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A SEQUENTIAL PROPERTY OF C,(X)
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ABSTRACT. Cp(X) has the monotonic sequence selection property if there is
for each f, and for every sequence (on : n < w) where for each n o, is a
sequence converging pointwise monotonically to f, a sequence (fn : n < w)
such that for each n fn is a term of o, and (fn : n < w) converges pointwise
to f. We prove a theorem which implies for metric spaces X that Cp(X) has
the monotonic sequence selection property if, and only if, X has a covering
property of Hurewicz.

Some nice duality results have been proved which relate properties of the closure
operator of function spaces with open covering properties of the domain spaces.
To list a few, let us first fix conventions and notations. Throughout X will be a
topological space which has at least the Tychonoff separation property — this means
that every one element subset of X is closed, and whenever C' is a closed subset of
X and z is a point from the complement of C', then there is a continuous function
from X to the closed unit interval 1T which maps z to 0 and maps each element of
C to 1.

The set of all functions from X to the real line R, denoted R¥, is considered as
a power of the real line and is endowed with the Tychonoff product topology. The
set of continuous functions from X to R is a subset of RX: when endowed with the
topology it inherits from R, this space is denoted C,(X). The topology of Cp,(X)
is known as the topology of pointwise convergence. All constant functions from X
to R are elements of C,(X). The function which is everywhere equal to zero is
denoted o. The closure operator of C,(X) can be quite complicated.

A space is said to have countable tightness if for every subset A, a point is in the
closure of A if, and only if, it is in the closure of a countable subset of A. A well-
known theorem of Arkhangel’skii and Pytkeev implies that C,(X) has countable
tightness if, and only if, every finite power of X has the Lindel6f property (every
open cover has a countable subcover). Gerlits and Nagy found another interesting
equivalent: An open cover of a space is an w—cover if the space itself is not a member
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of the cover, and there is for every finite subset of the space an element of the cover
which contains that set. Gerlits and Nagy proved in [3] that C,(X) has countable
tightness if, and only if, every w—cover of X has a countable subset which is an
w—cover of X.

A second notion in this direction is as follows. A space has countable fan tightness
if for each element z, if (A4, : n < w) is a sequence of subsets of X such that for
each n x € A,,, then there is a sequence (F), : n < w) of finite sets such that for each
n F,, C A,, and such that x € (U<, Fy,). This property may have been introduced
by Arkhangel’skii, who proved in [1] that C,(X) has countable fan tightness if,
and only if, every finite power of X has the Menger property: X has the Menger
property if there is for every sequence (U, : n = 1,2,3,...) of open covers of X
a corresponding sequence (V,, : n = 1,2,3,...) of finite sets such that for each n
Vi C Uy, and U2V, is a cover of X. Hurewicz proved in [3] that for metric
spaces this covering property is equivalent to a property introduced by Menger in
[6]. In [5] it was shown that every finite power of a space has Menger’s property if,
and only if, for every sequence (U, : n < w) of w—covers of X there is a sequence
(V», : n < w) of finite sets such that for each n, V,, C U,,, and U, <., V), is an w—cover.

Sakai introduced a stronger form of countable fan tightness, called countable
strong fan tightness. A space has countable strong fan tightness if for each element
x,if (4, : n < w) is a sequence of subsets of the space such that for each n = € A,
then there is a sequence (x, : n < w) such that for each n x,, € A,, and such
that © € {z, : n <w}. Sakai then proves — [10]: C,(X) has countable strong fan
tightness if, and only if, each finite power of X has Rothberger’s property C”: A
space has Rothberger’s property C” if there is for every sequence (U, : n < w) of
open covers, a corresponding sequence (U, : n < w) such that for each n U,, € U,
and {U, : n < w} is a cover. Rothberger introduced this property in his 1938 paper
[8]. Sakai further shows that every finite power of X has Rothberger’s property C”
if, and only if, for every sequence (U, : n < w) of w—covers of the space, there is a
sequence (Up, : n < w) such that for each n we have U,, € U,,, and {U,, : n < w} is
an w—Ccover.

A space has the strong Fréchet property if, whenever a point is in the closure
of some set, then there is a sequence in that set converging to the point. Let us
now say that an open cover of a space is a y—cover if it is infinite and each element
of the space is in all but finitely many of the sets in the cover. Gerlits and Nagy
proved in [3] that C,(X) has the strong Fréchet property if, and only if, for every
sequence (U, : n < w) of w—covers of X there is a sequence (U, : n < w) such that
for each n U,, € Uy, and {U, : n < w} is a y—cover of X. This property of X is
nowadays called the y—property.

