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ABSTRACT. We prove that for Banach spaces E, F,G, H and operators T €
L(E,G), S € L(F,H) the tensor product T® S : E®: FF — G ®: H is
a Grothendieck operator, provided T is a Grothendieck operator and S is
compact.

1. INTRODUCTION

J. Diestel and B. Faires proved in ’76 that for Banach spaces F,F,G, H, for
T € A(E, Q) and compact S € L(F, H) the tensor product of T and S defined as
T®S: F®.F — G®. H belongs again to the operator ideal A, provided A is closed
and injective [DF]. For the ideal of weakly compact operators E. Saksman and H. O.
Tylli [ST] have obtained similar results for both the projective and injective tensor
product.

The mentioned results open a natural, and interesting in itself, question on sta-
bility of non-injective operator ideals with respect to injective tensor products.
We solve this problem for the non-injective, closed ideal of Grothendieck opera-
tors. We are interested in exactly that ideal because the corresponding problem
of tensor stability turns out to be closely related to the question of existence of
complemented copies of ¢y in injective tensor products even for Fréchet spaces. In
fact, it was shown [R, p. 98] that for a large class of Banach spaces E (containing
all E = C(K)) we have that E is a Grothendieck space (that is, weak* and weak
sequential convergence coincide on equicontinuous subsets) if and only if E contains
no complemented copy of cg.

On the other hand, by a surprising result of Freniche [Fr1] (compare [C]), each
completed injective tensor product E®. F' of a Fréchet space F containing a copy of
¢p and a Fréchet space F' satisfying the Josefson-Nissenzweig type theorem (that is,
weak™® and strong convergence do not coincide for sequences in the dual) contains
always a complemented copy of ¢g. A fortiori, such a tensor product cannot be a
Grothendieck space. All infinite dimensional Banach spaces satisfy the Josefson-
Nissenzweig theorem and for Fréchet spaces it was proved by Bonet, Lindstrém and
Valdivia [BLV] that this property exactly characterizes the non-Montel spaces.

This development leads to two natural questions: Let E be a Fréchet space and
F a Fréchet-Montel space. When exactly does F ®. F' contain a complemented
copy of ¢y and when exactly is it a Grothendieck space? Both problems can also
be interpreted in terms of tensor stability.
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In case of F = C(K) it follows immediately from results of Freniche [Fr2] (com-
pare [DL, Cor. 3.7]) that C'(K, F') is a Grothendieck space if and only if C'(K) is a
Grothendieck space which automatically implies that C'(K, F') contains a comple-
mented copy of ¢y if and only if C(K) contains a complemented copy of cg.

For general injective tensor products, the known results are contained in [DL,
Th. 2.3, Th. 3.6]:

(i) if F has the approximation property, then E ®. F' contains a complemented
copy of ¢g if and only if E contains a complemented copy of cg.

(ii) if either F or E” has the approximation property, then F ®. F is a Grothen-
dieck space if and only if E is a Grothendieck space.

Using our injective tensor stability result for the ideal of Grothendieck operators
we are able to remove the approximation property assumption from the second
result when F is a Banach space and F' is a Schwartz space.

Let us now fix some notations and definitions. FE,F,G, H are Banach spaces.
B(E) stands for the unit ball, while E* denotes the topological dual. By an operator
T from F into F' we mean a bounded linear map. Let us call an operator T €
L(E, F) approzimable if there exists a sequence of finite rank operators (v,) C
L(E, F) such that ||T — v,|| "= 0 (cf. [Jh]). We refer to [Pi], [DU] and [DF]] for
background information on operator ideals, measure theory and tensor products,
respectively.

Definition 1.1. Let E, F' be Banach spaces. An operator T € L(E, F) is called a
Grothendieck operator if every w*-null sequence (y) is mapped by the adjoint T
into a weak null sequence (T*(y)) C E*.

