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GRÖBNER DUALITY AND MULTIPLE POINTS

IN LINEARLY GENERAL POSITION

TEO MORA

(Communicated by Wolmer V. Vasconcelos)

Abstract. It is proved for each d, 1 ≤ d ≤ n−1, that a primary 0-dimensional
scheme in Pn of degree n + 2 + d in linearly general position lies in a rational

normal scroll of dimension d.

1. Introduction

Gröbner, in a series of papers and in his book [4], developed a theory in order to
understand both multiplicity for primary ideals at the origin and Macaulay’s notion
of inverse systems. Gröbner’s starting point was just to generalize the obvious
univariate case, where α is a root of f(X) of multiplicity d iff ∂n

∂Xn (f)(α) = 0 ∀n, 0 ≤
n < d; he proved that if the origin is a root of a 0-dimensional ideal I ⊂ P =
K[X1, . . . , Xn] ( K any field of characteristic 0), then there are finitely many linear

combinations Di of partial derivatives ∂i1+...+in

∂X
i1
1 ···∂Xin

n

, such that every polynomial f ∈ I

satisfies Di(f)(0) = 0, ∀i. Moreover {f ∈ P : Di(f)(0) = 0, ∀i} is exactly the
primary component at 0 of I. The Di’s are a basis of a so called σ-stable subspace
of differential conditions at 0.

This theory by Gröbner has been systematized and its applications to polynomial
system solving have been investigated in [5], [6], where it was christened Gröbner
Duality. This paper proposes a different application of Gröbner Duality toward
points in linearly general position.

Configurations of projective points in linearly general position (i.e. no k + 2 of
them are contained in a plane of dimension k) have been much investigated since
such configurations arise by cutting a variety of dimension d with a linear variety
of dimension n− d. The old Castelnuovo result that such a configuration of n + 3
points in Pn lies in a rational normal curve has been generalized in the context of
schemes [3]; around the Castelnuovo Theory, there arose the question whether a
suitable configuration lies in a rational normal scroll. In [2] it was proved for each
d, 1 ≤ d ≤ n − 2, that a configuration of n + 2 + d points in Pn lies in a rational
normal scroll of dimension d.

Let q be a primary ideal at the origin in linearly general position and dimension
µ ≥ n+3, so – by the result in [3] – of embedding dimension 1; let us denote by q0,
q1 the unique primary ideals s.t. qi ⊃ q, mult(q0) = n + 1, mult(q1) = n + 3. The
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approach which allowed me to generalize the result of [2] to the case of primary
ideals at the origin, is quite straightforward:

- Gröbner Duality allowed me to fix a suitable frame of coordinates Y1, . . . , Yn
s.t. q0 contains the ideal of the rational normal curve with parametric equa-
tions Yi = ti, 1 ≤ i ≤ n (Prop. 11).

- This allowed me to describe the differential conditions defining q0 (Lemma 9)
- and (by continuation) those defining q1 and q (Prop. 12);
- the basic duality of Gröbner theory then allows me to compute the ideal I

defining the unique rational normal curve s.t. I ⊂ q1 (Prop. 16), whose
existence and uniqueness are proved in [3].

- A further application of Gröbner Duality allowed me to verify that q lies in a
rational normal scroll of the expected dimension.

2. Preliminaries

2.1. Gröbner Duality. Let P = K[Y1, . . . , Yn] and let T be the semigroup gen-
erated by {Y1, . . . , Yn}.

D(i1, . . . , in) : P → P defines the differential operator

D(i1, . . . , in) =
1

i1! . . . in!

∂i1+···+in

∂Y i1
1 · · · ∂Y in

n

.

This notation will however be simplified by writing D(t) := D(i1, . . . , in) where

t = Y i1
1 . . . Y in

n ; we moreover denote

D := {D(t) : t ∈ T}, D(i) := {D(t) ∈ D : deg(t) ≤ i}
and SpanK(D) denotes the K-vector space generated by D.

If X1, . . . , Xj ∈ P are linearly independent linear forms, the definition of D(t)
is obviously generalized to define D(τ) ∈ SpanK(D), for each τ ∈ 〈X1, . . . , Xj〉; on
the basis of that we generalize the notation above to denote

D(X1, . . . , Xj) := {D(t) : t ∈ 〈X1, . . . , Xj〉},

D(i)(X1, . . . , Xj) := {D(t) ∈ D(X1, . . . , Xj) : deg(t) ≤ i}.
For each j = 1 . . . n, σj = σYj : SpanK(D) → SpanK(D) is the antiderivative

with respect to Yj , i.e. the linear map s.t.:

σYj (D(i1, . . . , in)) =

{
D(i1, . . . , ij − 1, . . . , in) if ij > 0,

0 otherwise.

