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COPRIMENESS AMONG IRREDUCIBLE CHARACTER

DEGREES OF FINITE SOLVABLE GROUPS

DIANE BENJAMIN

(Communicated by Ronald M. Solomon)

Abstract. Given a finite solvable group G, we say that G has property Pk if
every set of k distinct irreducible character degrees of G is (setwise) relatively
prime. Let k(G) be the smallest positive integer such that G satisfies property
Pk. We derive a bound, which is quadratic in k(G), for the total number of
irreducible character degrees of G. Three exceptional cases occur; examples
are constructed which verify the sharpness of the bound in each of these special
cases.

1. Introduction

Suppose G is a finite solvable group and let cd(G) denote the set
{
χ(1) | χ ∈

Irr(G)
}
. We say that G has property Pk if every set of k distinct elements of

cd(G) is (setwise) relatively prime. Every finite group G satisfies Pk at least for
k ≥ | cd(G)|, since 1 ∈ cd(G). The main result of this paper is the following:

Theorem A. Let G be a nonabelian finite solvable group and let k be the smallest
positive integer such that G satisfies property Pk. Then

| cd(G)| ≤


3 if k = 2;

6 if k = 3;

9 if k = 4;

k2 − 3k + 4 if k ≥ 5.

Following the proof of Theorem A, a collection of examples is presented. In each
of the exceptional cases k = 2, 3, 4 the bound is attained. For k = 2, an example
is provided by the group SL(2, 3). This group satisfies P2 and has 3 irreducible
character degrees: cd(SL(2, 3)) = {1, 2, 3}. For k = 3, we construct a group Γ with
cd(Γ) = {1, r, s, rs, q4, q5}, where q, r, s are any three primes satisfying q ≡ 3 (mod
4) and q ≡ 1 (mod rs). The group Γ attains the bound in this case. Next, for
infinitely many values of k, we construct a group which satisfies property Pk and
has 3(k − 1) irreducible character degrees. Observe that, for k = 4, such a group
satisfies P4 and has 9 irreducible character degrees, verifying the sharpness of the
bound in this case. It also follows from this infinite set of examples that the best
possible bound for | cd(G)| in terms of k cannot be better than the linear bound
3(k − 1).
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While this result belongs to a genre of problems and results concerning the
irreducible character degrees of finite solvable groups (see §2 of [4]), it has a unique
flavor. The investigation of property Pk was inspired by problem 12.3 of [1] which
is, in fact, the k = 2 case of the result. At this point the author would like to express
her appreciation to Professor Martin Isaacs for his direction and encouragement in
this work, which is a portion of her thesis.

2. Preliminaries

The purpose of this section is to restate facts about the structure and character
degrees of a factor groupG/K of a finite nonabelian solvable groupG withK chosen
to be maximal such that G/K remains nonabelian. Notice that, in this situation
every proper factor group of G/K is abelian and thus (G/K)′ is the unique minimal
normal subgroup of G/K.

(2.1) Lemma. Let G be a finite solvable group and assume that G′ is the unique
minimal normal subgroup of G. Then all the nonlinear irreducible characters of G
have equal degree f and one of the following situations obtains:

(a) G is a p-group, Z(G) is cyclic and G/Z(G) is elementary abelian of order f2.
(b) G is a Frobenius group with a cyclic Frobenius complement of order f . Also,

G′ is the Frobenius kernel and is an elementary abelian p-group.

Proof. This is Lemma 12.3 of [1] with the observation that an abelian Frobenius
complement is necessarily cyclic.

(2.2) Theorem. Let K / G be such that G/K is a Frobenius group with kernel
N/K, an elementary abelian p-group. Let ψ ∈ Irr(N). Then one of the following
holds:

(a) |G : N |ψ(1) ∈ cd(G).
(b) p divides ψ(1).

Proof. This is immediate from Theorem 12.4 of [1].

3. Proof of Theorem A

We begin by proving a key lemma.

(3.1) Lemma. Let G be a finite nonabelian solvable group with G′ ≤ Op(G) for
all primes p. Suppose that K /G and K is maximal such that G/K is nonabelian.
Then G/K is a Frobenius group with Frobenius kernel N/K, an elementary abelian
q-group for some prime q, and a cyclic Frobenius complement. Let f denote the
order of the Frobenius complement and assume further that K is chosen so that f
is minimal. Then for each linear character λ of N , either λG is irreducible or λ
extends to G. In particular, if χ ∈ Irr(G) lies over a linear character of N , then χ
must have degree 1 or f .