Another property in the same spirit as these, and which is used often for nu-
merical sequences, is as follows: A space has the sequence selection property if for
each z, for every sequence (o, : n < w) where each o, is a sequence converging to
x, there is a sequence (z, : n < w) such that for each n xz, is a term of o,, and
(zn : n < w) converges to x. As we shall show, this property is related to the fol-
lowing covering property which was introduced by Hurewicz in [3]: A space has the
Hurewicz property if there is for every sequence (U, : n < w) of open covers of the
space a sequence (V,, : n < w) of finite sets such that for each n, V,, C U,,, and each
element of the space is in all but finitely many of the sets UV,,. It was pointed out
in [11] that the Hurewicz property is equivalent to the covering property obtained
by restricting the U,,’s to being y—covers.
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We shall say that a sequence (f, : n < w) of elements of C,(X) converges
pointwise monotonically to o if for each x € X the sequence (fn(z) : n < w) of
real numbers is monotonic (i.e., for each n f,(z) > fn4+1(2z)) and converges to 0.
Let us say that C,(X) has the monotonic sequence selection property if: There is,
for every sequence (o, : n < w) such that each o, is a sequence in C,(X) which
converges pointwise monotonically to o, a sequence (f,, : n < w) such that for each
n fp is a term of o,,, and such that (f, : n < w) converges pointwise to o.

Recall that a space X is normal if there is for every pair C' and D of pairwise
disjoint nonempty closed subsets of X a continuous function f from X to I such
that for each ¢ € C' f(¢) =0, and for each d € D, f(d) = 1. It is perfectly normal
if it is normal and every closed set is the intersection of countably many open sets.
Every normal space in which each one—element subset is closed is also a Tychonoff
space (while the converse is not true).

Theorem 1. For a perfectly normal space X, the following are equivalent:

a. X has the Hurewicz property.
b. C,(X) has the monotonic sequence selection property.

So as to clearly display what actually is being proved, we present the proof of
Theorem 1 in two lemmas.

Lemma 2. Let X be a Tychonoff space which has the Hurewicz property. Then
Cp(X) has the monotonic sequence selection property.

Proof. For each m, let (f]* : n < w) be a sequence in C,(X) which is pointwise
monotonically converging to o. For each m and n, define

m m 1 m
Since each f/* is continuous, each U;* is an open subset of X. Then define, for
each m,

U, ={U" i n < w}.

Since the sequence (f* : n < w) converges to o, U,, is an open cover of X . Since the
sequence converges pointwise monotonically to o we see that U;* C U* whenever
n < k.

It follows that, for each U,,, either it is a finite cover of X, or else it is a y—cover
of X. For each m such that U, is a finite cover of X let n,, be the least n such
that U;* = X. If there are only finitely many m for which U, is not a finite cover
of X, then we choose the n,,’s for the remaining finitely many m’s arbitrarily. The
sequence (f;" :m < w) selected like this converges pointwise to o.

Thus, assume that there are infinitely many m such that U, is not a finite cover
of X. Apply the Hurewicz property to these and find for each m an n,, such that
the sequence (U, : U,, not finite) is a y-cover of X. Combining these n,,’s with
the ones selected for the m’s for which U,,, is finite, we find a sequence (f; :m < w)
which pointwise converges to o. O

Lemma 3. If X is perfectly normal and if C,(X) has the monotonic sequence
selection property, then X has the Hurewicz property.

Proof. For each m let U,, be a y—cover of X. We may assume that each U, is
countable. Enumerate each U, bijectively as (U' : n < w).
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Since X is perfectly normal, each open set can be represented as an increasing
union of closed sets. Thus, for each m and n let (U, : k < w) be an increasing
sequence of closed sets such that U;* is a union of these sets.

By Urysohn’s Lemma we choose for each m, n and k a continuous function

f,Tk:X—>H

such that if z ¢ U then f* (z) = 1, and if x € Uy, then f]" (z) = 0. Then for
each m and n define:

gr(@) =T @)l

Jj<n

Then each g is in C,(X), and (g)* : n < w) converges to o pointwise monotonically.

Apply the sequence selection property to the sequence ((¢7* :n < w) : m < w)
of sequences from C,(X). For each m we find an n,, such that the sequence (g;;" :
m < w) converges to o pointwise.

