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ABSTRACT. Given a finite solvable group G, we say that G has property Py if
every set of k distinct irreducible character degrees of G is (setwise) relatively
prime. Let k(G) be the smallest positive integer such that G satisfies property
P,. We derive a bound, which is quadratic in k(G), for the total number of
irreducible character degrees of G. Three exceptional cases occur; examples
are constructed which verify the sharpness of the bound in each of these special
cases.

1. INTRODUCTION

Suppose G is a finite solvable group and let cd(G) denote the set {x(l) | x €
Irr(G)}. We say that G has property Py if every set of k distinct elements of
cd(@) is (setwise) relatively prime. Every finite group G satisfies Pj at least for
k > |cd(G)], since 1 € c¢d(G). The main result of this paper is the following:

Theorem A. Let G be a nonabelian finite solvable group and let k be the smallest
positive integer such that G satisfies property Py. Then

3 ifk=2;

S

ed(@)] < {° yk=3;
9 if k= 4;

k2 —3k+4 ifk>5.

Following the proof of Theorem A, a collection of examples is presented. In each
of the exceptional cases k = 2, 3,4 the bound is attained. For k = 2, an example
is provided by the group SL(2,3). This group satisfies P, and has 3 irreducible
character degrees: cd(SL(2,3)) = {1,2,3}. For k = 3, we construct a group I' with
cd(T') = {1,r,s,7s,q* ¢°}, where ¢, r, s are any three primes satisfying ¢ = 3 (mod
4) and ¢ = 1 (mod rs). The group I' attains the bound in this case. Next, for
infinitely many values of k, we construct a group which satisfies property P, and
has 3(k — 1) irreducible character degrees. Observe that, for k = 4, such a group
satisfies P, and has 9 irreducible character degrees, verifying the sharpness of the
bound in this case. It also follows from this infinite set of examples that the best
possible bound for |cd(G)| in terms of k cannot be better than the linear bound
3(k—1).
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While this result belongs to a genre of problems and results concerning the
irreducible character degrees of finite solvable groups (see §2 of [4]), it has a unique
flavor. The investigation of property P, was inspired by problem 12.3 of [1] which
is, in fact, the k = 2 case of the result. At this point the author would like to express
her appreciation to Professor Martin Isaacs for his direction and encouragement in
this work, which is a portion of her thesis.

2. PRELIMINARIES

The purpose of this section is to restate facts about the structure and character
degrees of a factor group G/ K of a finite nonabelian solvable group G with K chosen
to be maximal such that G/K remains nonabelian. Notice that, in this situation
every proper factor group of G/K is abelian and thus (G/K)’ is the unique minimal
normal subgroup of G/K.

(2.1) Lemma. Let G be a finite solvable group and assume that G' is the unique
minimal normal subgroup of G. Then all the nonlinear irreducible characters of G
have equal degree f and one of the following situations obtains:
(a) G is a p-group, Z(G) is cyclic and G/Z(G) is elementary abelian of order f2.
(b) G is a Frobenius group with a cyclic Frobenius complement of order f. Also,
G’ is the Frobenius kernel and is an elementary abelian p-group.

Proof. This is Lemma 12.3 of [1] with the observation that an abelian Frobenius
complement is necessarily cyclic. O

(2.2) Theorem. Let K < G be such that G/K s a Frobenius group with kernel
N/K, an elementary abelian p-group. Let ¢ € Irr(N). Then one of the following
holds:

(a) |G : N[¢(1) € cd(G).
(b) p divides 1(1).

Proof. This is immediate from Theorem 12.4 of [1]. O

3. PROOF OF THEOREM A
We begin by proving a key lemma.

(3.1) Lemma. Let G be a finite nonabelian solvable group with G' < OP(QG) for
all primes p. Suppose that K <G and K is mazimal such that G/K is nonabelian.
Then G/K is a Frobenius group with Frobenius kernel N/K, an elementary abelian
q-group for some prime q, and a cyclic Frobenius complement. Let f denote the
order of the Frobenius complement and assume further that K is chosen so that f
is minimal. Then for each linear character A\ of N, either \® is irreducible or
extends to G. In particular, if x € Irr(G) lies over a linear character of N, then x
must have degree 1 or f.

It will be handy in the proof to use the standard notation b(G) to denote the
largest irreducible character degree of G; that is, the maximum of the set c¢d(G).

