DIRECTIONAL UNIFORM ROTUNDITY IN SPACES OF ESSENTIALLY BOUNDED VECTOR FUNCTIONS

MANUEL FERNÁNDEZ AND ISIDRO PALACIOS

(Communicated by Palle E. T. Jorgensen)

Abstract

A formula is given for the directional uniform rotundity modulus of $L_{\infty}(X)$, where X is a normed space. Then a necessary and sufficient condition is provided for $L_{\infty}(X)$ to be uniformly rotund in a direction.

1. Introduction

Spaces that are uniformly rotund in every direction were defined by A.L. Garkavi [6] to characterize those normed spaces for which every bounded set has at most one Chebyshev center. V. Zizler [11], Day-James-Swaminathan [2], and H. Fakhoury [4] have further studied this generalization of the uniform rotundity property. For more recent investigations on this topic see [3].

In this paper we prove a formula for the directional modulus of rotundity of $L_{\infty}(X)$, where X is a normed space. As a consequence, we obtain a complete description of the uniform rotundity directions of such a space, thus generalizing to the vector case the corresponding scalar results of R.R. Phelps [9] and V.I. Zizler [11].

Terminology and notation are standard. Let X be a normed space. As usual $B_{X}(x, r)$ and $S_{X}(x, r)$ denote the closed ball and the sphere, respectively, with center x and radius $r>0$. We shall also write $B_{X}=B_{X}(0,1)$ and $S_{X}=S_{X}(0,1)$.

The space X is said to be uniformly rotund in the direction $z \in X(\mathrm{UR} \rightarrow z)$ if the directional modulus of rotundity

$$
\begin{equation*}
\delta_{X}(\rightarrow z, \epsilon)=\inf \left\{1-\left\|x+\frac{\lambda}{2} z\right\|: x, x+\lambda z \in B_{X},\|\lambda z\| \geq \epsilon\right\} \tag{1}
\end{equation*}
$$

is strictly positive for every $0<\epsilon \leq 2$.
We prove [5] that
(i) If $\|z\|=1$

$$
\begin{equation*}
\delta_{X}(\rightarrow z, \epsilon)=\inf \left\{1-\left\|x+\frac{\epsilon}{2} z\right\|:\|x\| \leq 1,\|x+\epsilon z\|=1\right\} \tag{2}
\end{equation*}
$$

(ii) $\delta_{X}(\rightarrow z, \epsilon) / \epsilon$ is a non-decreasing function on $(0,2]$.

[^0]As a consequence of (ii) we have that $\delta_{X}(\rightarrow z, \epsilon) \leq \epsilon / 2$.
The function $\delta_{X}(\rightarrow z, \epsilon)$ is continuous with respect to z and ϵ separately [7], and, as the following result shows, this function is continuous with respect to the two variables together.

Lemma 1. The function

$$
(z, \epsilon) \in X \backslash\{0\} \times[0,2) \longrightarrow \delta_{X}(\rightarrow z, \epsilon) \in[0,1)
$$

is continuous.
Proof. Let $\left(z_{n}, \epsilon_{n}\right),(z, \epsilon) \in X \backslash\{0\} \times[0,2)$ and $\lim _{n \rightarrow \infty} z_{n}=z, \lim _{n \rightarrow \infty} \epsilon_{n}=\epsilon$. Let $\eta>0$. Then the monotonic property of $\delta_{X}(\rightarrow z, \epsilon)$ with respect to ϵ and the continuity of $\delta_{X}(\rightarrow z, \epsilon)$ with respect to z guarantee that

$$
\begin{gathered}
\delta_{X}\left(\rightarrow z_{n}, \epsilon-\eta\right) \leq \delta_{X}\left(\rightarrow z_{n}, \epsilon_{n}\right) \leq \delta_{X}\left(\rightarrow z_{n}, \epsilon+\eta\right), \\
\delta_{X}(\rightarrow z, \epsilon \pm \eta)-\eta \leq \delta_{X}\left(\rightarrow z_{n}, \epsilon \pm \eta\right) \leq \delta_{X}(\rightarrow z, \epsilon \pm \eta)+\eta,
\end{gathered}
$$

