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ON THE GENERALIZED STEPANOV THEOREM

MACIEJ KOCAN AND XU-JIA WANG

(Communicated by J. Marshall Ash)

Abstract. The generalized Stepanov theorem is derived from the Alexandrov
theorem on the twice differentiability of convex functions. A parabolic version
of the generalized Stepanov theorem is also proved.

In the first part of this note we provide a new proof of the generalized Stepanov
theorem. This classical result is due to Calderón and Zygmund [3] (see also Oliver
[12]), but is usually associated with Stepanov’s name because it generalizes the
Stepanov theorem (see e.g. [6]). The result we prove below (Theorem 1) constitutes
a special case of a general theorem in [3]. Recently this particular version found
applications in proving the twice differentiability a.e. of viscosity solutions of elliptic
partial differential equations, see [11], [14] and [2]. The only complete proof of the
generalized Stepanov theorem the authors are aware of is contained in [3], where
Whitney’s extension theorem is used. In this note the generalized Stepanov theorem
will be proved by means of the Aleksandrov theorem on the twice differentiability
of convex functions [1]; see also [5], [9], [10] or the appendix in [4] for more modern
treatments.

In the second part of this note we show how to modify our proof to obtain a
parabolic version of the generalized Stepanov theorem (Theorem 3). A result of
this type is needed to prove the differentiability a.e. twice in x and once in t of
viscosity solutions of parabolic equations. To the best of the authors’ knowledge
this result is original, though some relevant arguments appear in [16].
| · | and 〈·, ·〉 will stand for the Euclidean norm and inner-product in Rn, and

Br(x) will denote the open ball in Rn of radius r centered at x. Given a measurable
set A in an Euclidean space, |A| will denote its Lebesgue measure.

Recall some notation from [3] (see also [17]). Let u : Ω → R, Ω ⊂ Rn, be bounded
and x ∈ Ω. We say that u ∈ T 2

∞(x) (u ∈ t2∞(x), resp.) if there exists an affine
function Px (a quadratic function Qx) such that

sup
y∈Br(x)∩Ω

|u(y)− Px(y)| ≤ O(r2)

(
sup

y∈Br(x)∩Ω

|u(y)−Qx(y)| ≤ o(r2) as r ↓ 0, resp.
)
.

Observe that u ∈ t2∞(x) if and only if u possesses a second order Taylor series
expansion at x whose remainder behaves like o(r2). If this is the case we will say
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that u is twice differentiable at x. On the other hand, u ∈ T 2
∞(x) is equivalent to

saying that u can be enclosed between two paraboloids meeting at x. In particular,
if Ω ⊂ Rn is open and u ∈ T 2

∞(x), then u is differentiable at x and Px(y) =
u(x) + 〈Du(x), y − x〉.
Theorem 1 (Calderón-Zygmund [3]). Let Ω ⊂ Rn be open and bounded and sup-
pose that u : Ω → R is bounded. If u ∈ T 2∞(x) for a.e. x ∈ Ω then u ∈ t2∞(x) for
a.e. x ∈ Ω.

Proof. By the assumption for a.e. x ∈ Ω there are px ∈ Rn and Mx ≥ 0 such that

|u(y)− u(x)− 〈px, y − x〉| ≤Mx|y − x|2 for all y ∈ Ω;

note that px is uniquely determined and we can assume that Mx is the smallest
with this property. It follows that Mx is well defined and finite a.e., moreover, the
mapping x 7→Mx is measurable. For M = 1, 2, . . . put

ΩM = {x ∈ Ω: Mx ≤M};
then every ΩM is measurable and ∪∞M=1ΩM is of full measure in Ω. Therefore it is
enough to show that for every M

u ∈ t2∞(x) for a.e. x ∈ ΩM .

From now on let M be fixed. Note that for every x ∈ ΩM

u(y)− 〈px, y〉 ≤ u(x)− 〈px, x〉+M |y − x|2 for all y ∈ Ω,

or

ũ(y) ≤ ũ(x) + 〈qx, y − x〉 for all y ∈ Ω,

where ũ = u − M | · |2 and qx = px − 2Mx. Denoting by û the upper concave
envelope of ũ on Ω, that is,

û(x) = inf{p(x) : p is affine and p ≥ ũ on Ω},
we obtain that ũ = û on ΩM , or using the notation in [7], ΩM ⊂ Γ, where Γ =
Γ+
ũ = {ũ = û} is the upper contact set of ũ on Ω. From the Aleksandrov theorem

û is twice differentiable a.e., that is, there exists F ⊂ Ω of full measure such that
û ∈ t2∞(x) for every x ∈ F . Note that Dũ = Dû on ΩM ∩ F , which yields

|ũ(y)− û(y)| ≤ O(|y − x|2) for every x ∈ ΩM ∩ F.(1)

