A COMMUTING PAIR IN HOPF ALGEBRAS

YONGCHANG ZHU

(Communicated by Ken Goodearl)

ABSTRACT. We prove that if H is a semisimple Hopf algebra, then the action of the Drinfeld double D(H) on H and the action of the character algebra on H form a commuting pair. This result and a result of G. I. Kats imply that the dimension of every simple D(H)-submodule of H is a divisor of dim (H).

Let H be a finite dimensional semisimple Hopf algebra over an algebraically closed field k of characteristic 0, D(H) be the Drinfeld double of H, and C(H) be the character algebra of H. C(H) is spanned by the characters of H-modules and is an associative subalgebra of H^* . It is known that D(H) acts on H and that C(H) acts on H by the restriction of the action " \rightharpoonup " of H^* on H (these actions will be recalled below). The purpose of this note is to prove that these two actions form a commuting pair. Using this result, we prove that the dimension of every simple D(H)-submodule of H is a divisor of $\dim(H)$. It would be interesting if there exists an analog of this commuting pair in the context of Poisson Lie groups.

We first recall the construction of the Drinfeld double (cf. [D], [M]) and fix necessary notations. Let H be a finite dimensional Hopf algebra over a field k (here we do not need any additional assumptions on H and k). The Drinfeld double of H, denoted by D(H), as a vector space, is the tensor space $H^* \otimes H$. The comultiplication of D(A) is given by

$$\Delta(f\otimes a)=\sum \left(f_{(2)}\otimes a_{(1)}\right)\otimes \left(f_{(1)}\otimes a_{(2)}\right)\in D(H)\otimes D(H),$$

where $\Delta f = f_{(1)} \otimes f_{(2)}$, $\Delta a = a_{(1)} \otimes a_{(2)}$ are comultiplications in H and H^* respectively. The multiplication in D(H) is defined as follows: for $f \otimes a$ and $g \otimes b$ in D(H),

(1)
$$(f \otimes a)(g \otimes b) = \sum f(a_{(1)} \triangleright g_{(2)}) \otimes (a_{(2)} \triangleleft g_{(1)})b,$$

where $a \triangleright g$ is the action of H on H^* given by

$$a \triangleright g = a_{(1)} \rightharpoonup g \leftharpoonup S^{-1}a_{(2)}$$

and $a \triangleleft g$ is the right action of H^* on H given by

$$a \triangleleft g = S^{-1}g_{(1)} \rightharpoonup a \leftharpoonup g_{(2)}.$$

The notations \rightharpoonup and \leftharpoonup mean the usual left and right actions of H on H^* , i.e., for $a \in H$ and $g \in H^*$,

$$a \rightharpoonup g = \sum g_{(1)} \langle g_{(2)}, a \rangle \in H^*, \quad \ g \leftharpoonup a = \sum g_{(2)} \langle g_{(1)}, a \rangle.$$

Received by the editors December 6, 1995 and, in revised form, April 30, 1996. 1991 Mathematics Subject Classification. Primary 16W30.

We view H and H^* as subspaces of D(H) by the embeddings $a \in H \mapsto 1 \otimes a$ and $f \in H^* \mapsto f \otimes 1$.

The antipode S and the counit of D(H) are given by

$$S(f \otimes a) = S(a)S^{-1}(f), \quad \epsilon(f \otimes a) = \epsilon(f)\epsilon(a);$$

here $\epsilon(f)$ and $\epsilon(a)$ denote the counit maps for H^* and H.

The above operations give D(H) a structure of Hopf algebra. Moreover D(H) is quasitriangular with the R-matrix $R = \sum_i e_i^* \otimes e_i$, where $\{e_i\}$ is a basis for H, and $\{e_i^*\}$ is its dual basis for H^* . The quasitriangular structure will not play a role here. Notice that H and H^{*cop} (H^{*cop} is H^* with the opposite coproduct) are Hopf subalgebras of D(H).