The ideal of Grothendieck operators GR(E, F') is not injective, since the inclusion
map ¢ : ¢g — Lo 18 Grothendieck (note that £ is a Grothendieck space, since w*-
null sequences are weakly null in the dual of £,). But the identity id : ¢g — ¢g is
not Grothendieck, since otherwise it would be weakly compact.

Definition 1.2. A subset K C FE is called a Grothendieck set if for all T € L(F, ¢p)
the set T'(K) is relatively weakly compact in c.

We have immediately the following result (cf. [DU, p. 179]).

Lemma 1.3. Let E, F be Banach spaces, T € L(E, F). Then the following condi-
tions are equivalent:

(a) T € GR(E,F),

(b) VS € L(F,cp): SoT is weakly compact,

(¢c) VA C E bounded: T(A) is a Grothendieck set.

It follows that the ideal GR is surjective and closed.

2. MAIN RESULTS

Let A be a closed operator ideal and « be a tensor norm. We define the class
A, of all operators S : E — F such that for any pair of Banach spaces Fy, F1 and
any operator T' € A(Ey, Fy) the map T® S : By ®, E — F| ®, F belongs to A
as well. J. Diestel and B. Faires (see [DF, Th. 1 and Th. 2]) proved that A, is
always a closed operator ideal which is injective whenever A and « are injective.
Analogously, it is easily seen that if A is surjective and « is projective, then A, is
surjective. Thus we obtain immediately:
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Proposition 2.1. Let E, F,G, H be Banach spaces, A be a closed operator ideal,
a be a tensor norm and T € A(E,G).
(a) If S € L(F, H) is approzimable, then T ® S : E ®@q F — G ®q H is again in
A.
(b) If a and A are injective, then (a) holds even for compact S.
(¢) If « is projective and A is surjective, then (a) holds even for compact S.

Proof. The ideal of approximable operators is the smallest closed operator ideal.
Similarly, the ideal of compact operators is the smallest surjective (injective) closed
operator ideal. O

Since GR is surjective, we can state the following result.

Corollary 2.2. Let E, F,G, H be Banach spaces. ThenT®S : EQ, F — G, H
belongs to GR whenever T is Grothendieck and S is compact.

Remark 2.3. If we apply Theorem 2.2 and Remark 2.9 of [S] the following criterion
of weak compactness in the dual space (F ®, F)* = L(E, F*) can be obtained:
Let (T3,) C L(E, F*) be a bounded sequence. Then T;, "=~ 0 weakly if and only
if {({Tn(2),y**))nen;x € B(E),y*™ € B(F**)} C ¢ is relatively weakly compact.
This result or Theorem 1 in [K] can be used to give a direct proof of the above
corollary. It also follows from the proof that F ®, F' is a Grothendieck space if F is
a Grothendieck space, F is reflexive and every operator from F into F* is compact.

At this stage we mention that from P. Enflo’s famous example [E] it is an easy
consequence that there is a Banach space E for which there is a non-approximable
but compact operator from F into itself. In [A] F. A. Alexander obtained a similar
result for a closed subspace F of [P when 2 < p < oc0.

The ideal of Grothendieck operators is not injective. Thus our main aim is
to improve 2.1 in that case and to obtain injective tensor stability with compact
operators. First we reduce the problem to reflexive F' and H.

Lemma 2.4. Let E,F,G,H be Banach spaces, T € L(E,G) and S € L(F,H)
is compact. Then there exist reflexive Banach spaces G, Hy and operators S; €
L(E,G1),S3 € L(G1,Hy),S2 compact, Ss € L(Hy,H), such that

T®S = (idg®S3)0(T®S3)o0 (idg ® S1).
Proof. Every compact S € L(F, H) admits a compact factorization through a re-

flexive Banach space according to a result of T. Figel and W. Johnson [Fi, Jo] (see
also [DU, p. 260]). Then the proof is straightforward. |

We write Bo(B(E*)) for the Borel sets on B(E*) w.r.t. the w*-topology. If
m : Bo(B(X*)) — F is a vector measure of bounded variation, then ||m/|| is the
variation norm. Let us recall the representation of the dual of F ®. F, provided F'
is reflexive.