Proof. By hypothesis, if M <G with K < M, then the quotient G/M is abelian.
Since G is solvable, it follows that (G/K)’ is the unique minimal normal subgroup
of G/K. Now since G has no nonabelian p-factor groups for any prime p, the
Frobenius structure of G/K follows from Lemma 2.1 (b).
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Fix a linear character A € Irr(N) and let x € Irr(G) lie over A. Set T' = Iz ())
and t = |G : T|. Since T/N is cyclic, A extends to a character A € Irr(T) and
further, by Corollary 6.17 of [1], every element of Irr(T|\) is an extension of .
We may then assume without loss of generality that the extension A is the Clifford
correspondent between y and A. Thus xy = (A)¢ and yy = 25:1 Ai , labeled so
that Ay = A. Also note that x(1) = t.

We are done if t = 1 or t = f, so assume, for a contradiction, that neither
happens. In this case 1 <t = x(1) < fand N <T < G. Let M = kerA. Since T
fixes the linear character A, it follows that T centralizes N/M and so [T, N] < M.
Also [T, N] < G, since both T and N are normal. Let ~ denote quotients mod
[T, N]. Then N is central in T and T'/N is cyclic since it is isomorphic to T//N;
thus T is abelian. We have T is normal and abelian in G. By Ito’s Theorem (6.15
of [1]) t = |G : T| > b(G). Also, since kery > core (kerA) > [T, N], we may view
x as an element of Irr(G). We have t = x(1) € cd(G) and thus G is nonabelian.

Now, let G/L be a minimal nonabelian factor of G. Clearly the hypothesis on
p-factors of G holds for p-factors of G. It follows from Lemma 2.1 that G/L is a
Frobenius group with a Frobenius complement of order x(1) = ¢ < f. Since factors
of G are factors of G, this contradicts the minimality of f. O

It will now be convenient to establish some notation for the proof of Theorem A.
For a group G, we define k(G) to be the smallest integer such that G satisfies prop-
erty P,. Note that k(G) < |cd(G)| and if G is a g-group, for ¢ prime, then equality
holds. Given a positive integer ¢, we define ¢dy(G) = {n € cd(G) | (¢,n) =1} and
cd?(G) = {n € cd(G) | g|n}. If ¢ is prime, then cd(G) is the disjoint union of these
two sets. Also, for NaG with m € ¢d(V) if there exists ¢ € Irr(IV) and x € Irr(G|)
with x(1) = n and ¥ (1) = m, then we will say that n lies over m. Further, for each
such m, define a subset of ¢cd(G) by s(m) = {n € cd(G) | n lies over m}. Note that
a given n may lie over many different m and each element of s(m) is divisible by
m.

To prove Theorem A, we bound each of [cd?(G)| and |cdq(G)| separately in
terms of k(G) and add the results. Note that if & = k(G) for a group G, then
led?(G)| < k — 1 for any positive integer ¢. On the other hand, given k, examples
are available among g-groups, where ¢ is prime, which satisfy |cd(G)| = k. For
instance, let @ be the direct product of k — 1 copies of a g-group A having cd(A) =
{1,q}. Then cd(Q) = {1,q,¢%-- ,¢*"'}; thus k = k(Q) and |cd?(Q)| = k — 1. It
follows that k — 1 is the best possible bound for |cd?(G)|. Our challenge in proving
Theorem A will be to bound |cd,(G)|.

Proof of Theorem A. Let G be a nonabelian finite solvable group and let k = k(G).
Suppose first that G has a nonabelian p-factor group G/K for some prime p. As
we have observed, |cd?(G)| <k —1. Now we consider |cd,(G)|. Fix ¢ € Irr(G/K)
with ¢ (1) = p* > 1. For each character x € Irr(G) with (p,x(1)) = 1 we have
xk € Irr(K). By Corollary 6.17 of [1], we have x¢ € Irr(G) with degree x(1)
divisible by p, since x¥(1) = x(1)p®. This gives an injection from cd,(G) into
cd?(G). Thus |cd,(G)| < k—1 and |cd(G)| < 2(k —1). In this case the conclusion
of the theorem holds. Henceforth we assume that G’ < OP(G) for all primes p.
Now fix K <@ so that K is maximal with G/K nonabelian. By Lemma 2.1, G/K

is a Frobenius group with kernel N/K, an elementary abelian ¢g-group, and with a
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cyclic complement H/K of order f. Also cd(G/K) = {1, f}. Assume further that
K is chosen so that f is minimal. As before, we have [cd?(G)| <k — 1.

