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A COMMUTING PAIR IN HOPF ALGEBRAS
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(Communicated by Ken Goodearl)

Abstract. We prove that if H is a semisimple Hopf algebra, then the action
of the Drinfeld double D(H) on H and the action of the character algebra on
H form a commuting pair. This result and a result of G. I. Kats imply that
the dimension of every simple D(H)-submodule of H is a divisor of dim (H).

Let H be a finite dimensional semisimple Hopf algebra over an algebraically
closed field k of characteristic 0, D(H) be the Drinfeld double of H , and C(H) be
the character algebra of H . C(H) is spanned by the characters of H-modules and is
an associative subalgebra of H∗. It is known that D(H) acts on H and that C(H)
acts on H by the restriction of the action “⇀” of H∗ on H (these actions will be
recalled below). The purpose of this note is to prove that these two actions form
a commuting pair. Using this result, we prove that the dimension of every simple
D(H)-submodule of H is a divisor of dim(H). It would be interesting if there exists
an analog of this commuting pair in the context of Poisson Lie groups.

We first recall the construction of the Drinfeld double (cf. [D], [M]) and fix
necessary notations. Let H be a finite dimensional Hopf algebra over a field k (here
we do not need any additional assumptions on H and k). The Drinfeld double
of H , denoted by D(H), as a vector space, is the tensor space H∗ ⊗ H . The
comultiplication of D(A) is given by

∆(f ⊗ a) =
∑(

f(2) ⊗ a(1)

)⊗ (f(1) ⊗ a(2)

) ∈ D(H)⊗D(H),

where ∆f = f(1) ⊗ f(2), ∆a = a(1) ⊗ a(2) are comultiplictions in H and H∗ respec-
tively. The multiplication in D(H) is defined as follows: for f ⊗ a and g ⊗ b in
D(H),

(f ⊗ a)(g ⊗ b) =
∑

f(a(1) . g(2))⊗ (a(2) / g(1))b,(1)

where a . g is the action of H on H∗ given by

a . g = a(1) ⇀ g ↼ S−1a(2)

and a / g is the right action of H∗ on H given by

a / g = S−1g(1) ⇀ a ↼ g(2).

The notations ⇀ and ↼ mean the usual left and right actions of H on H∗, i.e., for
a ∈ H and g ∈ H∗,

a ⇀ g =
∑

g(1)〈g(2), a〉 ∈ H∗, g ↼ a =
∑

g(2)〈g(1), a〉.
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We view H and H∗ as subspaces of D(H) by the embeddings a ∈ H 7→ 1 ⊗ a and
f ∈ H∗ 7→ f ⊗ 1.

The antipode S and the counit of D(H) are given by

S(f ⊗ a) = S(a)S−1(f), ε(f ⊗ a) = ε(f)ε(a);

here ε(f) and ε(a) denote the counit maps for H∗ and H .
The above operations give D(H) a structure of Hopf algebra. Moreover D(H)

is quasitriangular with the R-matrix R =
∑

i e
∗
i ⊗ ei, where {ei} is a basis for H ,

and {e∗i } is its dual basis for H∗. The quasitriangular structure will not play a role
here. Notice that H and H∗cop (H∗cop is H∗ with the opposite coproduct) are Hopf
subalgebras of D(H).

We also recall some basic notions about modules and module algebras of a Hopf
algebra. A (left) module of H means a left module of H as an associative algebra.
An associative algebra A is called a (left) module algebra of H if A is a H-module
such that the algebra structure and H-module structure for A are compatible in
the following sense: for h ∈ H , u, v ∈ A and the unit 1A in A,

h · (uv) =
∑

(h(1) · u)(h(2) · v), h · 1A = ε(h)1A.(2)

Similarly a right module algebra of H is an associative algebra A together with a
right H-module structure satisfying the conditions

(uv) · h = (u · h(1))(v · h(2)), 1A · h = ε(h)1A.

For a finite dimensional H-module V , the character χV of V is an element of
H∗ defined by 〈χV , a〉 = Tr|V (a) for every a ∈ H . Because χW⊗V = χWχV
for H-modules W,V , the characters of H span an associative subalgebra of H∗.
This algebra is called the character algebra of H and denoted by C(H). If H is
semisimple and the ground field is algebraically closed and of characteristic 0, then
C(H) consists of the elements v ∈ H∗ that are cocommutative, i.e.,

∑
v(1)⊗ v(2) =∑

v(2) ⊗ v(1).
H is an H∗-module algebra under the action ⇀ given by g ⇀ a = 〈g, a(2)〉a(1).