if n is sufficiently large. Thus

$$
\delta_{X}(\rightarrow z, \epsilon-\eta)-\eta \leq \delta_{X}\left(\rightarrow z_{n}, \epsilon_{n}\right) \leq \delta_{X}(\rightarrow z, \epsilon+\eta)+\eta .
$$

Since $\delta_{X}(\rightarrow z, \epsilon)$ is continuous with respect to ϵ, we have $\lim _{n \rightarrow \infty} \delta_{X}\left(\rightarrow z_{n}, \epsilon_{n}\right)=$ $\delta_{X}(\rightarrow z, \epsilon)$.

The space X is said to be uniformly rotund (UR) when the modulus of rotundity

$$
\delta_{X}(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: x, y \in B_{X},\|x-y\| \geq \epsilon\right\}
$$

is positive for every $0<\epsilon \leq 2$ [1].
It is clear that $\delta_{X}(\epsilon)=\inf \left\{\delta_{X}(\rightarrow z, \epsilon): z \in S_{X}\right\}$. Moreover $\delta_{X}(\epsilon)$ is an increasing monotonic function such that $\delta_{X}(\epsilon) \leq \epsilon / 2$.

Let (T, Σ, μ) be a positive measure space and X be a normed space. The function $x: T \rightarrow X$ is said to be simple if there exist $T_{1}, \ldots, T_{n} \in \Sigma$ and $x_{1}, \ldots, x_{n} \in X$ such that $x=\sum_{i=1}^{n} x_{i} \chi_{T_{i}}$, where $\chi_{T_{i}}$ is the characteristic function of T_{i}. The function $x: T \rightarrow X$ is defined as measurable if, for every finite measurable set F, there exists a sequence of simple functions $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ such that $x \chi_{F}=\lim _{n \rightarrow \infty} s_{n}$ almost everywhere [10]. The set of measurable functions is a linear space. Moreover if $x: T \rightarrow X$ is measurable and $g: X \rightarrow \mathbb{R}$ is continuous, then $g \circ x$ is measurable.

For convenience we assume the measure μ to be complete. Measurable functions are characterized by the following result, whose proof is essentially included in [8, p. 233].

Lemma 2. The function $x: T \rightarrow X$ is measurable if and only if, for each finite measurable set F,
(i) x is essentially separably valued on F, that is, there is a null set N such that $x(F \backslash N)$ is separable;
(ii) $F \cap x^{-1}(G) \in \Sigma$ for each Borel set G.

Define the essential image of $x: T \rightarrow X(\operatorname{ess} \operatorname{im} x)$ as the set of $u \in X$ such that there exists a finite measurable set F_{u} with $\mu\left\{t \in F_{u}:\|z(t)-u\|_{X}<r\right\}>0$ for every $r>0$.

We use $L_{\infty}(X)$ to denote the space of measurable equivalence classes of functions $x: T \rightarrow X$ such that $t \in T \rightarrow\|x(t)\|_{X}$ is essentially bounded. It is a linear
space normed by $\|x\|=\operatorname{ess}_{\sup }^{t \in T}$ $\left\{\|x(t)\|_{X}\right\}$, where ess sup denotes the essential supremum of the function x.

To avoid confusion, from now on we shall use $\|\cdot\|$ for the norm in $L_{\infty}(X)$ and $\|\cdot\|_{X}$ for the norm in X.

