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INTERSECTION OF ESSENTIAL IDEALS IN C(X)

F. AZARPANAH

(Communicated by James West)

Abstract. The infinite intersection of essential ideals in any ring may not
be an essential ideal, this intersection may even be zero. By the topological
characterization of the socle by Karamzadeh and Rostami (Proc. Amer. Math.
Soc. 93 (1985), 179–184), and the topological characterization of essential
ideals in Proposition 2.1, it is easy to see that every intersection of essential

ideals of C(X) is an essential ideal if and only if the set of isolated points of
X is dense in X. Motivated by this result in C(X), we study the essentiallity
of the intersection of essential ideals for topological spaces which may have
no isolated points. In particular, some important ideals CK(X) and C∞(X),
which are the intersection of essential ideals, are studied further and their
essentiallity is characterized. Finally a question raised by Karamzadeh and
Rostami, namely when the socle of C(X) and the ideal of CK(X) coincide, is
answered.

1. Introduction

In this paper, we denote by C(X) the ring of real-valued, continuous functions
on a completely regular space X , and the reader is referred to [3] for undefined
terms and notations.

A non-zero ideal in a commutative ring is said to be essential if it intersects every
non-zero ideal non-trivially, and the intersection of all essential ideals, or the sum
of all minimal ideals, is called the socle (see [5]). We denote the socle of C(X) by
CF (X); it is characterized in [4] as the set of all functions which vanish everywhere
except on a finite number of points of X .

The familiar ideals CK(X), the set of functions with compact support, and
C∞(X), the set of functions vanishing at infinity, are also ideals which can be
represented by the intersection of some essential ideals. In fact, these ideals are
the intersection of free ideals (see [3, 7E]), and by Proposition 2.1, free ideals are
essential ideals. We will show that CK(X) and C∞(X) are essential ideals in C(X)
if and only if every open subset of X contains an open set with compact closure. It
is well known that for a locally compact, non-compact space X , CK(X) = C∞(X)
if and only if every σ-compact set of X is contained in a compact set in X (see [3,
7G]). We observe that CF (X) = CK(X) if and only if every compact subset ofX has
a finite interior, and we also characterize the spaces X for which CF (X) = C∞(X).
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2. Essential ideals and their intersection

The following proposition which topologically characterizes essential ideals is also
proved in [1].

Proposition 2.1. A non-zero ideal E in C(X) is an essential ideal if and only if
∩Z[E] is nowhere dense in X.

Proof. Let E be an essential ideal and int∩Z{E} 6= ∅. If x ∈ int∩Z[E], then
by the complete regularity of X , there is some g ∈ C(X) for which g(x) = 1 and
g(X\int∩Z[E]) = 0. Now E∩(g) = 0, for if f ∈ E∩(g), then X = (∩Z[E])∪Z(g) ⊆
Z(f), i.e., f = 0.

Conversely, suppose that int∩Z[E] = ∅. Then X \ ∩Z[E] is open and dense in
X . Let I be any non-zero ideal and 0 6= g ∈ I. Then X \Z(g) is a non-empty open
set, so [X \ Z(g)] ∩ (X \ ∩Z[E]) 6= ∅. This implies there is a function f ∈ E for
which [X \Z(g)]∩ [X \Z(f)] 6= ∅. Therefore Z(fg) 6= X , i.e., 0 6= fg ∈ E ∩ I, and
hence E is an essential ideal.

By the above proposition, free ideals are essential ideals, and the ideals Mx and
Ox, where x is a non-isolated point and hence non-maximal prime ideals, are also
essential ideals.

The following proposition is proved in [4].

Proposition 2.2. The socle CF (X) of C(X) is a z-ideal, consisting of all functions
that vanish everywhere except on a finite number of points of X.

It is easy to see that a finite intersection of essential ideals in any commutative
ring is an essential ideal. But even a countable intersection of essential ideals need
not be an essential ideal. For example, the ideal Or for any rational 0 ≤ r ≤ 1
is an essential ideal in C(R). But I =

⋂
0≤r≤1Or is not an essential ideal, for

∩Z[I] = [0, 1] and int[0, 1] 6= ∅.
The following result is the consequence of Propositions 2.1 and 2.2.