Since σYjσYi = σYiσYj∀i, j, the linear maps σt are obviously defined ∀t ∈ T.
A K-vector subspace V ⊂ SpanK(D) is σ-stable if ∀t ∈ T, ∀L ∈ V , σt(L) ∈ V.
If V is a σ-stable subspace of SpanK(D), let

=(V ) := {f ∈ P : L(f)(0) = 0 ∀L ∈ V }.
Let m = (Y1, . . . , Yn) ⊂ P; if I ⊂ m is an ideal, define

∆(I) := {L ∈ SpanK(D) : L(f)(0) = 0 ∀f ∈ I}.
Theorem 1. There is a one-to-one correspondence between m-primary ideals of P

and finite dimensional σ-stable subspaces of SpanK(D). More exactly, every m-
primary ideal q corresponds to the finite dimensional σ-stable subspace ∆(q), and
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every finite dimensional σ-stable subspace V ⊂ SpanK(D) corresponds to the m-
primary ideal =(V ), so that q = =(∆(q)) and V = ∆(=(V )).

Moreover dimK(∆(q)) = mult(q),mult(=(V )) = dimK(V ).

Proof. Cf. [4], pp. 174–178.

Gröbner Duality is generalizable as:

Theorem 2. = and ∆ give a one-to-one correspondence between ideals of P closed
w.r.t. the m-adic topology and σ-stable subspaces of SpanK(D).

Let us consider now the linear map ρYj : SpanK(D) → SpanK(D), j = 1, . . . , n,
s.t. ρYj (D(i1, . . . , in)) = D(i1, . . . , ij + 1, . . . , in). Again ∀t ∈ T, ρt is defined in
the obvious way and σtρt = Id holds ∀t ∈ T.

Each L ∈ SpanK(D \ {Id}) can be uniquely written as L = L1 + · · ·+Ln where

Lj ∈ SpanK
(
D(Yj , . . . , Yn) \D(Yj+1, . . . , Yn)

)
.

Denote L≥j :=
∑n

i=j Li; analogously, we use also the notation L≤j, L>j, L<j.
A semigroup ordering < on T obviously induces an ordering also on D; with

respect to it, we define T (L) ∈ D for any L ∈ SpanK(D) as follows: if L =
∑

ciDi

with ci 6= 0, Di ∈ D, D1 > D2 > · · · , then T (L) = D1.
Let U ⊂ SpanK(D) be σ-stable. We then denote T (U) = {T (L) : L ∈ U}, which

is σ-stable itself, and

C(U) := {D(τ) ∈ D : D(τ) 6∈ T (U), σi(D(τ)) ∈ T (U) ∀i}.
Definition 3. Let D(t) ∈ C(U); an element L ∈ SpanK(D) s.t.

(c1) T (L) = D(t),
(c2) ∀j, σj(L) ∈ U,
(c3) if L = D(t) +

∑
ciD(τi) with ci 6= 0, then ∀iD(τi) 6∈ T (U)

will be called a continuation of U at t.

Proposition 4. (1) If a continuation of U at t exists, then there is a unique one,
CU,t, satisfying

(c4) if CU,t = D(t)+
∑

ciD(τi) with ci 6= 0, then for each D(τi) ∈ C(U), there
is no continuation of U at τi.

(2) The following conditions are equivalent:
a) V := U + SpanK({L}) is σ-stable.
b) There are t0 > · · · > ts, D(ti) ∈ C(U) such that L = CU,t0 +

∑s
i=1 ciCU,ti .

Proof. Cf. [5], Cor. 4.1 and Prop. 4.1.

Proposition 5. Let Φ : T 7→ Zr be a semigroup morphism; let IΦ the ideal

{m1 −m2 : mi ∈ T,Φ(m1) = Φ(m2)} ⊂ P

and ∀α ∈ Zr, let δα =
∑
t∈T

Φ(t)=α

D(t) ∈ SpanK(D). Then ∆(IΦ) = {δα : α ∈ Zr}.