2. Results

The main result is a formula for the directional rotundity modulus of $L_{\infty}(X)$.
Theorem 3. Let $z \in S_{L_{\infty}(X)}$. Then

$$
\begin{equation*}
\delta_{L_{\infty}(X)}(\rightarrow z, \epsilon)=\underset{t \in T}{\operatorname{ess} \inf }\left\{\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)\right\}, \quad 0 \leq \epsilon<2 \tag{3}
\end{equation*}
$$

where ess inf denotes the essential infimum.
Proof. Our first goal is to show that

$$
\begin{equation*}
\delta_{L_{\infty}(X)}(\rightarrow z, \epsilon) \geq \underset{t \in T}{\operatorname{essinf}}\left\{\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)\right\}, \quad 0 \leq \epsilon<2 \tag{4}
\end{equation*}
$$

Take $x \in L_{\infty}(X)$ such that $\|x\| \leq 1,\|x+\epsilon z\|=1$. Then

$$
\|x(t)\|_{X} \leq 1, \quad\|x(t)+\epsilon z(t)\|_{X} \leq 1
$$

and

$$
\|x(t)+(\epsilon / 2) z(t)\|_{X} \leq 1-\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right) \quad \text { almost everywhere. }
$$

Therefore

$$
\|x+(\epsilon / 2) z\| \leq 1-\underset{t \in T}{\operatorname{ess} \inf } \delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)
$$

and (4) holds.
Now for the harder part. Suppose that

$$
\delta_{L_{\infty}(X)}(\rightarrow z, \epsilon)>\underset{t \in T}{\operatorname{essinf}}\left\{\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)\right\}
$$

Then there exists $E \in \Sigma$ with $\mu(E)>0$ such that

$$
\begin{equation*}
\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)<\delta_{L_{\infty}(X)}(\rightarrow z, \epsilon) \quad \text { for every } t \in E \tag{5}
\end{equation*}
$$

We consider two cases.
Case A. There exists $F \subset E$ such that $F \in \Sigma$ and $0<\mu(F)<\infty$.
To arrive at a contradiction with (5), we prove that

$$
\begin{equation*}
\inf \left\{\delta_{X}\left(\rightarrow u, \epsilon\|u\|_{X}\right): u \in \operatorname{ess} \operatorname{im} z\right\} \leq \underset{t \in F}{\operatorname{ess} \inf }\left\{\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)\right\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{L_{\infty}(X)}(\rightarrow z, \epsilon) \leq \inf \left\{\delta_{X}\left(\rightarrow u, \epsilon\|u\|_{X}\right): u \in \operatorname{ess} \operatorname{im} z\right\} \tag{7}
\end{equation*}
$$

First note that ess $\operatorname{im} z \neq \emptyset$. To prove this, suppose that ess $\operatorname{im} z=\emptyset$. Since F has a finite measure, there is a null set N and a dense sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ in $z(F \backslash N)$. Clearly $u_{n} \notin \operatorname{ess} \operatorname{im} z$. Then there exists $r_{n}>0$ such that $\mu\left\{z^{-1}\left(B\left(u_{n}, r_{n}\right)\right) \cap F\right\}=$ 0 . Moreover $F \backslash N \subset \bigcup_{n \in \mathbb{N}} z^{-1}\left(B\left(u_{n}, r_{n}\right)\right)$, and then $\mu(F \backslash N)=0$. This contradicts the hypothesis $\mu(F)>0$.

To show (6), we verify that $\alpha:=\inf \left\{\delta_{X}\left(\rightarrow u, \epsilon\|u\|_{X}\right): u \in \operatorname{ess} \operatorname{im} z\right\}$ is an essential lower bound in F of the function $\delta_{X}\left(\rightarrow z(\cdot), \epsilon\|z(\cdot)\|_{X}\right)$. That is, we must prove that $\mu\left\{t \in F: \delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)<\alpha\right\}=0$. Define

$$
u \in X \backslash\{0\} \rightarrow g(u):=\delta_{X}\left(\rightarrow u, \epsilon\|u\|_{X}\right)
$$

