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AN IMPROVED ESTIMATE FOR THE HIGHEST LYAPUNOV
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Abstract. Let ẋ = A(t)x and λk(t) be the eigenvalues of the matrix A(t).
The main result of the Method of Freezing states that if supJ ‖A(t)‖ ≤ M ,
supJ max1≤k≤nRe λk(t) ≤ ρ and supJ (‖A(t) −A(s)‖/|t − s|) ≤ δ, then

xmax ≤ ρ + 2Mλδ,

for the highest exponent xmax of the system, where

λδ =

(
Cnδ

4M2

) 1
n+1

.

The previous best known value Cn = n(n+1)
2

and the substantially smaller

values of Cn are reduced to the still smaller value.

1.

Let us consider an n-dimensional system

ẋ = A(t)x, t ∈ J = [t0,∞),(1)

with (real or complex) bounded and continuous on J matrix function A(t) and let
λk(t), k = 1, . . . , n, be the eigenvalues of A(t).

The Lyapunov exponent χ[x(t)] of a solution x(t) of (1) and the highest Lya-
punov exponent χmax of the system (1) are given by [3]:

χ[x(t)] = lim
t→∞

log ‖x(t)‖
t

, χmax = sup
x 6=0

χ[x(t)] = max
x 6=0

χ[x(t)].(2)

(Throughout this paper ‖ · ‖ denotes the Euclidean norm for a vector or matrix
argument:

‖x‖E =

(
n∑
i=1

|xi|2
)1/2

and ‖A‖E =

 n∑
i,j=1

|aij |2
1/2

,

if x = colon(x1, . . . , xn) and A = ((aij)), respectively. These norms are compatible:
‖Ax‖ ≤ ‖A‖ ‖x‖. Moreover, the Euclidean matrix norm is the ring norm: ‖AB‖ ≤
‖A‖ ‖B‖, but it does not preserve the unity: ‖I‖ =

√
n 6= 1 if n > 1.)
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In a series of papers the estimate of the highest Lyapunov exponent χmax of the
system (1) with “slowly changing” coefficients (with δ > 0 small enough) was given
by values:

sup
J
‖A(t)‖ ≤M,(3)

sup
J

‖A(t)−A(s)‖
|t− s| ≤ δ,(4)

sup
J

max
1≤k≤n

Reλk[A(t)] ≤ ρ.(5)

In these works the estimate has the following form:

χmax ≤ ρ+ C0δ
γ ,(6)

where C0 ≥ 0, γ ≥ 0 are suitable constants.
So, for example, from [9] we can take (6) with γ = 1/(2n + 2); in [1] a better

estimate with γ = 1/2n was obtained. Later in [2] (see also [3]) these estimates
were strengthened to the following:

χmax ≤ ρ+ C0δ
1

n+1 ,(7)

where C0 = Cn = 2M(n(n+1)
8M2 )

1
n+1 .

Finally, in [7] for n = 2 and in [5] for arbitrary n, it was proved that the index
1

n+1 in (7) gives the best value of the constant γ in (6).

On the other hand, in [8], [10] we have an improvement of (6) in another di-
rection: a decrease of the constant C0 in (6) by the better (or the best) “point of
freezing” (see [3], [10]).

It goes without saying, that every such improvement of (6) depends upon the
choice of the norm, while the definitions (2) are independent of the norm.

Moreover, for every fixed norm we can formulate the question about the best or
the exact value of the constant Cn: this value of Cn with the attainability of the
index γ = 1/(n+ 1) will give the best estimate of type (6).

In this work we show that
1) the well-known inequality of Gelfand-Schilov (G.-S.) (see [3], p. 131) for the

matrix exponent exp(A(t)s) can give an essential improvement in the Euclidean
norm;

2) using this improved inequality of G.-S, in the standard way of [3] we can have
a better estimate of χmax than in [3], [8], [10];

3) using this improved inequality of G.-S. and the best “point of freezing” of
[10] we have a still better estimate of the highest Lyapunov exponent χmax in the
Method of Freezing.

Remark 1. If A(t) is differentiable, then (4) is equivalent to ‖Ȧ(t)‖ ≤ δ.

Remark 2. (7) is true but trivial, when n(n + 1)δ/(8M2) ≤ 1. So, the method is
of interest just for δ > 0 small.

2. The “frozen” equation

For simplicity we let t0 = 0 in (1); the general case can be treated quite
similarly—just replace (0, t) with (t0, t0 + t).

The fundamental role in the Method of Freezing is played by the following in-
tegral equation for every solution x(t) of (1) obtained by the Variation Constants
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Formula (see [3] or [10])

x(t) = eA(t1)tx(0) +

∫ t

0

eA(t1)(t−s)[A(s)−A(t)]x(s) ds,

where t1 ∈ J and can be chosen arbitrarily. We notice also that, for example, in
[3] the point t1 was chosen as t, but in [10] a proper choice of t1 was playing the
crucial role.