Proof. Let us fix any α ∈ Zr and let Pα = SpanK({m ∈ T : Φ(m) = α}), Iα =
IΦ ∩ Pα. Obviously ∀f ∈ Iα one has δα(f) = 0. Also ∀t ∈ T s.t. Φ(t) = α and
∀m ∈ T s.t. Φ(m) 6= α we have D(t)(m)(0) = 0, so that δα(f) = 0, ∀f ∈ IΦ.
Since moreover dimK(Iα) = dimK(Pα) − 1, the claim follows by a vector space
dimensional count.
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2.2. 0-dim. primary ideals in l.g.p. and rational normal scrolls.

Definition 6. Let q be an m-primary ideal. q is said to be in linearly general
position (l.g.p.) if for each linear primary ideal ℘ ⊂ m we have mult(q + ℘) ≤
1 + dim(℘).

Definition 7. A rational normal scroll is the variety defined by the ideal R(M) ⊂ P

generated by the minors of a matrix

M =

(
`11 . . . `1j . . . `1k
`21 . . . `2j . . . `2k

)
such that

• `ij ∈ SpanK({1, Y1, . . . , Yn}), ∀1 ≤ i ≤ 2, 1 ≤ j ≤ k;
• λ`11+µ`21, . . . λ`1j+µ`2j, . . . λ`1k+µ`2k are linearly independent ∀(λ, µ) ∈ P2.

In the case of a rational normal curve (k = n), I need the following fact.

Lemma 8. Let M be a matrix as above (k = n) and such that, moreover,

(1) R(M) ⊂ m,
(2) R(M) 6⊂ m2,
(3) D(Y1) ∈ ∆(R(M)).

Then there are ck ∈ K, 1 ≤ k ≤ n, and linear forms li, 2 ≤ i ≤ n, s.t., denoting

M =

(
Y1 Y2 . . . Yj . . . Yn

1 +
∑n

k=1 ckYk l2 . . . lj . . . ln

)
,(1)

one has R(M) = R(M).

Proof. By 1 and 2, up to permutations and operations of rows and columns we can
assume that each form `ij except `21 is s.t. `ij(0) = 0, and `21(0) = 1, so that

`21 = 1 +
n∑

k=1

`
(k)
21 Yk, `ij =

n∑
k=1

`
(k)
ij Yk ∀(i, j) 6= (2, 1).

Let M (λρ) = `1λ`2ρ− `2λ`1ρ be the minor over the λth and ρth columns (λ < ρ).
By 3 we have

0 = D(Y1)(M
(1ρ))(0) = `

(1)
11 `2ρ(0) + `11(0)`

(1)
2ρ − `

(1)
21 `1ρ(0)− `21(0)`

(1)
1ρ = −`(1)1ρ ,

which implies `
(1)
1ρ = 0 for ρ > 1. Since {`1ρ, ρ = 2, . . . , n} are linearly independent,

column operations can be used to modify the first column so that `11 = Y1. For
the same reason, further column operations not affecting the first column can now
allow us to assume that `1j = Yj .

3. Relations

Let us impose a second graduation wt on P by setting wt(Yi) = i, and let
us denote R = (Y2 − Y 2

1 , . . . , Yn − Y n
1 ) and ∀j: D(j) = {t ∈ D(Y1, . . . , Yj−1) :

wt(t) = j}, δj =
∑
t∈T

wt(t)=j

D(t), δ′j =
∑

t∈D(j)

D(t), Uj = SpanK(δ0, . . . , δj). We also fix

as semigroup ordering < on T the lexicographical ordering s.t. Y1 > Y2 > . . . > Yn.

Lemma 9. The following hold:

(1) ∆(R) = {δj : 0 ≤ j}.
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(2) σi(δj) = δj−i, ∀i, j : i ≤ j.

(3) ∀j, T (δj) = Y j
1 .

(4) ∀j,C(Uj) = {D(Y j+1
1 ), D(Y2), . . . , D(Yn)}.

(5) The generic continuations of Uj−1 are δ′j +
∑n

k=2 ckD(Yk).

(6) ∀j, δj =
∑j

i=1 ρi(δ
≥i
j−i).

Proof. 1 is a corollary of Proposition 5; 2, 3 and 6 require just an obvious verifica-
tion; 3 implies T (Uj) = {1, Y1, . . . , Y

j
1 } which is equivalent to 4.