Definition and Lemma 2.5. Let E,F be Banach spaces with F reflexive.
PI(E,F) C L(E,F) are the Pietsch-integral operators, defined as:

T e PI(E,F) < 3m: Bo(B(E*)) — F vector measure of bounded variation

Vee E:T(x)= /B(E*) x(z®) dm(x”™).
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We equip PL(E, F) with the integral norm, i.e. |T||pr := inf{||m|;Vz € E: T(z) =
fB(E*) x*)dm(z*)} (¢f. [DFL p. 522]). Then PI(E,F*) is isometric isomorphic
to (E®: F)* by the identity T(z ®y) = (y, fB gy (@) dm(z”)) (cf. [DFL, p. 522]).
Notation. Let E, F be Banach spaces with F reflexive, and let (z})

B((E ®. F)*). According to 2.5 for all n € N we choose a vector measure m, :
mp(2}) : Bo(B(X™*)) — F of bounded variation, satisfying:

C

i) limp—oo | [[mnl| = [|23]1 | = 0,
ii) VeeE,feF,neN:z(e@f ffB(E) *) dma, (e*)).
Furthermore we define a finite scalar-valued measure u(-) = p((22))() =

> nen 27 "var(my(2}), ), where var denotes the variation of the corresponding
measure. Then m,, is absolutely continuous w.r.t. u for all n € N.
We write

Ly, = {f € Li(p, HY) :Ye e E : e(e”)f(e*)du(e*) = O}

B(E*)

for a subspace H; C H. For a Banach space H we denote by gy : Li(u, H*) —
Ly(u, H*)/Ly the canonical quotient map. If u = wp(z}) and H; C H, then let
my 2 Li(u, HY) /Ly, — (E ®. H1)* be the canonical injection.

Theorem 2.6. Let E,F,G,H be Banach spaces. If T € GR(E,G) and S €
L(F,H) is compact, then T ® S: E®. F — G ®. H is Grothendieck.

Proof. By Lemma 2.4 we assume that I, H are reflexive. W.lo.g. let || T, ]|S]| < 1.
Let (z}) C B((G ®. H)*) be w*-converging to 0. First we consider the map

n

T®id: F®. H— G®. H. For a finite dimensional subspace H; C H, according
to 2.1, we have that for (23) := (T ® id)*(z%) the restriction

(1) ((zn)|pom) —— 0 weakly.

Consider now id ® S : E®. F — E®. H. For n € N let h,, € L1(, H*) be the
density of m,, with respect to p = p(z)). To show that (id ® S)*((2})) is weakly
null (then we are done), we have to show that for all g € B((F ®. F)**):

oS = [ fai 07,5 o )
)
:/B(E*)<SquorF( )s hn) dpp — 0.

The following arguments are devoted to proving this. We define g := S o g} o
r5(9). Then g € Loo(u, H), since H is reflexive. Further, g has relatively compact
range, since S is compact. We assume that (2) is not true. Then

/ (g, hny,) dpt
B(E*)

For the sake of simplicity assume that (h,) satisfies (3). Since g has relatively
compact range, there is an increasing sequence of finite Bo(B(E*))-partitions (),
such that

(4) [Ex,(9) = glloc — 0 and Vn € N : [|[Eq, (hn) — hnll1 — 0.