We also recall some basic notions about modules and module algebras of a Hopf algebra. A (left) module of H means a left module of H as an associative algebra. An associative algebra A is called a (left) module algebra of H if A is a H-module such that the algebra structure and H-module structure for A are compatible in the following sense: for $h \in H$, $u, v \in A$ and the unit 1_A in A,

(2)
$$h \cdot (uv) = \sum (h_{(1)} \cdot u)(h_{(2)} \cdot v), \quad h \cdot 1_A = \epsilon(h)1_A.$$

Similarly a right module algebra of H is an associative algebra A together with a right H-module structure satisfying the conditions

$$(uv) \cdot h = (u \cdot h_{(1)})(v \cdot h_{(2)}), \quad 1_A \cdot h = \epsilon(h)1_A.$$

For a finite dimensional H-module V, the character χ_V of V is an element of H^* defined by $\langle \chi_V, a \rangle = Tr|_V(a)$ for every $a \in H$. Because $\chi_{W \otimes V} = \chi_W \chi_V$ for H-modules W, V, the characters of H span an associative subalgebra of H^* . This algebra is called the character algebra of H and denoted by C(H). If H is semisimple and the ground field is algebraically closed and of characteristic 0, then C(H) consists of the elements $v \in H^*$ that are cocommutative, i.e., $\sum v_{(1)} \otimes v_{(2)} = \sum v_{(2)} \otimes v_{(1)}$.

H is an H^* -module algebra under the action \rightarrow given by $g \rightarrow a = \langle g, a_{(2)} \rangle a_{(1)}$. We will be concerned with the restriction of \rightarrow on the character algebra C(H).

There is D(H)-action on H defined by

(3)
$$(f \otimes a) \cdot b = (a_{(1)}bS(a_{(2)})) - S^{-1}(f).$$

Lemma 1. H is a module algebra of D(H) under the action (3).

Proof. To prove H is a D(H)-module under (3), We need to prove that

$$(4) (xy) \cdot v = x \cdot (y \cdot v)$$

for every $x, y \in D(H)$ and $v \in H$. This is true for the cases $x, y \in H \subset D(H)$, $x, y \in H^* \subset D(H)$ and $x \in H^*, y \in H$. It is known that the definition of the multiplication of D(H) is equivalent to the following (cf. [M])

$$(f \otimes a)(g \otimes b) = f(a_{(1)} \rightharpoonup g \leftharpoonup S^{-1}a_{(3)}) \otimes a_{(2)}b.$$

To prove (3), we only need to prove for $a \in H \subset D(H), g \in H^* \subset D(H)$ and $v \in H$,

(5)
$$a \cdot (g \cdot v) = (ag) \cdot v = (a_{(1)} \rightharpoonup g \leftharpoonup S^{-1}a_{(3)}) \cdot (a_{(2)} \cdot v).$$

This is proved in the following computation:

$$(a_{(1)} \rightarrow g \leftarrow S^{-1}a_{(3)}) \cdot (a_{(2)} \cdot v)$$

$$= \langle g_{(3)}, a_{(1)} \rangle \langle g_{(1)}, S^{-1}a_{(3)} \rangle g_{(2)} \cdot (a_{(2)} \cdot v)$$

$$= \langle g_{(3)}, a_{(1)} \rangle \langle g_{(1)}, S^{-1}a_{(4)} \rangle g_{(2)} \cdot (a_{(2)}vSa_{(3)})$$

$$= \langle g_{(3)}, a_{(1)} \rangle \langle g_{(1)}, S^{-1}a_{(4)} \rangle (a_{(2)}vSa_{(3)}) \leftarrow S^{-1}g_{(2)}$$

$$= \langle g_{(3)}, a_{(1)} \rangle \langle g_{(1)}, S^{-1}a_{(6)} \rangle \langle S^{-1}g_{(2)}, a_{(2)}v_{(1)}Sa_{(5)} \rangle a_{(3)}v_{(2)}Sa_{(4)}$$

$$= \langle g_{(3)}, a_{(1)} \rangle \langle g_{(1)}, S^{-1}a_{(6)} \rangle \langle g_{(2)}, a_{(5)}S^{-1}v_{(1)}S^{-1}a_{(2)} \rangle a_{(3)}v_{(2)}Sa_{(4)}$$

$$= \langle g, S^{-1}a_{(6)}a_{(5)}S^{-1}v_{(1)}S^{-1}a_{(2)}a_{(1)} \rangle a_{(3)}v_{(2)}Sa_{(4)}$$

$$= \langle S^{-1}g, v_{(1)} \rangle a_{(1)}v_{(2)}Sa_{(2)}$$

$$= a \cdot (g \cdot v).$$

Thus H is a D(H)-module under (3). It is clear that (2) is true for h in H or H^* ; since H and H^* generate D(H), (2) is also true for $h \in D(H)$. This proves that H is a module algebra of D(H) under the action (3).