Corollary 2.3. Every intersection of essential ideals of C(X) is an essential ideal
if and only if the set of isolated points of X is dense in X.

The following theorem characterizes those compact spaces X for which every
countable intersection of essential ideals of C(X) is an essential ideal.

Theorem 2.4. Let X be a compact space. Then every countable intersection of
essential ideals of C(X) is an essential ideal if and only if every first category
subset of X is nowhere dense in X.

Proof. First, suppose that every countable intersection of essential ideals in C(X)
is an essential ideal, and let (An)∞1 be a sequence of nowhere dense subsets of X .
By [2, Lemma 1.6], ∩Z[OAn ] = cl(An). Since int(cl[An]) = ∅, then OAn is an
essential ideal by Proposition 2.1. By hypothesis, E =

⋂∞
n=1OAn is an essential

ideal. But again by [2, Lemma 1.6], ∩Z[E] = cl(
⋃∞
n=1An) and by Proposition 2.1,

we must have int[cl(
⋃∞
n=1An)] = ∅, i.e.,

⋃∞
n=1An is nowhere dense.

Conversely, let every first category subset of X be nowhere dense in X , and
let (En) be a sequence of essential ideals in C(X). Letting ∩Z[En] = An, then
int(An) = ∅, and by the McKnight Theorem [2, Theorem 1.3], OAn ⊆ En ⊆MAn ,
hence OA ⊆ ⋂∞n=1En, where A =

⋃∞
n=1An. Now we have ∩Z[OA] = cl(A), and

since A is a first category set, then int(cl[A]) = ∅, i.e., OA is an essential ideal.
This implies that

⋂∞
n=1En is also an essential ideal.
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3. Almost locally compact spaces

Definition 3.1. A Hausdorff space X is said to be almost locally compact if every
non-empty open set of X contains a non-empty open set with compact closure.

Our definition of almost locally compact spaces is equivalent to the one given in
[6, p. 224]. Next, we give some examples of completely regular spaces which are
almost locally compact but not locally compact.

Example 3.1. Clearly every locally compact space is almost locally compact, but
not conversely.

• Let S be an uncountable space in which all points are isolated except for a
distinguished point s, a neighborhood of s being any set containing s whose
complement is countable.

• Make the real numbers into a topological space by taking as a base for open
sets the family of all open intervals and {{r} : r ∈ Q}.

Example 3.2. Clearly every open subspace of an almost locally compact space is
an almost locally compact space, but in the preceding example, since R \Q is not
almost locally compact, we conclude that the closed subspaces of an almost locally
compact space need not be almost locally compact.

The proof of the following proposition is trivial.

Proposition 3.1. (i) The free union
⋃̇
s∈SXs is almost locally compact if and only

if each Xs is.
(ii) The cartesian product

∏
s∈S Xs, where for every s ∈ S,Xs 6= ∅, is almost

locally compact if and only if all spaces Xs are almost locally compact and there
exists a finite set S0 ⊆ S such that Xs is compact for s ∈ S \ S0.

The next result is an algebraic characterization of almost locally compact spaces.

Theorem 3.2. For every completely regular space X, the following statements are
equivalent :

(i) X is an almost locally compact space.
(ii) CK(X) is an essential ideal.
(iii) C∞(X) is an essential ideal.

Proof. (i) ⇒ (ii) Suppose that X is an almost locally compact space. We will prove
that for every non-unit g ∈ C(X), CK(X)∩(g) 6= (0). Since X \Z(g) is an open set,
then by regularity of X , there is an open set U , where U ⊆ cl(U) ⊆ X \ Z(g), and
there is an open set V such that cl(V ) is compact and V ⊆ U . Then V ⊆ cl(V ) ⊆
cl(U) ⊆ X \ Z(g). Define f ∈ C(X) such that f(X \ V ) = {0} and f(x) = 1 for
some x ∈ V . Since cl[X \ Z(f)] ⊆ cl(V ), and cl(V ) is compact, so cl[X \ Z(f)] is
also compact, i.e., f ∈ CK(X). Hence fg 6= 0 and fg ∈ CK(X) ∩ (g).