We will show that (1) implies that

|ũ(y)− û(y)| ≤ o(|y − x|2) as y → x for a.e. x ∈ ΩM .(2)

Put v = û− ũ and for N = 1, 2, . . . let

ΩM,N = {x ∈ ΩM : |v(y)| ≤ N |y − x|2 for all y ∈ Ω}.
To prove (2) it is enough to show that for every N

|v(y)| ≤ o(|y − x|2) as y → x for a.e. x ∈ ΩM,N .(3)

We will show that this holds for any point of density of ΩM,N . So let x0 ∈ ΩM,N

be a point of density and let 1 > ε > 0. Then for all sufficiently small r, say r < δ,
where Bδ(x0) ⊂ Ω,

|Br(x0) \ ΩM,N |
|Br(x0)| < εn.(4)
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Suppose that y ∈ Bδ(1−ε)(x0) and let r = |y − x0|/(1− ε) < δ. It follows that
Bεr(y) ⊂ Br(x0) and from (4) Bεr(y) ∩ ΩM,N 6= ∅, say x1 ∈ Bεr(y) ∩ ΩM,N . Then

|v(y)| ≤ N |y − x1|2 < Nε2r2 = ε
Nε

(1− ε)2
|y − x0|2,

and (3), and consequently (2), follows.
To finish the proof of the theorem it is enough to remark that if û ∈ t2∞(x) and

|ũ(y) − û(y)| ≤ o(|y − x|2) as y → x, then the Taylor expansion for û works for ũ,
and thus ũ ∈ t2∞(x), and consequently u ∈ t2∞(x).

Remark 2. Under the assumptions of Theorem 1 we proved that for a.e. x0 ∈ Ω
there exist p(x0) ∈ Rn and a symmetric n× n matrix A(x0) such that

(5) u(y) = u(x0) + 〈p(x0), y − x0〉+
1

2
〈A(x0)(y − x0), y − x0〉

+ o(|y − x0|2) as y → x0.

Clearly u is then differentiable at every such point x0 with Du(x0) = p(x0). A
natural question arises whether A(x) is the derivative of Du(x). Denoting F1 =
{x ∈ Ω: Du(x) exists} and F2 = {x ∈ Ω: u ∈ t2∞(x)} ⊂ F1, we would like to find
out whether for a.e. x0 ∈ F2

Du(y) = Du(x0) + 〈A(x0), y − x0〉+ o(|y − x0|) as F1 3 y → x0.(6)

By the C2 version of the Aleksandrov theorem (see e.g. [10] or [4]) convex functions
have this property, and therefore the proof of Theorem 1 shows that (6) holds in
the approximate sense for a.e. x0 ∈ Ω. That is, there exists F3 ⊂ F2 ⊂ Ω of full
measure such that for every x0 ∈ F3 and ε > 0 the set

{y ∈ F1 : |Du(y)−Du(x0)− 〈A(x0), y − x0〉| < ε|y − x0|}
has density 1 at x0. In general, to claim (6) stronger assumptions on u are required;
see e.g. Theorem 3.5.7 in [17].

We would like to emphasize that this paper is concerned with pointwise deriva-
tives and in general in our setting one doesn’t expect the existence of generalized
derivatives. However, if u ∈ t2∞(x) for all x ∈ Ω with p and A as in (5) belonging
to Lp(Ω), 1 ≤ p <∞, then u ∈ W 2,p(Ω); see Theorem 3.9.5 in [17].

A modification of our approach leads to a proof of a parabolic version of the
generalized Stepanov theorem. We are concerned with real-valued functions on
Rn+1. We will write points in Rn+1 as (x, t), where x ∈ Rn and t ∈ R. Given
(y, s), (x, t) ∈ Rn+1, define their parabolic distance d according to

d((y, s), (x, t)) =
√
|x− y|2 + |t− s|

and their one-sided parabolic distance d∞ by

d∞((y, s), (x, t)) =

{
d((y, s), (x, t)) if s ≤ t,

+∞ otherwise.

Let u : Q → R, Q ⊂ Rn+1, be bounded and (x0, t0) ∈ Q. We say that u ∈
T 2,1
∞ (x0, t0) (u ∈ t2,1∞ (x0, t0), resp.) if there exists an affine function Px0,t0 of variable
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x (a quadratic in x and affine in t function Qx0,t0) such that

|u(y, s)− Px0,t0(y, s)| ≤ O
(
d2
∞((y, s), (x0, t0))

)
for (y, s) ∈ Q(|u(y, s)−Qx0,t0(y, s)| ≤ o

(
d2((y, s), (x0, t0))

)
as Q 3 (y, s) → (x0, t0), resp.