Then

$$
\mu\left\{t \in F: \delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)<\alpha\right\}=\mu\left\{(F \backslash N) \cap(g \circ z)^{-1}(-\infty, \alpha)\right\}
$$

If $(F \backslash N) \cap(g \circ z)^{-1}(-\infty, \alpha)=\emptyset$, then $\mu\left\{(F \backslash N) \cap(g \circ z)^{-1}(-\infty, \alpha)\right\}=0$. Otherwise, since by Lemma $2, z(F \backslash N) \cap\left(g^{-1}(-\infty, \alpha)\right)$ is separable, it contains a dense sequence $\left\{w_{n}\right\}_{n \in \mathbb{N}}$. Clearly $z(t) \notin \operatorname{ess} \operatorname{im} z$ if $t \in(F \backslash N) \bigcap(g \circ z)^{-1}(-\infty, \alpha)$. Hence, there is some $s_{n}>0$ such that $\mu\left\{z^{-1}\left(B\left(w_{n}, s_{n}\right)\right) \cap F\right\}=0$. From the density of the sequence $\left\{w_{n}\right\}_{n \in \mathbb{N}}$ we have

$$
\mu\left\{(F \backslash N) \cap(g \circ z)^{-1}(-\infty, \alpha)\right\} \leq \sum_{n=1}^{\infty} \mu\left\{z^{-1}\left(B\left(w_{n}, s_{n}\right)\right) \cap F\right\}=0
$$

Now we prove (7). Let $u \in \operatorname{essim} z$. From the definition of essim z it follows that $\|u\|_{X} \leq\|z\|=1$. Take $a \in B_{X}$ such that $a+\epsilon u \in S_{X}$, and define $T_{n}=$ $z^{-1}(B(u, 1 / n)) \cap F_{u}$ for every $n \in \mathbb{N}$. Then $T_{n} \in \Sigma$ and $\mu\left(T_{n}\right)>0$. Set

$$
\begin{array}{ll}
x_{n}(t)=a \chi_{T_{n}}(t)-z(t) \chi_{T \backslash T_{n}}(t) & \text { for } t \in T, \\
z_{n}(t)=u \chi_{T_{n}}(t)+z(t) \chi_{T \backslash T_{n}}(t) & \text { for } t \in T .
\end{array}
$$

Both functions are measurable and belong to the unit ball of $L_{\infty}(X)$. Moreover the functions

$$
\begin{aligned}
x_{n}(t)+\epsilon z_{n}(t) & =(a+\epsilon u) \chi_{T_{n}}(t)+(\epsilon-1) z(t) \chi_{T \backslash T_{n}}(t) \quad \text { for } t \in T, \\
x_{n}(t)+\frac{\epsilon}{2} z_{n}(t) & =\left(a+\frac{\epsilon}{2} u\right) \chi_{T_{n}}(t)+\left(\frac{\epsilon}{2}-1\right) z(t) \chi_{T \backslash T_{n}}(t) \quad \text { for } t \in T,
\end{aligned}
$$

satisfy $\left\|x_{n}+\epsilon z_{n}\right\|=1$ and $\left\|x_{n}+(\epsilon / 2) z_{n}\right\| \geq\|a+(\epsilon / 2) u\|_{X}$. Hence

$$
\delta_{X}\left(\rightarrow u, \epsilon\|u\|_{X}\right) \geq \delta_{L_{\infty}(X)}\left(\rightarrow z_{n}, \epsilon\left\|z_{n}\right\|_{X}\right)
$$

