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ABSTRACT. A formula is given for the directional uniform rotundity modu-
lus of Loo(X), where X is a normed space. Then a necessary and sufficient
condition is provided for Loo(X) to be uniformly rotund in a direction.

1. INTRODUCTION

Spaces that are uniformly rotund in every direction were defined by A.L. Garkavi
[6] to characterize those normed spaces for which every bounded set has at most one
Chebyshev center. V. Zizler [11], Day—James—Swaminathan [2], and H. Fakhoury
[4] have further studied this generalization of the uniform rotundity property. For
more recent investigations on this topic see [3].

In this paper we prove a formula for the directional modulus of rotundity of
Loo(X), where X is a normed space. As a consequence, we obtain a complete
description of the uniform rotundity directions of such a space, thus generalizing to
the vector case the corresponding scalar results of R.R. Phelps [9] and V.I. Zizler
[11].

Terminology and notation are standard. Let X be a normed space. As usual
Bx(z,7) and Sx(z,r) denote the closed ball and the sphere, respectively, with
center x and radius r > 0. We shall also write Bx = Bx(0,1) and Sx = Sx(0,1).

The space X is said to be uniformly rotund in the direction z € X (UR— z) if
the directional modulus of rotundity

A
T + 52’

(1) bx(— z,e):inf{l— : x,x+ Az € By, ||z Ze}

is strictly positive for every 0 < e < 2.
We prove [5] that

(i) If flz]| =1
2) bx (= 2,¢) = inf {1 - H:z: + ng el < Lot e =1}
(ii) 8x(— z,€)/e is a non-decreasing function on (0, 2].
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As a consequence of (ii) we have that éx(— z,¢) < €/2.

The function éx(— z,e€) is continuous with respect to z and e separately [7],
and, as the following result shows, this function is continuous with respect to the
two variables together.

Lemma 1. The function
(Z,E) S X\{O} X [072) I 6X(_> 2,6) S [071)
1S continuous.

Proof. Let (zn,€n), (2,€) € X \ {0} x [0,2) and lim, 00 2, = 2, limy 00 €, = €.
Let n > 0. Then the monotonic property of §x(— z,€) with respect to € and the
continuity of éx(— z,€) with respect to z guarantee that

6X(_> Zn,E—T]) S 6X(_’ Znaen) S 6X(_> Zna€+77)7

Ox(— z,exn) —n<bx(— zpn,exn) <bx(— z,e+n)+n,
if n is sufficiently large. Thus

bx(— z,e—n) —n<bx(— zn,€6n) < 6x(— 2,6 +1n) +7.

Since 6x(— z,€) is continuous with respect to €, we have lim, . 6x(— 2, €,) =
bx(— z,€). O

The space X is said to be uniformly rotund (UR) when the modulus of rotundity

Sx(e) = inf{l -

is positive for every 0 < e < 2 [1].

It is clear that 6 x (¢) = inf{éx(— z,€) : 2 € Sx}. Moreover 6x (¢) is an increasing
monotonic function such that 6x () < €/2.

Let (T, %, i) be a positive measure space and X be a normed space. The function
x: T — X is said to be simple if there exist T1,...,T, € ¥ and x1,...,z, € X such
that x = Z;;l xiXT;, where xr, is the characteristic function of 7;. The function
x: T — X is defined as measurable if, for every finite measurable set F', there
exists a sequence of simple functions {s, }nen such that xxp = lim,_,o S, almost
everywhere [10]. The set of measurable functions is a linear space. Moreover if
z: T — X is measurable and g: X — R is continuous, then g o x is measurable.

For convenience we assume the measure y to be complete. Measurable functions
are characterized by the following result, whose proof is essentially included in [8,
p. 233].

Tty
2

‘3337y€BX,||17—y|| ze}

Lemma 2. The function x: T — X is measurable if and only if, for each finite
measurable set F,

(i) z is essentially separably valued on F, that is, there is a null set N such that
x(F \ N) is separable;
(i) FNx=Y(G) € X for each Borel set G.