(ii) ⇒ (iii) Since CK(X) ⊆ C∞(X), clearly C∞(X) must be an essential ideal.
(iii) ⇒ (i) Let U be a proper open set in X . By the regularity of X , there is

a non-empty open set V such that V ⊆ cl(V ) ⊆ U . Now find f ∈ C(X), where
f [cl(V )] = {1} and f(x) = 0 for some x /∈ U . If cl(V ) is compact, there is nothing to
be proved. Suppose cl(V ) is not compact. If V ⊆ Z(h) for every h ∈ C∞(X), then
V ⊆ ∩Z[C∞(X)], which implies that C∞(X) is not an essential ideal. Therefore
there is some h ∈ C∞(X) such that V ∩ [X \ Z(h)] 6= ∅, i.e., there is some x0 ∈ V
for which h(x0) 6= 0. Clearly hf ∈ C∞(X). So W = {x : |h(x)f(x)| ≥ 1

n0
} is
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compact, where |h(x0)| > 1
n0

. If W ′ = {x : |h(x)f(x)| > 1
n0
}, then W ′ ∩ V is a

non-empty open set in U and, since cl(W ′ ∩ V ) ⊆ W ∩ cl(V ) and W ∩ cl(V ) is a
closed subset of the compact set W , then W ∩ cl(V ), and consequently cl(W ′ ∩ V )
is compact, i.e., X is an almost locally compact space.

4. Pseudo-discrete spaces

Definition 4.1. A completely regular spaceX is said to be a pseudo-discrete space
if every compact subset of X has finite interior. Clearly the class of pseudo-discrete
spaces contains the class of P -spaces. Every pseudo-finite space (a space in which
every compact subset is finite) is a pseudo-discrete space, but not conversely. For
example, the space Q of rational numbers is a pseudo-discrete space which is not
pseudo-finite. For another example of a pseudo-discrete space, consider the free
union D∪̇Q, where D is a discrete space and Q is the space of rational numbers.

Proposition 4.1. Every locally compact pseudo-discrete space is discrete.

Proof. Let X be a locally compact, pseudo-discrete space and let x ∈ X . Then
x has a neighborhood U whose closure is compact, hence int(cl(U)) is finite. But
U ⊆ int(cl(U)), therefore U is finite, i.e., x is an isolated point.

The proof of the following proposition is easy.

Proposition 4.2. Every open subspace of a pseudo-discrete space is a pseudo-
discrete space.

Example 4.1. Proposition 4.1 is not true for almost locally compact spaces, as
the first example of 3.1 shows. In Proposition 4.2, if we consider a closed subspace
instead of an open subspace, then it need not be a pseudo-discrete space. E.g., the
closed subspace of Q given by Y = { 1

n : n ∈ N} ∪ {0} is not pseudo-discrete.

The following results show how to construct several pseudo-discrete spaces.

Proposition 4.3. The free union
⋃̇
i∈SXi is pseudo-discrete if and only if each Xi

is.

Proof. If
⋃̇
i∈SXi is pseudo-discrete, then by Proposition 4.2, eachXi is also pseudo-

discrete. Conversely, if each Xi is pseudo-discrete and A is a compact subset of⋃̇
i∈SXi, then the set {i ∈ S : A ∩Xi 6= ∅} is finite. Since intXi(A ∩Xi) is finite,

then int(A) =
⋃
i∈S intXi(A ∩Xi) is finite, i.e.,

⋃̇
i∈SXi is pseudo-discrete.

Proposition 4.4. (i) If there is an infinite subset S0 of S such that for every
i ∈ S0, Xi is non-compact, then

∏
i∈S Xi is pseudo-discrete.

(ii) If there exists i ∈ S such that every compact subset of Xi has empty interior,
then

∏
i∈S Xi is pseudo-discrete.

(iii)
∏n
i=1 Xi is pseudo-discrete if and only if each Xi is.

Karamzadeh and Rostami in [4] have shown that CK(X) = CF (X) for a large
class of topological spaces, and have asked for a topological characterization of all
these spaces. The next result settles this question.