Since

$$
\left\|z(t)-z_{n}(t)\right\|_{X}=\|z(t)-u\|_{X} \chi_{T_{n}}(t)<\frac{1}{n}
$$

we have $\lim _{n \rightarrow \infty}\left\|z-z_{n}\right\|=0$. Then by Lemma 1

$$
\lim _{n \rightarrow \infty} \delta_{L_{\infty}(X)}\left(\rightarrow z_{n}, \epsilon\left\|z_{n}\right\|\right)=\delta_{L_{\infty}(X)}(\rightarrow z, \epsilon\|z\|)
$$

which completes the proof of (7).
Case B. For every $F \subset E$ such that $F \in \Sigma$, either $\mu(F)=0$ or $\mu(F)=+\infty$.
We show that

$$
\begin{equation*}
\delta_{L_{\infty}(X)}(\rightarrow z, \epsilon) \leq \underset{t \in E}{\operatorname{ess} \inf }\left\{\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)\right\}:=\beta \tag{8}
\end{equation*}
$$

which contradicts (5).
Let $r>0$ and $F=\left\{t \in E: \delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right) \leq \beta+r\right\}$. For every $t \in F$ except for a null measurable set, we can choose $y(t) \in B_{X}$ and $y(t)+\epsilon z(t) \in S_{X}$ such that

$$
\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right) \leq 1-\left\|y(t)+\frac{\epsilon}{2} z(t)\right\|_{X} \leq \beta+r
$$

Define $x(t)=y(t) \chi_{F}(t)-(\epsilon / 2) z(t) \chi_{T \backslash F}(t)$. Then

$$
x(t)+\epsilon z(t)=(y(t)+\epsilon z(t)) \chi_{F}(t)+(\epsilon / 2) z(t) \chi_{T \backslash F}(t)
$$

By Lemma 2 both functions are measurable, since in every finite measurable set $x(t)=-\epsilon z(t) / 2$ and $x(t)+\epsilon z(t)=\epsilon z(t) / 2$ almost everywhere. Also, $x, x+\epsilon z \in$ $B_{L_{\infty}(X)}$, and $\|x+(\epsilon / 2) z\|=\operatorname{ess} \sup _{t \in F}\left\{\|y(t)+(\epsilon / 2) z(t)\|_{X}\right\}$. Then

$$
\delta_{L_{\infty}(X)}(\rightarrow z, \epsilon) \leq 1-\left\|x+\frac{\epsilon}{2} z\right\| \leq \beta+r .
$$

As $r>0$ is an arbitrary number, (8) holds.
Corollary 4. The rotundity modulus of $L_{\infty}:=L_{\infty}(\mathbb{R})$ in the direction $\zeta \in S_{L_{\infty}}$ is

$$
\begin{equation*}
\delta_{L_{\infty}}(\rightarrow \zeta, \epsilon)=\frac{\epsilon}{2} \operatorname{ess} \inf \{|\zeta|\}, \quad 0 \leq \epsilon<2 \tag{9}
\end{equation*}
$$

Proof. When the dimension of X is equal to $1, \delta_{X}(\epsilon)=\epsilon / 2$.
Next we provide a complete description of the uniform rotundity directions in the space $L_{\infty}(X)$.

Theorem 5. Let X be a normed space.
(i) The space $L_{\infty}(X)$ is $\mathrm{UR} \rightarrow z, z \in S_{L_{\infty}(X)}$, if and only if

$$
\underset{t \in T}{\operatorname{ess} \inf }\left\{\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)\right\}>0 \quad \text { for } 0<\epsilon \leq 2
$$

(ii) Let X be a UR normed space. Then $L_{\infty}(X)$ is UR $\rightarrow z$ if and only if

$$
\underset{t \in T}{\operatorname{essinf}}\left\{\|z(t)\|_{X}\right\}>0
$$

Proof. Part (i) is trivial after Theorem 3. To prove part (ii) we may assume that $z \in S_{L_{\infty}(X)}$. If $L_{\infty}(X)$ is UR $\rightarrow z$ then from $\delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right) \leq(\epsilon / 2)\|z(t)\|_{X}$ almost everywhere, we have that ess $\inf _{t \in T}\left\{\|z(t)\|_{X}\right\}>0$. For the converse, note that $\delta_{X}\left(\epsilon \operatorname{essinf}_{t \in T}\left\{\|z(t)\|_{X}\right\}\right) \leq \delta_{X}\left(\epsilon\|z(t)\|_{X}\right) \leq \delta_{X}\left(\rightarrow z(t), \epsilon\|z(t)\|_{X}\right)$.