We will be concerned with the restriction of ⇀ on the character algebra C(H).
There is D(H)-action on H defined by

(f ⊗ a) · b = (a(1)bS(a(2))) ↼ S−1(f).(3)

Lemma 1. H is a module algebra of D(H) under the action (3).

Proof. To prove H is a D(H)-module under (3), We need to prove that

(xy) · v = x · (y · v)(4)

for every x, y ∈ D(H) and v ∈ H . This is true for the cases x, y ∈ H ⊂ D(H),
x, y ∈ H∗ ⊂ D(H) and x ∈ H∗, y ∈ H . It is known that the definition of the
multiplication of D(H) is equivalent to the following (cf. [M])

(f ⊗ a)(g ⊗ b) = f(a(1) ⇀ g ↼ S−1a(3))⊗ a(2)b.

To prove (3), we only need to prove for a ∈ H ⊂ D(H), g ∈ H∗ ⊂ D(H) and
v ∈ H ,

a · (g · v) = (ag) · v = (a(1) ⇀ g ↼ S−1a(3)) · (a(2) · v).(5)
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This is proved in the following computation:

(a(1) ⇀ g ↼ S−1a(3)) · (a(2) · v)
= 〈g(3), a(1)〉〈g(1), S−1a(3)〉g(2) · (a(2) · v)
= 〈g(3), a(1)〉〈g(1), S−1a(4)〉g(2) · (a(2)vSa(3))

= 〈g(3), a(1)〉〈g(1), S−1a(4)〉(a(2)vSa(3)) ↼ S−1g(2)

= 〈g(3), a(1)〉〈g(1), S−1a(6)〉〈S−1g(2), a(2)v(1)Sa(5)〉a(3)v(2)Sa(4)

= 〈g(3), a(1)〉〈g(1), S−1a(6)〉〈g(2), a(5)S
−1v(1)S

−1a(2)〉a(3)v(2)Sa(4)

= 〈g, S−1a(6)a(5)S
−1v(1)S

−1a(2)a(1)〉a(3)v(2)Sa(4)

= 〈S−1g, v(1)〉a(1)v(2)Sa(2)

= a · (g · v).
Thus H is a D(H)-module under (3). It is clear that (2) is true for h in H or H∗;
since H and H∗ generate D(H), (2) is also true for h ∈ D(H). This proves that H
is a module algebra of D(H) under the action (3).

We outline a more conceptual proof of Lemma 1 that explains formula (3). For
this, we need the following formula for the coproduct of the dual Hopf algebra of
D(H), D(H)∗ (cf. [M]), identifying D(H)∗ with H ⊗H∗:

∆(a⊗ g) =
∑(

a(1) ⊗ e∗i g(1)e
∗
j

)⊗ (S−1(ej)a(2)ei ⊗ g(2)
)
,(6)

where {ei} is a basis of H and {e∗i } is its dual basis of H∗. Now D(H)∗ is a right
module algebra of D(H) under the action ↼. It is clear from (6) that H ⊂ D(H)∗

is stable under ↼, so Hop is a right module algebra of D(H) (here Hop is H with
the opposite multiplication). Using (6), it is easy to prove that this right action of
D(H) on Hop is given by the formula

b · (g ⊗ a) = S−1(a(2))(b ↼ g)a(1).

Now we use the following general fact: if Aop is a right H-module algebra with
the action b · h for b ∈ A, h ∈ H , then A is an H-module algebra with action
h · b = b · S(h). So H is a module algebra of D(H) with the action

(a⊗ f) · b = b · (S(f ⊗ a)) = (a(1)bS(a(2))) ↼ (S−1f).

We see that this action is precisely the one defined in (3).
Now we are in the position to state our main theorem.

Theorem 1. If H is a semisimple Hopf algebra over an algebraically closed field
k of characteristic 0, then the action of D(H) given by (3) and the action ⇀ of
C(H) form a commutating pair, i.e., an operator T ∈ Endk(H) commutes with
the action of D(H) if and only if T is in the image of C(H) in Endk(H); and
T ∈ Endk(H) commutes with the action of C(H) if and only if T is the image of
D(H) in Endk(H).

