
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 125, Number 5, May 1997, Pages 1323–1328
S 0002-9939(97)03579-X

DIRECTIONAL UNIFORM ROTUNDITY IN SPACES

OF ESSENTIALLY BOUNDED VECTOR FUNCTIONS

MANUEL FERNÁNDEZ AND ISIDRO PALACIOS

(Communicated by Palle E. T. Jorgensen)

Abstract. A formula is given for the directional uniform rotundity modu-
lus of L∞(X), where X is a normed space. Then a necessary and sufficient
condition is provided for L∞(X) to be uniformly rotund in a direction.

1. Introduction

Spaces that are uniformly rotund in every direction were defined by A.L. Garkavi
[6] to characterize those normed spaces for which every bounded set has at most one
Chebyshev center. V. Zizler [11], Day–James–Swaminathan [2], and H. Fakhoury
[4] have further studied this generalization of the uniform rotundity property. For
more recent investigations on this topic see [3].

In this paper we prove a formula for the directional modulus of rotundity of
L∞(X), where X is a normed space. As a consequence, we obtain a complete
description of the uniform rotundity directions of such a space, thus generalizing to
the vector case the corresponding scalar results of R.R. Phelps [9] and V.I. Zizler
[11].

Terminology and notation are standard. Let X be a normed space. As usual
BX(x, r) and SX(x, r) denote the closed ball and the sphere, respectively, with
center x and radius r > 0. We shall also write BX = BX(0, 1) and SX = SX(0, 1).

The space X is said to be uniformly rotund in the direction z ∈ X (UR→ z) if
the directional modulus of rotundity

δX(→ z, ε) = inf

{
1−

∥∥∥∥x +
λ

2
z

∥∥∥∥ : x, x + λz ∈ BX , ‖λz‖ ≥ ε

}
(1)

is strictly positive for every 0 < ε ≤ 2.
We prove [5] that

(i) If ‖z‖ = 1

δX(→ z, ε) = inf
{
1−

∥∥∥x +
ε

2
z
∥∥∥ : ‖x‖ ≤ 1, ‖x+ εz‖ = 1

}
.(2)

(ii) δX(→ z, ε)/ε is a non-decreasing function on (0, 2].
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As a consequence of (ii) we have that δX(→ z, ε) ≤ ε/2.
The function δX(→ z, ε) is continuous with respect to z and ε separately [7],

and, as the following result shows, this function is continuous with respect to the
two variables together.

Lemma 1. The function

(z, ε) ∈ X \ {0} × [0, 2) −→ δX(→ z, ε) ∈ [0, 1)

is continuous.

Proof. Let (zn, εn), (z, ε) ∈ X \ {0} × [0, 2) and limn→∞ zn = z, limn→∞ εn = ε.
Let η > 0. Then the monotonic property of δX(→ z, ε) with respect to ε and the
continuity of δX(→ z, ε) with respect to z guarantee that

δX(→ zn, ε− η) ≤ δX(→ zn, εn) ≤ δX(→ zn, ε + η),

δX(→ z, ε± η)− η ≤ δX(→ zn, ε± η) ≤ δX(→ z, ε± η) + η,

if n is sufficiently large. Thus

δX(→ z, ε− η)− η ≤ δX(→ zn, εn) ≤ δX(→ z, ε+ η) + η.

Since δX(→ z, ε) is continuous with respect to ε, we have limn→∞ δX(→ zn, εn) =
δX(→ z, ε).

The space X is said to be uniformly rotund (UR) when the modulus of rotundity

δX(ε) = inf

{
1−

∥∥∥∥x + y

2

∥∥∥∥ : x, y ∈ BX , ‖x− y‖ ≥ ε

}
is positive for every 0 < ε ≤ 2 [1].

It is clear that δX(ε) = inf{δX(→ z, ε) : z ∈ SX}. Moreover δX(ε) is an increasing
monotonic function such that δX(ε) ≤ ε/2.

Let (T,Σ, µ) be a positive measure space and X be a normed space. The function
x : T → X is said to be simple if there exist T1, . . . , Tn ∈ Σ and x1, . . . , xn ∈ X such
that x =

∑n
i=1 xiχTi , where χTi is the characteristic function of Ti. The function

x : T → X is defined as measurable if, for every finite measurable set F , there
exists a sequence of simple functions {sn}n∈N such that xχF = limn→∞ sn almost
everywhere [10]. The set of measurable functions is a linear space. Moreover if
x : T → X is measurable and g : X → R is continuous, then g ◦ x is measurable.

For convenience we assume the measure µ to be complete. Measurable functions
are characterized by the following result, whose proof is essentially included in [8,
p. 233].

Lemma 2. The function x : T → X is measurable if and only if, for each finite
measurable set F ,

(i) x is essentially separably valued on F , that is, there is a null set N such that
x(F \N) is separable;

(ii) F ∩ x−1(G) ∈ Σ for each Borel set G.