When (T, Σ, μ) is a discrete measure space, one has $L_{\infty}(X)=\ell_{\infty}(X)$ and ess inf $=$ inf. Then Theorems 3 and 5 and Corollary 4 hold for $\ell_{\infty}(X)$, although a simpler proof of Theorem 3 is available since every function is measurable in this case. Moreover formula (3) also holds at $\epsilon=2$. The same results can be obtained for $\ell_{\infty}\left(X_{i}\right)$, where $\left\{X_{i}\right\}_{i \in I}$ is a family of normed spaces, i.e., for the space of functions $x: I \rightarrow \bigcup_{i \in I} X_{i}$, such that $x_{i} \in X_{i}$, for each $i \in I$, and $\left(\left\|x_{i}\right\|_{i}\right) \in \ell_{\infty}$, which is a linear space endowed with the norm $\|x\|=\sup _{i \in I}\left\|x_{i}\right\|_{i}$.

As an application of the previous results, we show that the directional modulus of rotundity is not continuous at $\epsilon=2$.

Example 6. For each $i=1,2 \ldots$ let X_{i} be the space \mathbb{R}^{2} endowed with the norm

$$
\|(r, s)\|_{i+1}=\left(|r|^{i+1}+|s|^{i+1}\right)^{\frac{1}{i+1}}
$$

Let $z=\left(z_{i}\right)$, where $z_{i}=(1,0)$. Then

$$
\delta_{\ell_{\infty}\left(X_{i}\right)}(\rightarrow z, \epsilon)=\inf \left\{\delta_{X_{i}}\left(\rightarrow z_{i}, \epsilon\right): i=1,2 \ldots\right\}=0 \quad \text { for } 0 \leq \epsilon<2
$$

and $\delta_{\ell_{\infty}\left(X_{i}\right)}(\rightarrow z, 2)=1$.

References

[1] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[2] M.M. Day, R.C. James, S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. Vol. 26 (6) (1971), 1051-1059. MR 44:4492
[3] R. Deville, G. Godefroy, V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific \& Tecnichal, 1993. MR 94d:46012
[4] H. Fakhoury, Directions d'uniform convexité dans un space normé, Séminaire Choquet, 14 anné, n. 6 (1974). MR 57:17223
[5] M. Fernandez, I. Palacios, Relative rotundity in $L^{p}(X)$, Arch. Math. (Basel) 65 (1995), 61-68. CMP 95:14
[6] A.L. Garkavi, The best possible net and the best possible cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106; Amer. Math. Soc. Transl. Ser. 2, 39 (1964), 111-132. MR 25:429
[7] A. Kamińska, B. Turett, Some remarks on moduli of rotundity in Banach spaces, Acad. Scien. Math. Vol. 36, No. 5-6, (1988). MR 92b:46020
[8] S. Lang, Real Analysis, Addison-Wesley Pub. Comp., (1969).
[9] R.R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. MR 22:3964
[10] A.C. Zaanen, Integration, North-Holland Publ. Com., Amsterdam, (1967). MR 36:5286
[11] V. Zizler, On some rotundity and smoothness properties in Banach spaces, Dissertationes Math. 87 (1971), 1-37. MR 45:9108

Departamento de Matematicas, Universidad de Extremadura, 06071 Badajoz, Spain
E-mail address, M. Fernandez: ghierro@ba.unex.es

[^0]: Received by the editors May 8, 1995 and, in revised form, August 15, 1995.
 1991 Mathematics Subject Classification. Primary 46B20.
 Key words and phrases. Uniform rotundity, bounded vector function spaces.