Ad 5: First of all remark that δ′j is a continuation: c1) and c3) are obvious and
c2) follows from 2. Then 5 follows from this, Prop. 4 and the obvious fact that
D(Yk), k > 1, is a continuation.

Corollary 10. Let q be an m-primary ideal of multiplicity µ = j + 1, j ≤ n,
and embedding dimension 1 and such that ∆(q) ∩ SpanK(D(1)) = {Id,D(Y1)}. If
Uj−1 ⊂ ∆(q), then ∆(q) = Uj−1 + SpanK({δ}), where δ = δ′j +

∑n
k=2 ckD(Yk) for

some ck.

Proof. Since dimK(∆(q)) = j + 1 = dimK(Uj−1) + 1 and Uj−1 ⊂ ∆(q), it follows
that ∆(q) = Uj−1 + SpanK({δ}); then δ is a continuation of Uj−1. If T (δ) = D(Yl)

we have ∆(q) ∩ SpanK(D(1)) = {Id,D(Y1), δ}, which implies that the embedding
dimension of q is 2 (cf. [1], prop. 2) and gives a contradiction. So T (δ) = D(Y µ

1 ).
The claim then follows from this, Prop. 4 and Lemma 9.5.

Proposition 11. Let q ⊂ K[X1, . . . , Xn] be an m-primary ideal of multiplicity µ
and s.t. its embedding dimension is 1.

The following conditions are then equivalent:

(1) q is in l.g.p.;
(2) there is a coordinate frame Y1, . . . , Yn s.t.

q =

{
(Y µ

1 , Y2 − Y 2
1 − Y n+1

1 f2(Y1), . . . , Yn − Y n
1 − Y n+1

1 fn(Y1)) if µ > n,

(Y µ
1 , Y2 − Y 2

1 , . . . , Yµ−1 − Y µ−1
1 , Yµ, . . . , Yn) if µ ≤ n;

(3) there is a coordinate frame Y1, . . . , Yn s.t., setting ν = min(n, µ− 1):
- ∀i, 1 ≤ i ≤ ν, Vi := ∆(q) ∩ SpanK

(
D(i)(Y1, . . . , Yi)

)
= Ui;

- D(Yi)(Yj) = 0 iff 1 ≤ i ≤ ν < j ≤ n.

Proof. 1 =⇒ 3. Since q has embedding dimension 1, then ([1], prop. 2) there is
Y1 s.t. V1 is generated by {Id,D(Y1)}. Now let us assume that for some i < ν we
have found linearly independent forms Y1, . . . , Yi s.t. Vi = Ui (this holds at least for
i = 1, giving the basis for the induction) and let us fix linear forms Zi+1, . . . , Zn
s.t. m = (Y1, . . . , Yi, Zi+1, . . . , Zn). Our aim is to prove that there is a further
linear form Yi+1 linearly independent with Y1, . . . , Yi s.t. Vi+1 = Ui+1, which is
sufficient to prove the statement by the inductive argument, since the vector space
of the linear forms Z s.t. D(Yi)(Z) = 0 ∀i ≤ ν is orthogonal to SpanK(Y1, . . . , Yν).

To prove that, notice that, as dimK(∆(q)) = mult(q) = µ > i + 1 = dim(Ui),
there is δ ∈ ∆(q) \ Ui s.t. δ is a continuation of Ui; then by Corollary 10

δ = δ′i+1 +
i∑

k=2

ckD(Yk) +
n∑

k=i+1

ckD(Zk) for some ck.
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Let us denote Yi+1 :=
∑i

k=2 ckD(Yk) +
∑n

k=i+1 ckD(Zk). To prove that Yi+1 6∈
SpanK ({Y1, . . . , Yi}), let us consider ℘ = (Zi+1, . . . , Zn); then ∆(q + ℘) = ∆(q) ∩
∆(℘) = ∆(q) ∩ SpanK (D(Y1, . . . , Yi)) = Vi.

Therefore if Yi+1 ∈ SpanK ({Y1, . . . , Yi}), then {δ0, . . . , δi, δ} ⊂ ∆(q + ℘), so
that mult(q + ℘) = dimK(∆(q + ℘)) > i + 1, against the assumption that q is in
l.g.p.