Define the essential image of x : T → X (ess imx) as the set of u ∈ X such that
there exists a finite measurable set Fu with µ{t ∈ Fu : ‖z(t) − u‖X < r} > 0 for
every r > 0.

We use L∞(X) to denote the space of measurable equivalence classes of functions
x : T → X such that t ∈ T → ‖x(t)‖X is essentially bounded. It is a linear
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space normed by ‖x‖ = ess supt∈T {‖x(t)‖X}, where ess sup denotes the essential
supremum of the function x.

To avoid confusion, from now on we shall use ‖ · ‖ for the norm in L∞(X) and
‖ · ‖X for the norm in X .

2. Results

The main result is a formula for the directional rotundity modulus of L∞(X).

Theorem 3. Let z ∈ SL∞(X). Then

δL∞(X)(→ z, ε) = ess inf
t∈T

{δX(→ z(t), ε‖z(t)‖X)}, 0 ≤ ε < 2,(3)

where ess inf denotes the essential infimum.

Proof. Our first goal is to show that

δL∞(X)(→ z, ε) ≥ ess inf
t∈T

{δX(→ z(t), ε‖z(t)‖X)}, 0 ≤ ε < 2.(4)

Take x ∈ L∞(X) such that ‖x‖ ≤ 1, ‖x + εz‖ = 1. Then

‖x(t)‖X ≤ 1, ‖x(t) + εz(t)‖X ≤ 1,

and

‖x(t) + (ε/2)z(t)‖X ≤ 1− δX(→ z(t), ε‖z(t)‖X) almost everywhere.

Therefore
‖x+ (ε/2)z‖ ≤ 1− ess inf

t∈T
δX(→ z(t), ε‖z(t)‖X),

and (4) holds.
Now for the harder part. Suppose that

δL∞(X)(→ z, ε) > ess inf
t∈T

{δX(→ z(t), ε‖z(t)‖X)}.
Then there exists E ∈ Σ with µ(E) > 0 such that

δX(→ z(t), ε‖z(t)‖X) < δL∞(X)(→ z, ε) for every t ∈ E.(5)

We consider two cases.

Case A. There exists F ⊂ E such that F ∈ Σ and 0 < µ(F ) <∞.

To arrive at a contradiction with (5), we prove that

inf{δX(→ u, ε‖u‖X) : u ∈ ess im z} ≤ ess inf
t∈F

{δX(→ z(t), ε‖z(t)‖X)}(6)

and

δL∞(X)(→ z, ε) ≤ inf{δX(→ u, ε‖u‖X) : u ∈ ess im z}.(7)

First note that ess im z 6= ∅. To prove this, suppose that ess im z = ∅. Since F
has a finite measure, there is a null set N and a dense sequence {un}n∈N in z(F \N).
Clearly un 6∈ ess im z. Then there exists rn > 0 such that µ{z−1(B(un, rn))∩F} =
0. Moreover F \N ⊂ ⋃n∈N z

−1(B(un, rn)), and then µ(F \N) = 0. This contradicts
the hypothesis µ(F ) > 0.

To show (6), we verify that α := inf{δX(→ u, ε‖u‖X) : u ∈ ess im z} is an
essential lower bound in F of the function δX(→ z(·), ε‖z(·)‖X). That is, we must
prove that µ{t ∈ F : δX(→ z(t), ε‖z(t)‖X) < α} = 0. Define

u ∈ X \ {0} → g(u) := δX(→ u, ε‖u‖X).
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Then

µ{t ∈ F : δX(→ z(t), ε‖z(t)‖X) < α} = µ{(F \N) ∩ (g ◦ z)−1(−∞, α)}.
If (F \ N) ∩ (g ◦ z)−1(−∞, α) = ∅, then µ{(F \ N) ∩ (g ◦ z)−1(−∞, α)} = 0.

Otherwise, since by Lemma 2, z(F \N) ∩ (g−1(−∞, α)
)

is separable, it contains a

dense sequence {wn}n∈N. Clearly z(t) 6∈ ess im z if t ∈ (F \N)
⋂

(g ◦ z)−1(−∞, α).
Hence, there is some sn > 0 such that µ{z−1(B(wn, sn)) ∩ F} = 0. From the
density of the sequence {wn}n∈N we have

µ{(F \N) ∩ (g ◦ z)−1(−∞, α)} ≤
∞∑
n=1

µ{z−1(B(wn, sn)) ∩ F} = 0.

Now we prove (7). Let u ∈ ess im z. From the definition of ess im z it follows
that ‖u‖X ≤ ‖z‖ = 1. Take a ∈ BX such that a + εu ∈ SX , and define Tn =
z−1(B(u, 1/n)) ∩ Fu for every n ∈ N. Then Tn ∈ Σ and µ(Tn) > 0. Set

xn(t) = aχTn(t)− z(t)χT\Tn(t) for t ∈ T,

zn(t) = uχTn(t) + z(t)χT\Tn(t) for t ∈ T.