3.

To obtain our main results we need a good estimate of the norm of the following
matrix function: exp(A(t1)t). One such estimate (for an arbitrary ring norm) is
the well-known inequality of G.-S. (see [3], p. 131, or [4], p. 92),

‖eA(t1)t‖ ≤ eρt

(
‖I‖+

n−1∑
k=1

(2‖A(t1)‖t)k
k!

)
,(8)

where I is the n× n unit matrix.
In the following Theorem 1 we shall prove a better estimate for the matrix

function ‖ exp(A(t1)t)‖ in the Euclidean norm.

Theorem 1. If (3) and (5) hold, then

‖eA(t1)t‖ ≤ eρt

(
‖I‖+

n−1∑
k=1

(‖A(t1)‖t)k
k!

)

≤ eρt

(
‖I‖+

n−1∑
k=1

(Mt)k

k!

)
,

(9)

where ‖ · ‖ is the Euclidean matrix norm.

To prove this Theorem 1 for an arbitrary matrix A we need some preliminary
notions and results.

We introduce the notion of the absolute value (modulus) of a matrix A = ((aij)),
supposing |A| = modA = ((|aij |)) and the notion of the inequality A ≤ B, if
all corresponding elements aij and bij of these matrices satisfy the inequalities:
aij ≤ bij (in particular, A ≤ 0 if ∀ aij ≤ 0).

Remark 3. Notice that the Euclidean matrix norm is
α) absolute: ‖A‖ = ‖modA‖ for all matrices A;
β) invariant with respect to unitary matrices: ‖UA‖ = ‖AU‖ = ‖A‖ for all

matrices A and all unitary matrices U ;
γ) monotone: ‖A‖ ≤ ‖B‖ for all matrices A,B such that modA ≤ modB.

Proof of Theorem 1. Indeed, according to the Theorem of Schur [6] there exists a
unitary matrix U such that A = U∗(D+Ψ)U , where D+Ψ is the upper triangular
matrix with diagonal part D = diag[λ1, . . . , λn] and λk = λk[A], k = 1, . . . , n, are
the eigenvalues of the matrix A.

Let λk = pk + iqk, k = 1, . . . , n, and ψkm be the elements of the matrices D
and Ψ, respectively, where pk and qk are the real and imaginary parts of λk. Then
using the Re-transformation ([3], p. 249) L = L(t) = diag[exp(iq1t), . . . , exp(iqnt)]
we shall have

eAt = U∗LY U,(10)
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where Y = Y (t) (Y (0) = I) is the fundamental matrix of the solutions of the system
ẏ = B(t)y and

B =


p1 ψ12e

i(q2−q1)t ψ13e
i(q3−q1)t . . . ψ1ne

i(qn−q1)t

0 p2 ψ23e
i(q3−q2)t . . . ψ2ne

i(qn−q2)t

· · · · · ·
0 0 0 . . . pn

 .

Further, using the λ-transformation ([3], p. 249) with λ ≥ −min{0,min1≤k≤n pk},
let us consider the system ż = B1(t)z, where B1 = B+λI and z = (exp(λt)y). Let
Z(t) be a fundamental matrix of its solutions such that Z(0) = I; then we have for
all t ∈ J

|Z(t)| ≤ I +

∫ t

0

|B1(ξ)| |Z(ξ)| dξ (|Z| = modZ).

Since |B1(ξ)| ≤ (λ+ ρ)I + |Ψ| for all ξ ∈ J , then

|Z(t)| ≤W (t), Z(t) = eλtY (t)(11)

and

W (t) = I + [(λ+ ρ)I + |Ψ|]
∫ t

0

W (ξ) dξ

or

Ẇ = [(λ + ρ)I + |Ψ|]W, W (0) = I(12)

(see, for example, [3], pp. 506–507).
The solution of problem (12) is given by

W (t) = e(λ+ρ)te|Ψ|t.(13)

Consequently, from (10)–(13) and Remark 3 we shall have statement (9) of our
Theorem 1.

Remark 4. As follows from (13) this proof of Theorem 1 gives more than (9) for
the Euclidean matrix norm:

‖eAt‖ ≤ eρt
[
‖I‖+ ‖Ψ‖t+ · · ·+ ‖ |Ψ|n−1‖ tn−1

(n− 1)!

]
.(14)

Also, there exist examples when such an estimate has the following form:

‖eAt‖ ≤ eρt

[
‖I‖+

n−1∑
k=1

‖Ak‖tk
k!

]
(15)

or even

‖eAt‖ ≤ eρt

‖I‖2 +

(
n−1∑
k=1

‖Ak‖tk
k!