Define the essential image of x: T — X (essimx) as the set of u € X such that
there exists a finite measurable set F,, with u{t € F, : ||2(t) — ul|x < r} > 0 for
every r > 0.

We use Lo (X) to denote the space of measurable equivalence classes of functions
z: T — X such that t € T — |[[z(t)||x is essentially bounded. It is a linear
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space normed by ||z|| = esssup,cr{||z(t)||x}, where esssup denotes the essential
supremum of the function z.
To avoid confusion, from now on we shall use || - || for the norm in L., (X) and

|l |lx for the norm in X.

2. RESULTS
The main result is a formula for the directional rotundity modulus of Lo (X).
Theorem 3. Let z € Sp__(x)- Then
() b= 20 =esint{x(— 20, =0 x)), 0<e<2,
where essinf denotes the essential infimum.

Proof. Our first goal is to show that
(4) dp(x)(— 2z,€) > estsei%lf{éx(ﬁ z(t),ellz(t)|x)}, 0<e<2.

Take x € Loo(X) such that ||z|| <1, ||z +€z|]| = 1. Then
[z@llx <1, lz() +ez(@)llx <1,
and
lz(®) + (e/2)z(t)||x <1 —4éx(— 2(t),€llz(t)]|x) almost everywhere.
Therefore
o+ (¢/2)2]1 < 1 — essint bx (= 2(0), el (1) ),
and (4) holds.
Now for the harder part. Suppose that
5100 (= 21€) > ess it {8 (= 2(0) el 2(0) 1))
Then there exists £ € ¥ with u(E) > 0 such that
(5) Ox (= z(t),ellz(t)|lx) < br(x)(— 2,¢) foreveryte E.
We consider two cases.

Case A. There exists F' C E such that F € ¥ and 0 < u(F) < oo.

To arrive at a contradiction with (5), we prove that

(6) inf{éx(— u,ellullx) : u € essimz} < estséibgf{6x(—> 2(t), €llz(t)||x)}
and

(7) Or(x)(— z,€) < infl{ox(— u,ellul|x) : u € essim z}.

First note that essimz # (). To prove this, suppose that essimz = ). Since F'
has a finite measure, there is a null set N and a dense sequence {u, }nen in 2(F\N).
Clearly u,, ¢ essimz. Then there exists r,, > 0 such that u{z=1(B(up,m,))NF} =
0. Moreover F\N C U, en 27 (B(tn,y)), and then u(F\N) = 0. This contradicts
the hypothesis u(F') > 0.

To show (6), we verify that « := inf{6x(— u,€|lul|lx) : v € essimz} is an
essential lower bound in F' of the function 6x(— z(-),€||z(-)||x). That is, we must
prove that p{t € F : x(— z(t),€||2(¢)||x) < a} = 0. Define

ue X\ {0} — g(u) := bx (= u, efjullx).
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Then
p{t € F: 6x(— 2(t), el 2(1)]|x) < a} = p{(F\ N) N (goz)"(~o0,a)}.

If (F\N)N(goz) t(—oco,a) =0, then u{(F\ N)N(goz2)~t(-o0,a)} = 0.
Otherwise, since by Lemma 2, z(F \ N) N (g~*(—o0, a)) is separable, it contains a
dense sequence {wy, }nen. Clearly z(t) ¢ essimz if t € (F\ N)((go 2z)"(—o0, ).
Hence, there is some s, > 0 such that u{z='(B(w,,s,)) N F} = 0. From the
density of the sequence {w,, }nen we have

P{(F\N)N(goz) " (—o0,a)} < Y pf{z" (B(wn,52)) N F} = 0.
n=1

Now we prove (7). Let u € essimz. From the definition of essim z it follows
that ||u]|x < ||zl = 1. Take a € Bx such that a + eu € Sy, and define T,, =
27Y(B(u,1/n)) N F, for every n € N. Then T}, € ¥ and u(T},) > 0. Set

Ty (t) = axr, (t) — 2(t)x\1,, (t) fort €T,
2p(t) = uxr, (t) + 2(t)x\1, (t) fort € T.