Both functions are measurable and belong to the unit ball of L∞(X). Moreover
the functions

xn(t) + εzn(t) = (a + εu)χTn(t) + (ε− 1)z(t)χT\Tn(t) for t ∈ T,

xn(t) +
ε

2
zn(t) =

(
a+

ε

2
u
)
χTn(t) +

( ε
2
− 1

)
z(t)χT\Tn(t) for t ∈ T,

satisfy ‖xn + εzn‖ = 1 and ‖xn + (ε/2)zn‖ ≥ ‖a+ (ε/2)u‖X. Hence

δX(→ u, ε‖u‖X) ≥ δL∞(X)(→ zn, ε‖zn‖X).

Since

‖z(t)− zn(t)‖X = ‖z(t)− u‖XχTn(t) <
1

n
,

we have limn→∞ ‖z − zn‖ = 0. Then by Lemma 1

lim
n→∞ δL∞(X)(→ zn, ε‖zn‖) = δL∞(X)(→ z, ε‖z‖),

which completes the proof of (7).

Case B. For every F ⊂ E such that F ∈ Σ, either µ(F ) = 0 or µ(F ) = +∞.

We show that

δL∞(X)(→ z, ε) ≤ ess inf
t∈E

{δX(→ z(t), ε‖z(t)‖X)} := β,(8)

which contradicts (5).
Let r > 0 and F = {t ∈ E : δX(→ z(t), ε‖z(t)‖X) ≤ β + r}. For every t ∈ F

except for a null measurable set, we can choose y(t) ∈ BX and y(t) + εz(t) ∈ SX
such that

δX(→ z(t), ε‖z(t)‖X) ≤ 1−
∥∥∥y(t) +

ε

2
z(t)

∥∥∥
X
≤ β + r.

Define x(t) = y(t)χF (t)− (ε/2)z(t)χT\F (t). Then

x(t) + εz(t) = (y(t) + εz(t))χF (t) + (ε/2)z(t)χT\F (t).
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By Lemma 2 both functions are measurable, since in every finite measurable set
x(t) = −εz(t)/2 and x(t) + εz(t) = εz(t)/2 almost everywhere. Also, x, x + εz ∈
BL∞(X), and ‖x+ (ε/2)z‖ = ess supt∈F {‖y(t) + (ε/2)z(t)‖X}. Then

δL∞(X)(→ z, ε) ≤ 1−
∥∥∥x +

ε

2
z
∥∥∥ ≤ β + r.

As r > 0 is an arbitrary number, (8) holds.

Corollary 4. The rotundity modulus of L∞ := L∞(R) in the direction ζ ∈ SL∞ is

δL∞(→ ζ, ε) =
ε

2
ess inf{|ζ|}, 0 ≤ ε < 2.(9)

Proof. When the dimension of X is equal to 1, δX(ε) = ε/2.

Next we provide a complete description of the uniform rotundity directions in
the space L∞(X).

Theorem 5. Let X be a normed space.

(i) The space L∞(X) is UR → z, z ∈ SL∞(X), if and only if

ess inf
t∈T

{δX(→ z(t), ε‖z(t)‖X)} > 0 for 0 < ε ≤ 2.

(ii) Let X be a UR normed space. Then L∞(X) is UR → z if and only if

ess inf
t∈T

{‖z(t)‖X} > 0.

Proof. Part (i) is trivial after Theorem 3. To prove part (ii) we may assume that
z ∈ SL∞(X). If L∞(X) is UR → z then from δX(→ z(t), ε‖z(t)‖X) ≤ (ε/2)‖z(t)‖X
almost everywhere, we have that ess inft∈T {‖z(t)‖X} > 0. For the converse, note
that δX(ε ess inft∈T {‖z(t)‖X}) ≤ δX(ε‖z(t)‖X) ≤ δX(→ z(t), ε‖z(t)‖X).

When (T,Σ, µ) is a discrete measure space, one has L∞(X) = `∞(X) and
ess inf = inf. Then Theorems 3 and 5 and Corollary 4 hold for `∞(X), although a
simpler proof of Theorem 3 is available since every function is measurable in this
case. Moreover formula (3) also holds at ε = 2. The same results can be obtained
for `∞(Xi), where {Xi}i∈I is a family of normed spaces, i.e., for the space of func-
tions x : I → ⋃

i∈I Xi, such that xi ∈ Xi, for each i ∈ I, and (‖xi‖i) ∈ `∞, which is
a linear space endowed with the norm ‖x‖ = supi∈I ‖xi‖i.

As an application of the previous results, we show that the directional modulus
of rotundity is not continuous at ε = 2.

Example 6. For each i = 1, 2 . . . let Xi be the space R2 endowed with the norm

‖(r, s)‖i+1 =
(|r|i+1 + |s|i+1

) 1
i+1 .

Let z = (zi), where zi = (1, 0). Then

δ`∞(Xi)(→ z, ε) = inf{δXi(→ zi, ε) : i = 1, 2 . . . } = 0 for 0 ≤ ε < 2

and δ`∞(Xi)(→ z, 2) = 1.
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