Theorem 4.5. (i) CK(X) = CF (X) if and only if X is a pseudo-discrete space.
(ii) C∞(X) = CF (X) if and only if X is a pseudo-discrete space with only a

finite number of isolated points.
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Proof. (i) Let X be a pseudo-discrete space and f ∈ CK(X). Then cl[X \ Z(f)] is
compact and hence int cl[X \Z(f)] is finite. But X \Z(f) ⊆ int cl[X \Z(f)] implies
that X \ Z(f) is finite, i.e., f ∈ CF (X). Therefore CK(X) = CF (X).

Conversely, suppose that CK(X) = CF (X) and A is a compact subset of X .
Suppose int(A) is not finite and assume that {x1, x2, . . . , xn, . . . } is an infinite
subset of int(A). Now for each positive integer n, we define fn ∈ C(X) such

that fn(xn) = 1 and fn[X \ int(A)] = {0}. Then f =
∑∞

n=1
1
2n

f2
n

1+f2
n

is clearly

continuous, f [X \ int(A)] = {0}, and for every positive integer n, f(xn) 6= 0. Since
cl[X \ Z(f)] ⊆ cl[int(A)] ⊆ A, then cl[X \ Z(f)] is compact, i.e., f ∈ CK(X). But
CK(X) = CF (X), therefore X \ Z(f) is finite, a contradiction.

(ii) Let C∞(X) = CF (X), then CK(X) = CF (X) and by part (i), X must be a
pseudo-discrete space. Now suppose that the set of isolated points of X contains
an infinite subset, say {x1, x2, . . . , xn, . . . }. Define fn ∈ C(X) to be such that
fn(xn) = 1

n and fn[X \ {xn}] = {0}. Let f =
∑∞

n=1 fn. Clearly f ∈ C(X),

f(xn) = 1
n , and f [X \ {x1, x2, . . . , xn, . . . }] = {0}. For every m, we have{

x : |f(x)| ≥ 1

m

}
= {x1, x2, . . . , xm},

i.e., for each m, {x : |f(x)| ≥ 1
m} is compact, and hence f ∈ C∞(X). But

X \ Z(f) = {x1, x2, . . . , xn, . . . }
which implies that f /∈ CF (X), a contradiction.

Conversely, let X be a pseudo-discrete space with only a finite number of isolated
points and f ∈ C∞(X), but f /∈ CF (X). Since An = {x : |f(x)| > 1

n} ⊆ {x :

|f(x)| ≥ 1
n} and {x : |f(x)| ≥ 1

n} is compact, then its interior is finite (X is a
pseudo-discrete space). Hence An is a finite open set for every positive integer n.
On the other hand, f /∈ CF (X), i.e., there is an infinite set {x1, x2, . . . , xn, . . . },
where for each n, f(xn) 6= 0. But for every n, there is an integer kn such that
|f(xn)| > 1

kn
, i.e., xn ∈ Akn . Since Akn is an open set, it follows that xn is an

isolated point, a contradiction.

In [3, 7F.5], it is stated that CK(Q) = C∞(Q). More generally, we have the
following:

Corollary 4.6. (i) CF (Q) = CK(Q) = C∞(Q).
(ii) If X is a pseudo-discrete space with only a finite number of isolated points,

then CF (X) = CK(X) = C∞(X).

Proof. By Theorem 4.5, this is evident.

Acknowledgments

I would like to thank Professor O. A. S. Karamzadeh for his encouragement
and discussion on this paper. I’d also like to thank the Institute for Studies in
Theoretical Physics and Mathematics (IPM) for financial support. Finally a careful
reading of this paper by the referee is appreciated.

References

1. F. Azarpanah, Essential ideals in C(X), Period. Math. Hungar. 31 (2) (1995), 105–112.
2. W. Dietrich, On the ideal structure of C(X), Trans. Amer. Math. Soc. 152 (1970), 61–77. MR

42:850



2154 F. AZARPANAH

3. L. Gilman and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976. MR 53:11352
4. O. A. S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of
C(X), Proc. Amer. Math. Soc. 93 (1) (1985), 179–184. MR 86g:54024

5. J. C. McConnel and J. C. Robson, Noncommutative Noetherian rings, Wiley-Interscience, New
York, 1987. MR 89j:16023

6. M. C. Rayburn, Compactifications with almost locally compact outgrowth, Proc. Amer. Math.
Soc. 106 (1) (1989), 223–229. MR 89i:54037

Department of Mathematics, The University, Ahvaz, Iran