It will be handy in the proof to use the standard notation b(G) to denote the
largest irreducible character degree of G; that is, the maximum of the set cd(G).

Proof. By hypothesis, if M / G with K < M , then the quotient G/M is abelian.
Since G is solvable, it follows that (G/K)′ is the unique minimal normal subgroup
of G/K. Now since G has no nonabelian p-factor groups for any prime p, the
Frobenius structure of G/K follows from Lemma 2.1 (b).
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Fix a linear character λ ∈ Irr(N) and let χ ∈ Irr(G) lie over λ. Set T = IG(λ)

and t = |G : T |. Since T/N is cyclic, λ extends to a character λ̂ ∈ Irr(T ) and
further, by Corollary 6.17 of [1], every element of Irr(T |λ) is an extension of λ.

We may then assume without loss of generality that the extension λ̂ is the Clifford

correspondent between χ and λ. Thus χ = (λ̂)G and χN =
∑t

i=1 λi , labeled so
that λ1 = λ. Also note that χ(1) = t.

We are done if t = 1 or t = f , so assume, for a contradiction, that neither
happens. In this case 1 < t = χ(1) < f and N < T < G. Let M = kerλ. Since T
fixes the linear character λ, it follows that T centralizes N/M and so [T,N ] ≤ M .
Also [T,N ] / G, since both T and N are normal. Let denote quotients mod
[T,N ]. Then N is central in T and T/N is cyclic since it is isomorphic to T/N ;
thus T is abelian. We have T is normal and abelian in G. By Ito’s Theorem (6.15
of [1]) t = |G : T | ≥ b(G). Also, since kerχ ≥ coreG

(
kerλ

) ≥ [T,N ], we may view

χ as an element of Irr(G). We have t = χ(1) ∈ cd(G) and thus G is nonabelian.
Now, let G/L be a minimal nonabelian factor of G. Clearly the hypothesis on

p-factors of G holds for p-factors of G. It follows from Lemma 2.1 that G/L is a
Frobenius group with a Frobenius complement of order χ(1) = t < f . Since factors
of G are factors of G, this contradicts the minimality of f .

It will now be convenient to establish some notation for the proof of Theorem A.
For a group G, we define k(G) to be the smallest integer such that G satisfies prop-
erty Pk. Note that k(G) ≤ | cd(G)| and if G is a q-group, for q prime, then equality
holds. Given a positive integer q, we define cdq(G) =

{
n ∈ cd(G)

∣∣ (q, n) = 1
}

and

cdq(G) =
{
n ∈ cd(G)

∣∣ q|n}. If q is prime, then cd(G) is the disjoint union of these
two sets. Also, forN/G withm ∈ cd(N) if there exists ψ ∈ Irr(N) and χ ∈ Irr(G|ψ)
with χ(1) = n and ψ(1) = m, then we will say that n lies over m. Further, for each
such m, define a subset of cd(G) by s(m) = {n ∈ cd(G)

∣∣ n lies over m}. Note that
a given n may lie over many different m and each element of s(m) is divisible by
m.

To prove Theorem A, we bound each of |cdq(G)| and |cdq(G)| separately in
terms of k(G) and add the results. Note that if k = k(G) for a group G, then
|cdq(G)| ≤ k − 1 for any positive integer q. On the other hand, given k, examples
are available among q-groups, where q is prime, which satisfy | cd(G)| = k. For
instance, let Q be the direct product of k− 1 copies of a q-group A having cd(A) =
{1, q}. Then cd(Q) = {1, q, q2,· · · , qk−1}; thus k = k(Q) and |cdq(Q)| = k − 1. It
follows that k−1 is the best possible bound for |cdq(G)|. Our challenge in proving
Theorem A will be to bound |cdq(G)|.

Proof of Theorem A. Let G be a nonabelian finite solvable group and let k = k(G).
Suppose first that G has a nonabelian p-factor group G/K for some prime p. As

we have observed, |cdp(G)| ≤ k− 1. Now we consider |cdp(G)|. Fix ψ ∈ Irr(G/K)
with ψ(1) = pa > 1. For each character χ ∈ Irr(G) with

(
p, χ(1)

)
= 1 we have

χK ∈ Irr(K). By Corollary 6.17 of [1], we have χψ ∈ Irr(G) with degree χψ(1)
divisible by p, since χψ(1) = χ(1)pa. This gives an injection from cdp(G) into
cdp(G). Thus |cdp(G)| ≤ k− 1 and | cd(G)| ≤ 2(k− 1). In this case the conclusion
of the theorem holds. Henceforth we assume that G′ ≤ Op(G) for all primes p.