Proof. We note that the semisimplicity of H implies that S2 = 1 and D(H) is
semisimple ([LR], [R]). The semisimplicity ofH also implies that C(H) is a semisim-
ple algebra (cf. [Z]). In particular the images of D(H) and C(H) in Endk(H) are
semisimple algebras. Therefore it suffices to prove that T ∈ Endk(H) commutes
with the action of D(H) if and only if T is in the image of C(H).
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Assume T commutes with the action of D(H); we need to prove T is in the
image of C(H). We note that H∗ ⊂ D(H) acts on H by restriction: this action is
just the action “↼” of H∗ on H twisted by S−1. By Lemma 2 below, there exists
a unique v ∈ H∗ such that

T (b) = v ⇀ b = 〈v, b(2)〉b(1)(7)

for every b ∈ H .
For T as in (7), T commutes with the action of H ⊂ D(H) implies that

〈v, a(2)b(2)Sa(3)〉a(1)b(1)Sa(4) = 〈v, b(2)〉a(1)b(1)Sa(2)(8)

for every a, b ∈ H . Apply the counit map to both sides of (8), we obtain

〈v, a(1)bS(a(2))〉 = 〈v, b〉ε(a);
this further implies that

〈v, ab〉 = 〈v, a(1)ba(3)Sa(2)〉 = 〈v, ba(2)〉ε(a(1)) = 〈v, ba〉.(9)

This proves that v is cocommutative or v ∈ C(H). Note that in (9), we use the fact
that a(2)Sa(1) = ε(a) which is true for the Hopf algebras with the property S2 = 1.

Conversely, if v ∈ C(H), we need to prove that the action “v ⇀” commutes with
the action of D(H). It is clear that “v ⇀” commutes with the restriction action of
H∗ ⊂ D(H). Because v is cocommutative,

v ⇀ (a · b) = 〈v, a(2)b(2)Sa(3)〉a(1)b(1)Sa(4)(10)

= 〈v, Sa(3)a(2)b(2)〉a(1)b(1)Sa(4)

= 〈v, b(2)〉a(1)b(1)S(a(2)) = a · (v ⇀ b).

This proves that “v ⇀” commutes with the restriction action of H ⊂ D(H). Be-
cause D(H) is generated by H∗ ⊂ D(H) and H ⊂ D(H), so “v ⇀” commutes with
the action of D(H).

Lemma 2. If T ∈ Endk(H) commutes with the action ↼ of H∗ on H, then there
exists v ∈ H∗ such that T (a) = v ⇀ a for all a ∈ H.

Proof. This is a version of the following well-known fact: if A is an associative
algebra, T ∈ Endk(A) commutes with the left multiplication ra for all a ∈ A, then
T is a right multiplication for some b ∈ A. To apply this fact, we notice that the
transpose action of ⇀ is the left multiplication of H∗ on H∗, while the transpose
action of ↼ is the right multiplication of H∗ on H∗. T commutes with the action
↼ of H∗ on H , implies that T ∗ ∈ Endk(H

∗) commutes with the left multiplications
on H∗. Therefore T ∗ is given by a right multiplication, and therefore there exists
v ∈ H∗ such that T (a) = (T ∗)∗(a) = v ⇀ a for all a ∈ H .

Before giving a corollary of Theorem 1 concerning the dimension of the simple
D(H)-submodules in H , we recall a theorem in [K] (cf. [Z] for an exposition suitable
for the discussion here). We assume the conditions in Theorem 1. Since C(H) is
semisimple, it is a sum of full matrix algebras M1, . . . ,Ms. We choose a minimal
idempotent ei in Mi. Then tr(ei), the trace of the operator on H∗ given by g 7→ gei,
is a divisor of dim(H).

Corollary. Let H be a semisimple Hopf algebra over an algebraically closed field
k of characteristic 0, and let H be the D(H)-module defined above. Then the
dimension of every simple D(H)-submodule in H is a divisor of dim(H).
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Proof. Let V1, . . . , Vs be the simple C(H)-modules correspondent to M1, . . . ,Ms

respectively. Note that the C(H)-action on H is faithful, since this action is the
restriction of the H∗-action “⇀”. All Vi’s appear as submodules in H . Because
D(H)-action and C(H)-action form a commuting pair, and both D(H) and C(H)
are semisimple, simple D(H)-submodules in H and simple C(H)-submodules in
H are bijectively correspondent. Let Wi (i = 1, . . . , s) be the simple D(H)-
module correspondent to Vi. As a D(H) ⊗ C(H)-module, H is isomorphic to
H = ⊕s

i=1 (Wi ⊗ Vi) . Because ei is a minimal idempotent of Mi ⊂ C(H), its trace
on Vi is 1, and its trace on H is dim(Wi) by the above decomposition of H . On
the other hand, since the C(H)-action “⇀” on H is the transpose action of the
action of left multiplication on H∗, the trace of ei on H is tr(ei) above. This proves
dim(Wi) = tr(ei). It follows that dim(Wi) is a divisor of dim(H).

In the case that H is the group algebra of a finite group G over C, each simple
D(H)-submodule of CG is spanned by the elements in a conjugacy class of G.
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