(3) 3(hy,,) subsequence Je > 0 : érelfN

> €.
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We define ¥y := o(Jyey mr). Since H is reflexive, for all k& € N the sequence
(Er, (hp)) is relatively weakly compact in Li(u, H*). Hence, for all k¥ € N there
is an my € Li(p, H*), so that Er, (h,) — m; weakly (for at least going to a
subsequence by a diagonalization argument). (7) is increasing, thus, (my, ) is a
bounded martingale, which converges in the Lq(y, H*)-norm to an M € Lq(u, H*)
(note that the (hy) are bounded and H* has the RNP as a reflexive space). We
show now that for all G' € Lo (uly , H) with relatively compact range:

(5) 3 subsequence (hy;) such that

V6 >03IN eNVj > N: |(G,M)— (G, hy,)| <6.
Proof of (5). G has relatively compact range, thus there exists an increasing se-
quence of finite Bo(B(E*), w*)-partitions (7 (G)) such that 7 C o(mi(G)) for k €
Nand ||G—E;, (@) (G)| — 0 (cf. [DU, p. 67, Lemma 1]). Let (h,;) be a subsequence
with Er, (a)(hn;) — mr(G) € Li(pu, H*) weakly for all & € N (subsequence argu-
ment like above). Thus, since 7 C o(mx(G)), it follows Ex, (Er, () (hn;)) — mu
(my as above). Again (my(G)) is a martingale. Hence, as above, there exists an
M(G) € L1(u, H*), such that my(G) — M(G). We have

M = M(G).

Let A € Uy - Then

/M(G)du—/Md,uz lim | mg(G) — mydp =0,
A A k—oo [ 4

since (my(G)) and (my) are martingales and there is a kg € N, such that A € 7y, C
o(m(G)). Hence, for all B € ¥g : [, M(G)dpu = [ M dp. Thus to prove (5) we
first note that it suffices to demonstrate (5) for all G = E, ()G (k € N), since G
has relatively compact range and M, h,,, n € N, are measurable w.r.t. 3. But then
(5) follows by:

<]Emc(G)Gv M) — <E7Tk(G)G7 hnj> = <E7Tk(G)G’ mi(G)) — <E7Tk(G)G’ ]E”k(G)h"j>
= <E7Tk(G)G7 mk(G) - Eﬂ'k(G)h”j>'

For a finite dimensional subspace H; C H we consider the canonical restriction
operator resty, : Li(pu, H*)/Lyg~ — Li(p, Hf)/Lgz. Then according to (1) we
have:

(6) V2 e (E®: Hi)™" : / (qfr orestyy ory, (277), hn) dp — 0.
B(E*)

Since qj; oresty; orjy (%) has relatively compact range for all 2** € (E ®. Hy)™
(H; is finite dimensional), (5) and (6) imply:

V2" € (B @ Hi)™ : (2, vy, ovestu, 0 qu(M)) = 0.

Note that since M € Li(u|s,, H*) we may assume that qj; o restj; ory, (2*) is
measurable w.r.t. Xg. Thus

(7) VH; C H finite dimensional 7, oresty, oqg(M) = 0.
But (7) implies
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Hence we compute
0= ((id® S)*(9), ra 0 qu(M)) = (g, (id ® S)*(re o qu(M)))
— [ rori@. s oMydu= [ (Soaiori(@) M) d
B(E*) B(E*)
= / (g, M) dp.
B(E*)

Thus, this contradicts (3) and (5), and we are done. O

—~
=

We shall now apply Theorem 2.6 and an operator ideal approach to obtain the
announced result avoiding the assumption of the approximation property.

Corollary 2.7. Let E be a Schwartz space and F' a Banach space with the Grothen-
dieck property. Then E ®. F is a Grothendieck space.

Proof. By a well-known representation of e-tensor products as projective limits
E®. F = projucus Eu ®: F, where Ug is a 0-basis in E. A locally convex space
X is Grothendieck if and only if every continuous linear map from X into ¢y maps
bounded sets into relatively weakly compact ones. Now, each continuous linear
map T : E®. F — ¢y factorizes through Fy ®. F for some U € Ug. Since E is
a Schwartz space we can apply our main theorem so that for every U € Ug there
exists a V € Ug contained in U such that the canonical map Fy ®. F — Ey ®. F
is a Grothendieck operator. The result follows immediately. O
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