Now fix K/G so that K is maximal with G/K nonabelian. By Lemma 2.1, G/K
is a Frobenius group with kernel N/K, an elementary abelian q-group, and with a
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cyclic complement H/K of order f . Also cd(G/K) = {1, f}. Assume further that
K is chosen so that f is minimal. As before, we have |cdq(G)| ≤ k − 1.

To assess |cdq(G)| we will examine how many distinct elements of cdq(G) lie
over each element of cd(N). If we write cd(N) = cdq(N) ∪̇ cdq(N), then notice
that elements of cdq(G) can lie over only elements of cdq(N), since (q, f) = 1, and
elements of cdq(G) lie over only elements of cdq(N). Also, by Theorem 2.2 (a), for
each element z ∈ cdq(N) we must have fz ∈ cd(G). This gives an injection from

cdq(N) into cdf (G). Again, by hypothesis, |cdf (G)| ≤ k−1 ; thus |cdq(N)| ≤ k−1.
It follows that all the elements of cdq(G) lie over the, at most k − 1, elements of
cdq(N).

If z ∈ cdq(N), how many elements of cdq(G) can lie over z? By Lemma 3.1, if
z = 1, then s(z) = {1, f}. If z > 1, then |s(z)| ≤ k−1, since s(z) ⊆ cdz(G) ≤ k−1,
by hypothesis. It follows that |cdq(G)| ≤ 2 + (k − 2)(k − 1) and thus we have:

(∗) | cd(G)| ≤ |cdq(G)|+ |cdq(G)| ≤ (k − 1) + 2 + (k − 2)(k − 1) = k2 − 2k + 3.

Observe that, when k = 2 the bound (∗) yields | cd(G)| ≤ 3 and when k = 3 the
bound (∗) yields | cd(G)| ≤ 6. Thus the first two special cases of Theorem A have
been proved. Henceforth we assume that k ≥ 4 and will improve (∗). We continue
as before with the Frobenius factor group G/K.

If |cdq(N)| < k− 1, then each of the, at most k− 3, nonlinear character degrees
of cdq(N) has at most k − 1 elements of cdq(G) lying over it; thus |cdq(G)| ≤
2+(k−3)(k−1). This observation along with our bound on cdq(G) yields | cd(G)| ≤
(k − 1) + 2 + (k − 3)(k − 1) = k2 − 3k + 4 and there is nothing further to prove in
this case.

We may now assume that |cdq(N)| = k − 1. In this case {fx|x ∈ cdq(N)} is a
subset of cd(G) of size k − 1. We will show that s(z) ⊆ {z} ∪ {fx|x ∈ cdq(N)} for
each z ∈ cdq(N). Recall that an arbitrary member of s(z) has the form rz, where
r
∣∣f . If rz ∈ s(z) with r > 1, then r divides every member of {rz}∪{fx|x ∈ cdq(N)}.

Since the latter set in this union has size k−1, it follows that rz ∈ {fx|x ∈ cdq(N)}
and thus we conclude that s(z) ⊆ {z} ∪ {fx|x ∈ cdq(N)} as claimed. It follows
that all the members of cdq(G) lie in cdq(N) ∪ {fx|x ∈ cdq(N)}; hence |cdq(G)| ≤
2(k − 1). Since |cdq(G)| ≤ k − 1, we have | cd(G)| ≤ 3k − 3, in this case.

For k ≥ 4 (and Op(G) = 1), it follows that | cd(G)| is bounded by the maximum
of the bounds derived in the two preceding paragraphs. That is,

| cd(G)| ≤ max

{
(k − 1) + 2 + (k − 3)(k − 1) = k2 − 3k + 4,

(k − 1) + 2(k − 1) = 3k − 3.

Observe that, for k = 4, the second formula yields a maximum of 9, giving | cd(G)| ≤
9. In the cases k ≥ 5, the maximum is k2− 3k+4. Thus Theorem A is proved.

In the next section we give constructions which verify the sharpness of the bound
in the exceptional cases k = 3 and k = 4.