)
.

Note that in the definition of t2,1∞ (x0, t0) an appropriate inequality holds for s both
larger and smaller than t0, while in the definition of T 2,1∞ (x0, t0) only the values
s ≤ t0 matter. u ∈ t2,1∞ (x0, t0) roughly corresponds to the differentiability of u at
(x0, t0), twice in x, once in t.

Theorem 3. Let Ω ⊂ Rn be open and bounded, T > 0 and suppose that u : Q→ R
is bounded, where Q = Ω × (0, T ). If u ∈ T 2,1

∞ (x, t) for a.e. (x, t) ∈ Q then
u ∈ t2,1∞ (x, t) for a.e. (x, t) ∈ Q.

For (x, t) ∈ Rn+1 and r > 0 put

Pr(x, t) = {(y, s) ∈ Rn+1 : d((x, t), (y, s)) < r},
Qr(x, t) = {(y, s) ∈ Rn+1 : d∞((x, t), (y, s)) < r}.

The following proposition will be used in the proof of Theorem 3. It follows in a
standard way from a version of the covering theorem of Vitali, which employs Qr’s
instead of the Euclidean balls; see e.g. Remark I.3.1 in [8].

Proposition 4. Let A ⊂ Rn+1 be measurable. Then

lim
r↓0

|Qr(x, t) \A|
|Qr(x, t)| = 0 for a.e. (x, t) ∈ A.

Proof of Theorem 3. The proof of Theorem 3 parallels that of Theorem 1. By
assumption for a.e. (x, t) ∈ Q there are px,t ∈ Rn and Mx,t ≥ 0 such that

|u(y, s)− u(x, t)− 〈px,t, y − x〉| ≤Mx,t(|y − x|2 + t− s) for all y ∈ Ω, s ∈ [0, t].

As before the mapping (x, t) 7→Mx,t is measurable and putting for M = 1, 2, . . .

QM = {(x, t) ∈ Q : Mx,t ≤M}
gives that ∪∞M=1QM is of full measure in Q. Fix M and define ũ(x, t) = u(x, t) −
M(|x|2 − t); it follows that for every (x, t) ∈ QM

ũ(y, s) ≤ ũ(x, t) + 〈q, y − x〉 for all y ∈ Ω and s ∈ [0, t],(7)

with an appropriate q ∈ Rn. In the parabolic context the upper concave envelope
û of given function ũ : Q→ R is defined by (see [13] or [15])

û = inf{v : v ≥ ũ on Q, v concave in x and increasing in t},
and thus (7) shows that ũ = û on QM . A parabolic version of the Aleksandrov
theorem (see Theorem 1, Appendix 2 in [9]) guarantees that there exists F ⊂ Q of
full measure such that û ∈ t2,1∞ (x, t) for every (x, t) ∈ F . It follows that

|ũ(y, s)− û(y, s)| ≤ O
(
d2
∞((y, s), (x, t))

)
for every (x, t) ∈ QM ∩ F.(8)

We will show that (8) implies that

|ũ(y, s)− û(y, s)| ≤ o
(
d2((y, s), (x, t))

)
for a.e. (x, t) ∈ QM ,(9)
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which will give the result as in the proof of Theorem 1. Put v = û − ũ and for
N = 1, 2, . . . let

QM,N = {(x, t) ∈ QM : |v(y, s)| ≤ Nd2
∞((y, s), (x, t)) for every (y, s) ∈ Q},

and suppose that (x0, t0) ∈ QM,N is such that

lim
r↓0

|Qr(x0, t0) \QM,N |
|Qr(x0, t0)| = 0;

by Proposition 4 a.e. (x0, t0) ∈ QM,N will do. Let 0 < ε < 1. For all sufficiently
small r, say r < δ,

|Qr(x0, t0) \QM,N |
|Qr(x0, t0)| < εn+2.(10)

Suppose that (y, s) ∈ Pδ(1−ε)(x0, t0) and let r = d((y, s), (x0, t0))/(1 − ε) < δ.
It follows that Pεr(y, s) ⊂ Pr(x0, t0) and from (10) Qεr(y, s) ∩ QM,N 6= ∅, say
(x1, t1) ∈ Qεr(y, s) ∩QM,N . In particular t1 ≥ s and therefore

|v(y, s)| ≤ N(|y − x1|2 + t1 − s) < Nε2r2 = ε
Nε

(1− ε)2
d2((y, s), (x0, t0)).

Thus (9) is proved for a.e. (x, t) ∈ QM,N for every N , and consequently for a.e.
(x, t) ∈ QM .
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