Consider any « € X. Then (g (z) : m < w) converges to 0, and so we may fix
an M such that |g" (z)] < 1 whenever m > M. This implies that for an m > M
there is a j < n,, such that |f/7, (v)| < 1, which in turn implies that for each
m > M there is a j < n,, such that x € Ujm.

Thus, if for each m we let V,, be the finite subset {Ujm 2 j < npmt oof Up,
then the sequence (V,,, : m < w) witnesses the Hurewicz property for the sequence
U, :m < w). |

The following property was introduced in [11]: A space X has property S;(T',T")
if there is for every sequence (U,, : n < w) of y—covers of X a sequence (U, : n < w)
such that for each n U,, € U,,, and such that {U, : n < w} is a y—cover of X. This
property was further investigated in [5] where it was shown that no uncountable
compact set of real numbers has this property. Thus, this property is strictly
stronger than the Hurewicz property.

Theorem 4. If the space X has property S1(I',T'), then C,(X) has the sequence
selection property.

Proof. For each m, let (fi" : n < w) be a sequence from C,(X) which converges
pointwise to o. Fix m and for each n define
1
Ur = {r € X1 |f@)] < ()"}
Then for each m and for each z, for all but finitely many n « € U;"*. Thus, for each
m, either Uy, = {U}” : n < w} contains X as an element, or else it is a y—cover of
X.

For each m such that U, has X as a member, let n,, be the least n with U] = X.
Consider the remaining U,,’s: If there are only finitely many left we choose n,,
arbitrarily for each of those finitely many m’s; then the sequence (f; :m < w)
is as desired. Thus, suppose that there are infinitely many m for which U,, is a
~v—cover of X. Apply property S1(I,T) to the sequence of those and choose for
each of these m’s an n,, such that the corresponding U;" ’s form a y—cover of
X. Then combining these n,,’s with the earlier selected ones we find a sequence
(f :m < w) which is pointwise convergent to o. (]

Mm,
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COMPARISON WITH OTHER CLOSURE PROPERTIES

We give a short comparison of the closure properties mentioned before, and the
sequential properties introduced here. There are several other sequential properties
which have subtle differences with what we introduced here, but these will be dis-
cussed and compared elsewhere. The survey papers [7] and [12] contain information
on many of the concepts discussed in this section.

A set of real numbers is a Sierpinski set if it is uncountable and yet its intersection
with every set of Lebesgue measure zero is countable. A set of real numbers is a
Lusin set set if it is uncountable and its intersection with every set of first Baire
category is countable.

It is easy to see that y—sets have property S;(I',T"). Sierpinski sets also have
property Sq(T',T'). y—sets have Rothberger’s property C”. Since sets with property
C” have (strong) measure zero, Sierpiriski sets do not have Rothberger’s property
C"”, and ipso facto they do not have the y—property. Sierpiriski showed that the
Continuum Hypothesis implies the existence of Sierpinski sets. Thus, the Contin-
uum Hypothesis implies that there are sets X of real numbers for which C,(X)
has the sequence selection property, but not the strong Fréchet property, and (by
Sakai’s theorem) also not countable strong fan tightness.

Using the Continuum Hypothesis one could also construct a Sierpiriski set X
such that the algebraic sum X + X is the set of all irrational numbers. For such
a Sierpiniski set X, X2 does not have Menger’s covering property, and thus by
Arkhangel’skii’s theorem, C,(X) does not have countable fan tightness. It follows
that the sequence selection property does not imply countable fan tightness.

For two functions f and ¢ from w to w we write f < g to denote that for all
but finitely many n we have f(n) < g(n). The set of these functions is denoted
“w, and < is a partial order on it, usually called the eventual domination order.
A subset of “w is unbounded in the eventual domination order if there is no single
element which eventually dominates each element of the subset. According to a
theorem of Hurewicz in [4] a separable metric space X has the Hurewicz property
if, and only if, every continuous image of X into “w is bounded. One can show
that if X is a Lusin subset of “w, then it is an unbounded subset in the eventual
domination order. Thus, no Lusin set has the Hurewicz property. Lusin showed
that the Continuum Hypothesis implies the existence of a Lusin set. One can even
show that the Continuum Hypothesis implies the existence of a Lusin set, all of
whose finite powers have Rothberger’s property C” — this is done in [5]. Let X
be such a Lusin set. Then by Sakai’s theorem C,(X) has countable strong fan
tightness, and by Theorem 1 it does not have the monotonic sequence selection
property — whence in particular it does not have the sequence selection property.