4. Constructions

For any three primes q, r, s satisfying q ≡ 3 (mod 4) and q ≡ 1 (mod rs), we
construct a group Γ as the semidirect product of a normal Sylow q-subgroup Q and
a cyclic group H of order rs such that cd(Γ) = {1, r, s, rs, q4, q5}. The group Γ
satisfies P3 and has 6 irreducible character degrees; thus providing an example for
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the sharpness of the bound in the case k = 3. Note that r = 2, s = 3, q = 7 satisfy
the conditions.

First we construct Q. Let q be prime with q ≡ 3 (mod 4). Define the group Q
of exponent q as follows, where all unspecified commutators are trivial:

Q =〈x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 |
[x1, x2] = [x3, x4] = [x5, x6] = [x7, x8] = [x9, x10],

[x1, x4] = [x2, x3] = [x5, x8] = [x6, x7]〉.
A few observations about the groupQ are helpful. First, for notational convenience,
label z1 = [x1, x2] = [x3, x4] = [x5, x6] = [x7, x8] = [x9, x10] and z2 = [x1, x4] =
[x2, x3] = [x5, x8] = [x6, x7]. Notice that Z(Q) = Q′ = 〈z1, z2〉. From this we see
that |Z(Q)| = q2 and |Q/Z(Q)| = q10. Thus the group Q is q-special of order q12

with exponent q. Further, using additive notation, we may view Q/Z(Q) and Z(Q)
as vector spaces over GF (q) with bases {x1, x2, · · · , x10} and {z1, z2}, respectively.(
Here denotes quotient mod Z(Q).

)
What are the degrees of the irreducible characters of Q? Since Q is q-special

with |Q : Z(Q)| = q10 it follows that Q has q10 linear characters. Notice that
Q/〈z1〉 is isomorphic to the direct product of an extra-special group of order q9

having exponent q with Zq ×Zq. Also Q/〈z2〉 is an extra-special group of order q11

having exponent q. These quotients give some information about Irr(Q) and about
cd(Q). In particular, we have {1, q4, q5} ⊆ cd(Q). In fact, with the assumption
q ≡ 3 mod 4, we can show that these are the only irreducible character degrees of
Q. The following fact is required:

Claim. For each nonlinear character θ ∈ Irr(Q) we have

(i) Q/ ker(θ) is an extra-special q-group with center Z(θ)/ ker(θ).
(ii) Z(θ) ≤ 〈z1, z2, x9, x10〉.

In particular, we have θ(1) is q4 or q5 and every automorphism that centralizes
〈z1, z2, x9, x10〉 fixes θ.

Fix a nonlinear character θ ∈ Irr(Q). Since Q′ = Z(Q) we have Z(Q) 6≤ ker(θ);
also Z(Q) · ker(θ) ≤ Z(θ). The nontrivial group Z(θ)/ ker(θ) is cyclic of exponent
q; thus it has order q. Further Z(θ) = ker(θ) · Z(Q). It follows that Q/ ker(θ)
has a center of order q and that the factor group modulo the center is elementary
q-abelian. Thus part (i) holds and from this we have θ(1)2 = |Q : Z(θ)|. Now since
|〈z1, z2, x9, x10〉| = q4, the final statement of the claim will hold once part (ii) is
established.

As before, let denote quotient mod Z(Q). Using additive notation in each of
the abelian groups Q and Z(Q), for an element y ∈ Z(θ) we may write:

y = c1x1 + c2x2 + · · · + c10x10 with ci ∈ GF (q).

For each element z ∈ Z(Q) and for each generator xi we have [xi, yz] = [xi, y].
Using the defining relations for the group Q, it follows that:

[x1, y] = c2z1 + c4z2 and [x3, y] = c4z1 − c2z2.

Observe that for each element y ∈ Z(θ) and x ∈ Q we have [y, x] ∈ Q′∩ker(θ) =
Z(Q) ∩ ker(θ); thus each of [x1, y] and [x3, y] lie in Z(Q) ∩K. Viewing Z(Q) ∩K
as a 1-dimensional subspace of Z(Q), the vectors c2z1 + c4z2 and c4z1 − c2z2 are
dependent. If either c2 or c4 is nonzero, then both are nonzero and c4 = αc2 and
c2 = −αc4 for some α ∈ GF (q); in which case −α2 = 1. Invoking the hypothesis
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q ≡ 3 mod 4, there is no solution for −α2 = 1 in GF (q). This forces c2 = c4 = 0.
Under the same assumption, similar comparisons (e.g. [x2, y] and [x4, y]) force
c1 = c3 = c5 = c6 = c7 = c8 = 0. Thus we have Z(θ) ≤ 〈x9, x10, z1, z2〉 and the
claim is proved.