Both functions are measurable and belong to the unit ball of Lo (X). Moreover
the functions

T (t) + ezp(t) = (a + eu)xr, (t) + (e = 1)2(t)x\1, (1) fort €T,
xn(t) + %zn(t) = (a + %u) xr, (t) + (% — 1) 2(t)xr\1, (t) forteT,
satisfy ||z, + ezn|| = 1 and ||z, + (€/2) 2, || > [|a + (¢/2)ul|x. Hence
6x (= uyellullx) = 61 (x) (= 2n, €ll2nl x).
Since
120) = (@)l = 112(6) = ullxxer, () <
we have lim,,_, ||z — zn|| = 0. Then by Lemma 1
Tim 6p,(x) (= Zns€llznll) = 1.0 (= 2, €llz]),
which completes the proof of (7).
Case B. For every F' C E such that F' € X, either u(F) =0 or u(F) = +o0.
We show that
®) Bre) (= 2:6) < essipf8x(— 2(1), ll (1))} =

which contradicts (5).

Let r >0and F = {t € E: 6x(— z(t),¢l|z(t)||x) < B+ r}. Foreveryt € F
except for a null measurable set, we can choose y(t) € Bx and y(t) + ez(t) € Sx
such that

ox(— 2B, ellz0llx) < 1= ||u(®) + 520 < 8+7.
Define z(t) = y(t)xr(t) — (¢/2)z(t)x1\r(t). Then
2(6) + e2(t) = (y(t) + ex(O)xe(t) + (/22 (OxT\r ).
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By Lemma 2 both functions are measurable, since in every finite measurable set
x(t) = —ez(t)/2 and x(t) + ez(t) = ez(t)/2 almost everywhere. Also, z,z + ez €
Br(x), and [lz + (¢/2)z]| = esssupye p{lly(t) + (¢/2)2(t)||x}. Then

< B+

Spox)(— 2z,€) <1 — Hx—|— %z
As r > 0 is an arbitrary number, (8) holds. |
Corollary 4. The rotundity modulus of Lo := Loo(R) in the direction ¢ € S is
9) 6r(— C,e):gessinf{|(|}, 0<e<2.
Proof. When the dimension of X is equal to 1, 6x(€) = €/2. |

Next we provide a complete description of the uniform rotundity directions in
the space Loo(X).

Theorem 5. Let X be a normed space.
(i) The space Loo(X) is UR — 2, z € Sp__(x), if and only if

estsiqglf{éx(ﬁ z(t),ellz(t)]]x)} >0 for0<e<2.
€

(ii) Let X be a UR normed space. Then Loo(X) is UR — z if and only if
essinf{][=(t)]lx} > 0.

Proof. Part (i) is trivial after Theorem 3. To prove part (ii) we may assume that
z€ 8 (x)- If Loo(X) is UR — z then from ox(— z(t),€l|2(t)[|x) < (¢/2)]|2(t) || x
almost everywhere, we have that essinficr{]|2(¢)||x} > 0. For the converse, note
that 6x (eessinfrer{[|z()]x}) < ox(€el[2(t)llx) < bx (= 2(t), €llz(t) | x)- 0

When (7,3, ) is a discrete measure space, one has Loo(X) = £oo(X) and
essinf = inf. Then Theorems 3 and 5 and Corollary 4 hold for £ (X), although a
simpler proof of Theorem 3 is available since every function is measurable in this
case. Moreover formula (3) also holds at € = 2. The same results can be obtained
for £oo(X;), where {X;}ier is a family of normed spaces, i.e., for the space of func-
tions : I — |J,c; X, such that z; € X, for each i € I, and (||z;/|;) € foo, Which is
a linear space endowed with the norm ||z|| = sup;¢; ||2;l|:.

As an application of the previous results, we show that the directional modulus
of rotundity is not continuous at € = 2.

Example 6. For each i = 1,2... let X; be the space R? endowed with the norm

. ) 1
e o

Let z = (z;), where z; = (1,0). Then

6o (x)(— z,€) =inf{bx,(— zi,€) :i=1,2...} =0 for0<e<2

and 6600(X¢)(_’ z,2) = 1.
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