)2
1/2

,(16)

but, seemingly, it is not known: is it possible to lower the estimate (9) to the forms
(15) or (16)?

Moreover, notice that for a sparse matrix A (see [12]) often the norm ‖Ak‖ or
‖ |A|k‖ is essentially smaller than ‖A‖k. This fact can be important in applications.
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Remark 5. Another matrix norm is known,

‖A‖S = sup
x 6=0

‖Ax‖E
‖x‖E = max

1≤k≤n

√
λk[A∗A],

where ‖·‖ is the Euclidean vector norm and sk =
√
λk[A∗A] are the singular values

of the matrix A. This matrix norm (the Spectral matrix norm; see, for example, [11]
p. 65 or [6], p. 236) is also the ring norm, invariant with respect to unitary matrices
and preserves the unity, but it is not monotone. Therefore, using the Variation of
Constant Formula we can prove only (14) for the Spectral matrix norm.

4.

Theorem 2. If (3)-(5) hold in the Euclidean norm, then

χmax ≤ ρ+
1

ζ
,(17)

where ζ is the positive root of the algebraic equation

δeζ2 + δ

n∑
k=2

kMk−1ζk+1 = 1 (e = ‖I‖ =
√
n).(18)

In particular, there exists a number ∆ = ∆(n,M) such that for all δ ≤ ∆

χmax ≤ ρ+M

[
2e+ (n− 1)(n+ 2)

2M2
δ

] 1
n+1

.(19)

The value of ∆ can be expressed explicitly:

∆ =
2M2

2e+ (n− 1)(n+ 2)
.(20)

Moreover, the estimate (19) is better than the inequality of R. Vinograd (see [10],
Theorem 1) for all n ≥ 4.

Proof. In fact, using our improved estimate (9) in Theorem 10.2.2 and its Conse-
quences 10.2.2 and 10.2.3 from [3], we shall have (17), where ζ is a positive root of
(18) (unique, because the left part of (18) is monotone on ζ).

Further, putting Mζ = z, we can rewrite (18) in the following form:

δe

M2
z2 +

δ

M2

n∑
k=2

kzk = 1.(21)

If, in addition, δ ≤ ∆, where ∆ is defined by (20), then the unique positive root z0
of (21) is not less than 1 (z ≥ 1) and thus from (21) we shall have

z0 ≥
[

2M2

[2e+ (n− 1)(n+ 2)]δ

] 1
n+1

or the required estimate (19).
To prove the last part of Theorem 2 we notice that the inequality of R. Vinograd

from [10] for the highest Lyapunov exponent has the following form:

Xmax ≤ ρ+ 2M

[
C′n + ε

4M2
δ

] 1
n+1

, C′n =
2nne−n

(n− 1)!
, ε > 0,(22)

for the Euclidean norm (see also Theorem 3 below).
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Therefore, according to Stirling’s Formula, the last statement of our Theorem 2
for the comparison of the estimates (19) and (22) is equivalent to the following:

2e+ (n− 1)(n+ 2) < 2n

(√
2n

π
e−

Θn
12n + ε

)
, 0 < Θn < 1.

But this inequality is true for all n ≥ 4 (even if ε = 0 when Theorem 1 in [10] loses
its meaning).

Theorem 3. Let (3)–(5) hold in the Euclidean norm. Then given ε, 0 < ε <
(n+ 1)(n+ 4

√
n− 2)/2, there is a δ(ε) > 0 such that for δ < δ(ε)

Xmax ≤ ρ+M

[
C′n + ε

M2
δ

] 1
n+1

, C ′n =
2nne−n

(n− 1)!
.

The value of δ(ε) can be expressed explicitly:

δ(ε) = M2εn+1

[
2

(n+ 1)(n+
√
n− 2)

]n+2

.

Remark 6. The distinction between this Theorem 3 and Theorem 1 in [10] is the
following: in Theorem 3 we use the improved inequality (9) in the Euclidean norm
of matrix exponent, whereas in Theorem 1 in [10] the standard inequality (8) of
Gelfand-Schilov was used in a matrix norm ‖ · ‖ such that ‖I‖ = 1.

Remark 7. In Theorem 1 in [10] and in our Theorem 3 the decrease (increase) of
the interval with respect to ε does not change the estimate for Xmax of system (1),
but increases (decreases) the interval [0, δ(ε)) 3 δ (δ(ε) →

ε→0
0) of their applications.

5. Comparison of the results

α) Theorem 2 gives a better estimate than (22) (the estimate of R. Vinograd in
[10]) for all n > 3;
β) Theorem 3 gives a better estimate than (22) for all n > 1 (in the case n = 1

the results coincide);
γ) Theorem 3 gives a better estimate than Theorem 2 for all n ≥ 1.
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