Now let r and s be distinct primes dividing q − 1. We will define the action of
a cyclic group H of order rs on the group Q. First, we define actions on Q by
automorphisms a and b of orders r and s respectively. Let δ and ε be primitive r
and s roots of unity in GF (q) respectively. The actions of a and b are defined on
the generators of Q, where all unspecified generators are fixed:

for a : xa1 = xδ1, x
a
2 = xδ

−1

2 , xa3 = xδ3, x
a
4 = xδ

−1

4 ;

for b : xb5 = xε5, x
b
6 = xε

−1

6 , xb7 = xε7, x
b
8 = xε

−1

8 .

We must verify that the proposed definitions interact well with the defining
relations among the generators. That is, it must be shown that: if [xi, xj ] = [xk, xl],
then [xi, xj ]

a = [xk, xl]
a and [xi, xj ]

b = [xk, xl]
b. In fact, more is true. If we write

xai = xαi

i and xaj = x
αj

j , then [xi, xj ]
a = [xai , x

a
j ] = [xαi

i , x
αj

j ] = [xi, xj ]
αiαj ; and

whenever [xi, xj ] 6= 1 we have αiαj = 1. Thus every commutator [xi, xj ] is fixed
by a. The same holds for b. It follows that a and of b act as automorphisms on
Q and that the subgroup 〈z1, z2, x9, x10〉 is centralized by both a and b. It is also
clear that ab = ba. Since a and b are commuting automorphisms of Q of relatively
prime orders, the cyclic group H = 〈a〉 × 〈b〉 acts on Q. Note that |H | = rs and H
centralizes 〈z1, z2, x9, x10〉.

Now we consider the action of H on Z(Q) and on Q/Z(Q). As observed, H
centralizes Z(Q). To understand the action of H on Q/Z(Q), we return to a vector
space point of view. As before, let denote quotients mod Z(Q) and use additive
notation. From this perspective, the set {x1, x2, . . . , x10} is a basis for Q/Z(Q)
consisting of eigenvectors of a and b with corresponding eigenvalues—

for a : δ, δ−1, δ, δ−1, 1, 1, 1, 1, 1, 1;

for b : 1, 1, 1, 1, ε, ε−1, ε, ε−1, 1, 1.

It follows that a and b act diagonally on Q and that the orbits of the action of H
on Q have sizes 1, r, s, and rs.

To complete the construction, define the group: Γ = Q×H.
Now we consider cd(Γ). The coprime action of H on the abelian group Q/Z(Q)

is permutation isomorphic to the action of H on Irr(Q/Z(Q)). The orbit sizes of
the former action are {1, r, s, rs}. Since H is cyclic, it follows that cd(Γ/Z(Q)) =
{1, r, s, rs}. On the other hand, we see from the claim that each nonlinear irre-
ducible character of Q is fixed by H , since H centralizes 〈z1, z2, x9, x10〉. Again,
since H is cyclic and since the action of H on Q is coprime, the remaining elements
of cd(Γ) are exactly the nonlinear irreducible character degrees of cd(Q). It follows
that cd(Γ) = {1, r, s, rs, q4, q5}.

The next construction will show that for infinitely many values of k there exist
groups which satisfy property Pk and have 3(k − 1) irreducible character degrees.
It follows that the bound of Theorem A cannot be better than the linear bound
3(k − 1).

For any two distinct primes p and q and for an appropriate n, one can let a
cyclic group of order p act on an extra-special q-group of order q(2n+1) such that the
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irreducible character degrees of the resulting semidirect product are {1, p, qn}. Let
the groupG be the direct product of m groups of this sort such that all of the primes
involved are distinct. Then | cd(G)| = 3m; further, since a single prime divides no
more than 3(m−1) irreducible character degrees ofG, we have k = k(G) = 3(m−1)+1.
It follows that | cd(G)| = 3(k − 1), showing that the bound of Theorem A can be
no better than 3(k − 1).

Finally, observe that if, as in the preceding construction, we let ∆ = A× B for
groups A and B with cd(A) = {1, 2, 3} and cd(B) = {1, 5, 11}, then ∆ satisfies
P4 and has | cd(∆)| = 9. Thus ∆ verifies the sharpness of the bound in the case
k = 4 and completes our collection of examples for each of the exceptional cases of
Theorem A.
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