We outline a more conceptual proof of Lemma 1 that explains formula (3). For this, we need the following formula for the coproduct of the dual Hopf algebra of D(H), $D(H)^*$ (cf. [M]), identifying $D(H)^*$ with $H \otimes H^*$:

(6)
$$\Delta(a \otimes g) = \sum (a_{(1)} \otimes e_i^* g_{(1)} e_i^*) \otimes (S^{-1}(e_j) a_{(2)} e_i \otimes g_{(2)}),$$

where $\{e_i\}$ is a basis of H and $\{e_i^*\}$ is its dual basis of H^* . Now $D(H)^*$ is a right module algebra of D(H) under the action \leftarrow . It is clear from (6) that $H \subset D(H)^*$ is stable under \leftarrow , so H^{op} is a right module algebra of D(H) (here H^{op} is H with the opposite multiplication). Using (6), it is easy to prove that this right action of D(H) on H^{op} is given by the formula

$$b \cdot (g \otimes a) = S^{-1}(a_{(2)})(b - g)a_{(1)}.$$

Now we use the following general fact: if A^{op} is a right H-module algebra with the action $b \cdot h$ for $b \in A$, $h \in H$, then A is an H-module algebra with action $h \cdot b = b \cdot S(h)$. So H is a module algebra of D(H) with the action

$$(a \otimes f) \cdot b = b \cdot (S(f \otimes a)) = (a_{(1)}bS(a_{(2)})) \leftarrow (S^{-1}f).$$

We see that this action is precisely the one defined in (3).

Now we are in the position to state our main theorem.

Theorem 1. If H is a semisimple Hopf algebra over an algebraically closed field k of characteristic 0, then the action of D(H) given by (3) and the action \rightarrow of C(H) form a commutating pair, i.e., an operator $T \in End_k(H)$ commutes with the action of D(H) if and only if T is in the image of C(H) in $End_k(H)$; and $T \in End_k(H)$ commutes with the action of C(H) if and only if T is the image of D(H) in $End_k(H)$.

Proof. We note that the semisimplicity of H implies that $S^2 = 1$ and D(H) is semisimple ([LR], [R]). The semisimplicity of H also implies that C(H) is a semisimple algebra (cf. [Z]). In particular the images of D(H) and C(H) in $\operatorname{End}_k(H)$ are semisimple algebras. Therefore it suffices to prove that $T \in \operatorname{End}_k(H)$ commutes with the action of D(H) if and only if T is in the image of C(H).

Assume T commutes with the action of D(H); we need to prove T is in the image of C(H). We note that $H^* \subset D(H)$ acts on H by restriction: this action is just the action "—" of H^* on H twisted by S^{-1} . By Lemma 2 below, there exists a unique $v \in H^*$ such that

(7)
$$T(b) = v - b = \langle v, b_{(2)} \rangle b_{(1)}$$

for every $b \in H$.

For T as in (7), T commutes with the action of $H \subset D(H)$ implies that

(8)
$$\langle v, a_{(2)}b_{(2)}Sa_{(3)}\rangle a_{(1)}b_{(1)}Sa_{(4)} = \langle v, b_{(2)}\rangle a_{(1)}b_{(1)}Sa_{(2)}$$

for every $a, b \in H$. Apply the counit map to both sides of (8), we obtain

$$\langle v, a_{(1)}bS(a_{(2)})\rangle = \langle v, b\rangle\epsilon(a);$$

this further implies that

(9)
$$\langle v, ab \rangle = \langle v, a_{(1)}ba_{(3)}Sa_{(2)} \rangle = \langle v, ba_{(2)} \rangle \epsilon(a_{(1)}) = \langle v, ba \rangle.$$

This proves that v is cocommutative or $v \in C(H)$. Note that in (9), we use the fact that $a_{(2)}Sa_{(1)} = \epsilon(a)$ which is true for the Hopf algebras with the property $S^2 = 1$.

Conversely, if $v \in C(H)$, we need to prove that the action " $v \rightarrow$ " commutes with the action of D(H). It is clear that " $v \rightarrow$ " commutes with the restriction action of $H^* \subset D(H)$. Because v is cocommutative,

(10)
$$v \rightharpoonup (a \cdot b) = \langle v, a_{(2)}b_{(2)}Sa_{(3)}\rangle a_{(1)}b_{(1)}Sa_{(4)}$$
$$= \langle v, Sa_{(3)}a_{(2)}b_{(2)}\rangle a_{(1)}b_{(1)}Sa_{(4)}$$
$$= \langle v, b_{(2)}\rangle a_{(1)}b_{(1)}S(a_{(2)}) = a \cdot (v \rightharpoonup b).$$

This proves that " $v \rightharpoonup$ " commutes with the restriction action of $H \subset D(H)$. Because D(H) is generated by $H^* \subset D(H)$ and $H \subset D(H)$, so " $v \rightharpoonup$ " commutes with the action of D(H).