We then have δ = D(Yi+1) + δ′i+1 = δi+1, so that Vi+1 ⊇ Ui+1. Moreover if
Vi+1 6= Ui+1 then it would contain a continuation L of Ui+1; according to Lemma
9, T (L) = D(Y i+2

1 ), so L 6∈ D(i+1). By this contradiction, we conclude that
Vi+1 = Ui+1.

3 ⇐⇒ 2. Since SpanK(D(i)) = ∆(mi+1), Lemma 9.1 implies that for i ≤ n

Ui = SpanK(δ0, . . . , δi) = SpanK ({δj , j ≥ 0}) ∩ SpanK(D(i)) = ∆(R + mi+1),

so that

SpanK(δ0, . . . , δi) ⊂ ∆(q)

⇐⇒ q ⊂ R + mi+1 =

{
(Y n+1

1 , Y2 − Y 2
1 , . . . , Yn − Y n

1 ) if i = n,

(Y i+1
1 , Y2 − Y 2

1 , . . . , Yi − Y i
1 , Yi+1, . . . , Yn) if i < n;

which is of course equivalent to 2, since q has embedding dimension 1.
2 =⇒ 1. Let q = (Y µ

1 , Y2 − Y 2
1 − Y n+1

1 f2(Y1), . . . , Yn − Y n
1 − Y n+1

1 fn(Y1))
and let ℘ be a linear ideal thru the origin. Let k < n be the maximal index s.t.
℘ ⊂ (Yk+1, . . . , Yn). Then

q + ℘ ⊂ (Y µ
1 , Y2 − Y 2

1 − Y n+1
1 f2(Y1), . . . , Yn − Y n

1 − Y n+1
1 fn(Y1), Yk+1, . . . , Yn)

= (Y µ
1 , Y

k+1
1 , Y2 − Y 2

1 , . . . , Yk − Y k
1 , Yk+1, . . . , Yn),

so its multiplicity is at most k + 1 while the dimension of ℘ is at least k.

4. Differential conditions of l.g.p. m-primary ideals

As a consequence of Prop. 11, if q is an m-primary ideal of multiplicity µ > n+1,
of embedding dimension 1 and in l.g.p., we can assume that it is contained in
q0 = =(SpanK({δ0, . . . , δn})) and that a basis of q is B = (Y µ

1 , f2, . . . , fn), where

fj = Yj − Y j
1 −

µ−n−1∑
i=1

djiY
n+i
1 .

Our aim is now to describe ∆(q) in terms of dji.

Proposition 12. ∆(q) = {L0, . . . , Ln, Ln+1, . . . , Lµ−1}, where

Li = δi ∀i ≤ n,

Ln+1 = δn+1 +
n∑
j=2

dj1D(Yj),

Ln+2 = δn+2 +

n∑
j=2

dj1D(Y1Yj) +

n∑
j=2

dj2D(Yj),
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and in general

Ln+k =

n∑
j=1

ρj(L
≥j
n+k−j) +

n∑
j=2

k∑
i=1

djiρj(L
≥j
k−i).

Proof. One has to prove that:

(1) Ln+k(f)(0) = 0 for each f ∈ B;
(2) σj(Ln+k) ∈ SpanK(∆(q)) for each j.

Ad 1: remark that Ln+k = D(Y n+k
1 ) + L̃n+k +

∑n
j=2 djkD(Yj), where L̃n+k is

a combination of terms D(Yit) s.t. i > 1, t 6= 1, so that L̃n+k(f)(0) = 0 ∀f ∈ B. It

is immediate to verify that D(Y n+k
1 )(fi)(0) = −dik = −∑n

j=2 djkD(Yj)(fi)(0).
Ad 2: A direct computation allows us to verify that:

- σ1(Ln+k) = Ln+k−1;

- σl(Ln+k) = Ln+k−l +
∑k

i=1 dliLk−i, l > 1.

5. Normal rational curves containing l.g.p. m-primary ideals

This section will deal with the following

Problem. Given an l.g.p. m-primary ideal q1 ⊂ P s.t. mult(q1) = µ = n + 3,
explicitly construct the unique rational normal curve I s.t. q1 ⊃ I.

The existence of I is assured by [3], Th. 1. Of course such a construction does
not give at all a proof of [3], Th. 1; in fact, our construction is based on the fact
that we can fix a frame of coordinates satisfying conditions 2 and 3 of Prop. 11;
it is [3], Th. 1 itself which guarantees the existence of such a frame since it lets us
apply Prop. 11 guaranteeing that q1 has embedding dimension 1.

