define ((Od)
SUq(d))k, all X such that

(id⊗γz)Γ(X) = zkΓ(X), i.e. equivalently

((Od)
SUq(d))k = {X ∈ (Od)

SUq(d) : Γz(X) = zkX ⊗ 1}.
Let X ∈ ((Od)

SUq(d))0 where k = 0, and Γz(X) = (id⊗γz)Γ(X). We have seen
that (id⊗γz)Γ(X) = Γ(x) if and only if X ∈ (UHF )Uq(d) = (Od)

Uq(d). Thus
the zero part of ((Od)

SUq(d))0 = (Od)
Uq(d). Now, observe that ((Od)

SUq(d))k = 0,
unless k = 0 (mod d). Since uij ∈ SUq(d) and the quantum determinant D = 1

in SUq(d), it follows that zd = 1. We claim that (XSn∗q ) ∈ ((Od)
SUq(d))0 where

X ∈ ((Od)
SUq(d))nd. Observe that

Γz(XSn∗q ) = Γz(X)Γz(S
n∗
q ) = (zndX ⊗ 1)(z−ndSn∗q ⊗ 1)

= znd−ndXSn∗q ⊗ 1 = Γ(XSn∗q )

which implies XSn∗q ∈ ((Od)
SUq(d))0. Then it follows XSn∗q ∈ ((Od)

SUq(d))0 =

(Od)
Uq(d). Since XSn∗q ∈ (Od)

Uq(d) we have Γ(XSn∗q ) = (id⊗γz)Γ(XSn∗q ) which

is true for every z. If X ∈ ((Od)
SUq(d))nd set X = k(q)nXSn∗q Snq where Sn∗q Snq =

k(q)−n. Then

Γz(k(q)
nXSn∗q ) = k(q)nXSn∗q ⊗ 1 = Γ(k(q)nXSn∗q ).

This implies that T = k(q)nXSn∗q ∈ (Od)
Uq(d). Thus every X ∈ (Od)

SUq(d) consists

of parts containing (Od)
Uq(d) and Sq. As (Od)

SUq(d) is σ-stable, the result follows
from Corollary 6.
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