Lemma 2. If $T \in End_k(H)$ commutes with the action \leftarrow of H^* on H, then there exists $v \in H^*$ such that $T(a) = v \rightarrow a$ for all $a \in H$.

Proof. This is a version of the following well-known fact: if A is an associative algebra, $T \in \operatorname{End}_k(A)$ commutes with the left multiplication r_a for all $a \in A$, then T is a right multiplication for some $b \in A$. To apply this fact, we notice that the transpose action of \rightharpoonup is the left multiplication of H^* on H^* , while the transpose action of \vdash is the right multiplication of H^* on H^* . T commutes with the action \vdash of H^* on H, implies that $T^* \in \operatorname{End}_k(H^*)$ commutes with the left multiplications on H^* . Therefore T^* is given by a right multiplication, and therefore there exists $v \in H^*$ such that $T(a) = (T^*)^*(a) = v \rightharpoonup a$ for all $a \in H$.

Before giving a corollary of Theorem 1 concerning the dimension of the simple D(H)-submodules in H, we recall a theorem in [K] (cf. [Z] for an exposition suitable for the discussion here). We assume the conditions in Theorem 1. Since C(H) is semisimple, it is a sum of full matrix algebras M_1, \ldots, M_s . We choose a minimal idempotent e_i in M_i . Then $tr(e_i)$, the trace of the operator on H^* given by $g \mapsto ge_i$, is a divisor of dim(H).

Corollary. Let H be a semisimple Hopf algebra over an algebraically closed field k of characteristic 0, and let H be the D(H)-module defined above. Then the dimension of every simple D(H)-submodule in H is a divisor of dim(H).

Proof. Let V_1, \ldots, V_s be the simple C(H)-modules correspondent to M_1, \ldots, M_s respectively. Note that the C(H)-action on H is faithful, since this action is the restriction of the H^* -action "—". All V_i 's appear as submodules in H. Because D(H)-action and C(H)-action form a commuting pair, and both D(H) and C(H) are semisimple, simple D(H)-submodules in H and simple C(H)-submodules in H are bijectively correspondent. Let W_i $(i=1,\ldots,s)$ be the simple D(H)-module correspondent to V_i . As a $D(H) \otimes C(H)$ -module, H is isomorphic to $H = \bigoplus_{i=1}^s (W_i \otimes V_i)$. Because e_i is a minimal idempotent of $M_i \subset C(H)$, its trace on V_i is 1, and its trace on H is $dim(W_i)$ by the above decomposition of H. On the other hand, since the C(H)-action "—" on H is the transpose action of the action of left multiplication on H^* , the trace of e_i on H is $tr(e_i)$ above. This proves $dim(W_i) = tr(e_i)$. It follows that $dim(W_i)$ is a divisor of dim(H).

In the case that H is the group algebra of a finite group G over \mathbb{C} , each simple D(H)-submodule of $\mathbb{C}G$ is spanned by the elements in a conjugacy class of G.

References

- [D] V.G.Drinfeld, Quantum Groups, Proc. Int. Cong. Math, Berkeley (1986), 789-820. MR 89f:17017
- [K] G.I.Kats., Certain Arithmetic Properties of Ring Groups, Functional Anal. Appl. 6 (1972), 158-160.
- [LR] R.G.Larson and D.E.Radford, Semisimple cosemisimple Hopf Algebras, Amer.J.Math 110 (1988), 381-385. MR 89a:16011
- [M] S. Montgomery, Hopf Algebras and Their Actions on Rings, AMS, 1993. MR 94i:16019
- [R] D.E. Radford, On the Antipode of a Semisimple Hopf Algebra, J.Algebra 88 (1984), 66-88. MR 85i:16012
- [Z] Y.Zhu, Hopf Algebras of Prime Dimension, Intern. Math. Res. Notices No.1 (1994), 53-59. MR 94j:16072

DEPARTMENT OF MATHEMATICS, HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY, CLEAR WATER BAY, HONG KONG