As a consequence of Lemma 8, we know that if I is a rational normal curve there
is a matrix M as in (1) s.t. R(M) = I. In the rest of the argument we will write

lj =
∑n

k=1 l
(k)
j Yk for j ≥ 2, we will set l1 = 1 +

∑n
k=1 ckYk and we will denote by

Mµν , ∀µ, ν the matrices

Mµν =

(
D(Yµ)(Y1) D(Yµ)(Y2) . . . D(Yµ)(Yn)
D(Yν)(l1) D(Yν)(l2) . . . D(Yν)(ln)

)
.

For a 2 × n matrix M we will again write M (λρ) to denote the minor over the λth

and ρth columns.
As a preliminary step, let us consider an l.g.p. m-primary ideal q0 s.t. mult(q0) =

n + 1 and try to compute all the rational normal curves passing thru it. We first
fix a frame of coordinates Y1, . . . , Yn such that conditions 2 and 3 are satisfied by
q0.

Remark 13. (1) D(YµYν)(M
(λρ))(0) = M

(λρ)
µν + M

(λρ)
νµ .

(2) R(M) ⊂ q0 ⇐⇒ δj(M
(λρ))(0) = 0 ∀λ, ρ, j = 1 . . . , n

⇐⇒ δ∗j (M
(λρ))(0) = 0 ∀λ, ρ, j = 1 . . . , n

where δ∗j is the projection of δj over SpanK(D(2)), i.e.

δ∗i = D(Yi) +
∑
j≤i/2

D(YjYi−j).

(3) δ∗1(M(λρ))(0) = 0 ∀λ, ρ.
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(4) 0 = δ∗2(M(λρ))(0) =


l
(1)
2 − 1 if (λ, ρ) = (1, 2),

l
(1)
j if (λ, ρ) = (1, j), 2 < j,

0 otherwise.

(5) D(Yi+1)(M
(λρ))(0) =

{
−1 if (λ, ρ) = (1, i+ 1),

0 otherwise.

Proposition 14. The following conditions are equivalent:

(1) R(M) ⊂ q0;

(2) ∀j, 2 ≤ j ≤ n there is dj s.t. lj = Yj−1 +
∑n−1

k=j ck−j+1Yk + djYn.

Proof. Clearly 2 =⇒ 1 is immediate, so let us focus on the proof of 1 =⇒ 2. The
argument goes by induction on i: one assumes that:

∀k < i l
(k)
j =


0 if k < j − 1,

1 if k = j − 1,

ck−j+1 if j ≤ k < i,

(A(i))

and proves the case A(i + 1); note that A(2) is guaranteed by Rem. 13.4. As the
case A(2) was derived by computing δ∗2(M(λρ))(0), we will deduce the case A(i+1)
computing δ∗i+1(M

(λρ))(0). Under the inductive assumption A(i) one has

0 = δ∗i+1(M
(λρ))(0) =


l
(i)
ρ − ci+1−ρ if λ = 1, ρ ≤ i,

l
(i)
i+1 − 1 if λ = 1, ρ = i+ 1,

l
(i)
ρ if λ = 1, ρ > i+ 1,

0 otherwise,

whence we obtain A(i+ 1) and so the claim.

Let us now assume we have an l.g.p. m-primary ideal q1 s.t. mult(q1) = n + 3,
and let us try to compute the rational normal curve passing thru it. Since q1

has embedding dimension 1, we know it is contained in a unique m-primary ideal
q0 ⊃ q1 s.t. mult(q0) = n+ 1.

The knowledge of q0 allows us to fix a frame Y1, . . . , Yn and to compute a matrix
M s.t. the rational normal curve R(M) contains q0 (Prop. 14).

Remark 15. A quadratic polynomial f is in q if and only if L∗(f)(0) = 0 ∀L ∈ ∆(q),
where L∗ denotes the projection of L over SpanK(D(2)).