These examples suggest another property which we’ll call the weak sequence
selection property: A space has the weak sequence selection property at a point if
there is for every sequence (o, : n < w) of sequences from the space, each converging
to that point, a corresponding sequence (z, : n < w) such that for each n z,, is a
term of o, and such that the point under consideration is in the closure of the set
{zy : n < w}. Tt is clear that the sequence selection property and also countable
strong fan tightness both imply the weak sequence selection property. In light of
the examples just discussed we see that even for the special situation where the
space is C,(X) for some set X of real numbers, neither of these notions is provably
equal to the weak sequence selection property. Moreover, Arkhangel’skii’s theorem
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and the Sierpinski set whose square does not have the Menger property also show
that the weak sequence selection property for C,(X) does not imply countable fan
tightness. The Lusin set all of whose finite powers have Rothberger’s property C”
together with Sakai’s theorem shows that the weak sequence selection property of
C,(X) also doesn’t imply the monotonic sequence selection property.

Some of these non-implications can also be arrived at by cardinality considera-
tions: The minimal cardinality of an unbounded subset of “w is denoted b. It is
well known that b is an uncountable cardinal number. A subset of “w is cofinal in
the eventual domination order if there is for each function in “w an element of that
subset which eventually dominates the given function. The minimal cardinality of
a cofinal subset of “w is denoted d. In [5] it was shown that b is the least cardi-
nality of a space which does not have the Hurewicz covering property, and b is the
minimal cardinality of a space which does not have the property S;(I',T"). Thus,

Lemma 5. The minimal cardinality of a set of real numbers X for which Cp(X)
does not have the sequence selection property or the monotonic sequence selection
property is b.

The cardinal number b also arose in another sort of sequence selection property
that was studied by Blass and Jech — [2]. For a set X the symbol F(X) denotes
the set of all real-valued functions with domain X. F(X) is said to have the
Egoroff property if for any sequence (o, : n < w) where each o, is a sequence from
F(X) which pointwise monotonically increases to f € F(X), there is a sequence
(gn : n < w) which pointwise monotonically increases to f and for each n and each
m there is a term of 0, which pointwise exceeds g,. According to Theorem 2 of
[2] F(X) has the Egoroff property if, and only if, the cardinality of X is less than
b. Thus, when considering the Egoroff property we may as well assume that X is a
set of real numbers. For X a set of real numbers C,(X) is a proper subset of F/(X),
and the Egoroff property for F/(X) implies fairly directly the monotonic sequence
selection property for C,(X). But more is true: If F'(X) has the Egoroft property,
then Cp(X) has the sequence selection property. The reason is that by Theorem 2
of [2] X has cardinality less than b, whence X has property S;(I',I"); Theorem 4
then implies that C,(X) has the sequence selection property.

It was also showed in [5] that the minimal cardinality of a set of real numbers not
all of whose finite powers have the Menger property is 9. In light of Arkhangel’skii’s
theorem, the minimal cardinality for a set X of real numbers such that C,(X)
doesn’t have countable tightness is 0.

Let M denote the collection of first category subsets of the real line. Then
cov(M) is the least cardinal number x such that the real line is the union of x first
category subsets. According to Baire’s category theorem cov(M) is uncountable.
Rothberger (essentially) showed in the third section of [9] that the minimal cardi-
nality of a set of real numbers which doesn’t have property C” is cov(M). In [5]
it was shown that this is also the critical number for sets of real numbers not all
of whose finite powers have property C”. Thus, the minimal cardinality of a set
X of real numbers for which C,(X) doesn’t have countable strong fan tightness is
cov(M).

A family F of subsets of w has a pseudo—intersection if there is an infinite set
A such that for each F' € F the set A\ F is finite. The symbol p denotes the
minimal cardinality of a family F which has no pseudo-intersection, and yet any
finite subset of the family has an infinite intersection. It is also well-known that the
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minimal cardinality of a set of real numbers which does not have the y—property is
p. In light of Gerlits and Nagy’s theorem the minimal cardinality of a set X of real
numbers such that C,(X) doesn’t have the strong Fréchet property is p.

It is known that p < min{cov(M), b} and that o > max{b,cov(M)}. It is also
known that no equations between any two of these cardinal numbers is provable,
and that neither cov(M) < b nor b < cov(M) is provable. This gives another
explanation for the non-relatedness facts pointed out earlier with the Continuum
Hypothesis.

Problem 1. Does countable fan tightness of C,(X) imply the weak sequence se-
lection property?

Problem 2. Does the monotonic sequence selection property of C,(X) imply the
weak sequence selection property?
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