Proposition 16. In the above notation the only rational normal curve containing
q1 is R(M), where M is the matrix

(
Y1 . . . Yj . . . Yn

Y0 +
∑n

i=2 ciYi . . . Yj−1 +
∑n

i=j+1 ci+1−jYi + dj1Yn . . . Yn−1 + dn1Yn

)
and ci, 2 ≤ i ≤ n, are functions of dj1 and dj2 given by{∑n

j=3 dj1cj−1 + dn1d21 − cn − d22 = 0,

dρ−1 1 +
∑n

j=ρ+1 dj1cj+1−ρ + dn1dρ1 − cn+2−ρ − dρ2 = 0, ρ > 2.
(**)
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Proof. To prove the statement we have to compute which conditions are imposed
on the minors M(λρ) by Ln+1, Ln+2, i.e. we have just to solve the equations

L∗i (M
(λρ))(0) = 0, i = n+ 1, n+ 2, 1 ≤ λ < ρ ≤ n,

where

L∗n+1 =

n/2∑
j=1

D(YjYn+1−j) +

n∑
i=2

di1D(Yi),

L∗n+2 =

n/2∑
j=2

D(YjYn+2−j) +

n∑
i=2

di1D(Y1Yi) +

n∑
i=2

di2D(Yi).

A direct computation shows that

L∗n+1(M
(λρ))(0) = 0, ∀λ, ρ =⇒ l(n)

ρ = cn−ρ+1 + dρ1, ∀ρ ≥ 2.

After substituting these values in M, note that the coefficient of Yi in M2i is c1, so
we can subtract the first row from the second c1 times and obtain the matrix M.
Moreover L∗n+2(M

(λρ))(0) = 0, ∀λ, ρ gives (**).

6. Normal rational scrolls containing l.g.p. m-primary ideals

It is quite natural to continue the same computation we did in the previous
paragraph, basing ourself on Proposition 12, to study where an l.g.p. m-primary
ideal q with mult(q) = µ > n + 3 lies.

We already know that ∆(q) = {L0, . . . , Ln, Ln+1, . . . , Lµ−1} and that for M
defined as in Prop. 16 we have R(M) ⊂ =(SpanK({L0, . . . , Ln+2})) = q1, so we
have just to compute Lj

(
M(λρ)

)
to derive our conclusions. To follow this plan we

need to introduce some notation and fix some details.

Remark 17. For each λ > 1, M(λρ) does not depend on Y0, . . . , Yλ−2 nor on the
terms Y 2

λ−1, Yλ−1Yλ nor on linear terms Yj . In order not to write operators which

are clearly zero, let us therefore denote by D[λ] the set of elements

D[λ] = {D(YiYj) : i ≤ j, i ≥ λ} ∪ {D(Yλ−1Yj : j > λ}
and for L ∈ SpanK(D) let us denote by L[λ] its projection over SpanK(D[λ]); then
∀L ∈ SpanK(D), L(M(λρ)) = L[λ](M(λρ)).

With the same notation of Prop. 16, a straightforward computation allows to
verify that:

Lemma 18. For 3 ≤ k ≤ n

L
[k−1]
n+k =

n+k
2∑

i=k

D(YiYn+k−i) +

n∑
j=k

dj2D(Yk−2Yj)

+

n∑
j=k−1

dj1D(Yk−1Yj) + dk−1 1D(Y 2
k−1).

Proposition 19. Let M be the matrix of Proposition 16. Then L
[k−1]
n+k (M(λρ)) = 0

for 3 ≤ k ≤ n, λ ≥ k − 1.
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Proof. At this point it is just a question of explicitly computing L
[k−1]
n+k (M(λρ)),

obtaining


dk−1 1 +

∑n
j=k+1 dj1cj+1−k + dk1dn1 − cn+2−k − dk2 = 0 if λ = k − 1, ρ = k,

dρ−1 1 +
∑n

j=ρ+1 dj1cj+1−ρ + dρ1dn1 − cn+2−ρ − dρ2 = 0 if λ = k − 1, ρ > k,

cn+k−λ−ρ+1 − cn+k−λ−ρ+1 = 0 if λ > k − 1,

where the expressions for L
[k−1]
n+k (M(k−1 ρ)) are 0 because of the equalities (**) of

Proposition 16.

Corollary 20. If q is a primary ideal at the origin in l.g.p. of multiplicity µ =
n+ 2 + d, 1 ≤ d ≤ n− 1, then it lies in a rational normal scroll of dimension d.

Proof. In fact, in an appropriate frame of coordinates, the dual basis of q is

{δ0, . . . , δn, Ln+1, . . . , Ln+d+1}.
Let S be the ideal generated by the minors of the matrix containing only the last
n− d+ 1 columns of M; by Prop. 19, S ⊂ q.
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