To assess |cdq(G)| we will examine how many distinct elements of cd,(G) lie
over each element of cd(N). If we write cd(N) = cd?(N) U cdgy(N), then notice
that elements of ¢d?(G) can lie over only elements of c¢d?(N), since (¢, f) = 1, and
elements of cd,(G) lie over only elements of c¢d, (V). Also, by Theorem 2.2 (a), for
each element z € cdy(N) we must have fz € ¢d(G). This gives an injection from
cdy(N) into cdf (@). Again, by hypothesis, |cd’ (G)| < k—1; thus |cd,(N)| < k—1.
It follows that all the elements of cd,(G) lie over the, at most k — 1, elements of
cdg(N).

If z € cdy(N), how many elements of c¢d,(G) can lie over z? By Lemma 3.1, if
z =1, then s(z) = {1, f}. If 2 > 1, then |s(z)| < k—1, since s(z) C c¢d*(G) < k-1,
by hypothesis. It follows that |cdy(G)| <2+ (k —2)(k — 1) and thus we have:

(#) | ed(G)] < [ed(G)] + |edg (G)] < (k — 1)+ 2+ (k — 2)(k — 1) = k2 — 2k + 3.

Observe that, when k = 2 the bound () yields | cd(G)| < 3 and when k = 3 the
bound (*) yields |ed(G)| < 6. Thus the first two special cases of Theorem A have
been proved. Henceforth we assume that & > 4 and will improve (x). We continue
as before with the Frobenius factor group G/K.

If |edq (V)| < k — 1, then each of the, at most k — 3, nonlinear character degrees
of cdg(N) has at most k — 1 elements of cdq(G) lying over it; thus |cdq(G)| <
2+ (k—3)(k—1). This observation along with our bound on cd?(G) yields | cd(G)| <
(k—1)+2+ (k—3)(k—1) = k> — 3k + 4 and there is nothing further to prove in
this case.

We may now assume that |cdy(NV)| = k — 1. In this case {fz|z € cdg(N)} is a
subset of cd(G) of size k — 1. We will show that s(z) C {2z} U{fz|z € cdq(N)} for
each z € cdg(NN). Recall that an arbitrary member of s(z) has the form rz, where
r‘f. Ifrz € s(z) with r > 1, then r divides every member of {rz}U{ fz|z € cds(N)}.
Since the latter set in this union has size k—1, it follows that rz € {fz|z € cde(N)}
and thus we conclude that s(z) C {z} U{fz|z € cdq(N)} as claimed. It follows
that all the members of ¢d,(G) lie in cdy(N) U {fz|z € cdg(N)}; hence |cdy(G)| <
2(k —1). Since |cd?(G)| < k — 1, we have | cd(G)| < 3k — 3, in this case.

For k > 4 (and OP(G) = 1), it follows that |cd(G)| is bounded by the maximum
of the bounds derived in the two preceding paragraphs. That is,

(k—1)+2+ (k—3)(k—1) =k? - 3k + 4,

|cd(G)|Smax{(k_1)+2(k_1):3k—3.

Observe that, for k = 4, the second formula yields a maximum of 9, giving | cd(G)| <
9. In the cases k > 5, the maximum is k2 — 3k +4. Thus Theorem A is proved. O

In the next section we give constructions which verify the sharpness of the bound
in the exceptional cases k = 3 and k = 4.

4. CONSTRUCTIONS

For any three primes ¢, r, s satisfying ¢ = 3 (mod 4) and ¢ = 1(mod rs), we
construct a group I' as the semidirect product of a normal Sylow g-subgroup @ and
a cyclic group H of order rs such that cd(T') = {1,7,s,7s,q*,¢°}. The group I'
satisfies P3 and has 6 irreducible character degrees; thus providing an example for
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the sharpness of the bound in the case K = 3. Note that r = 2, s = 3, ¢ = 7 satisfy
the conditions.
First we construct Q). Let ¢ be prime with ¢ = 3 (mod 4). Define the group @
of exponent ¢ as follows, where all unspecified commutators are trivial:
Q =(x1, 72, T3, T4, T5, T6, T7, T8, T9,T10 |

(71, 22] = |73, 24] = |25, 76] = [27, 28] = [29, 10],

[$17$4] = [$27x3] = [1;571;8] = [$67$7]>'
A few observations about the group @ are helpful. First, for notational convenience,
label 21 = [z1,22] = [x3,24] = [25,26] = [x7,28] = [x9,x10] and 20 = [x1,24] =
[x2,x3] = [x5, 28] = [x6,x7]. Notice that Z(Q) = Q' = (21, 22). From this we see

that |Z(Q)| = ¢ and |Q/Z(Q)| = ¢*°. Thus the group Q is g-special of order ¢'2
with exponent g. Further, using additive notation, we may view Q/Z(Q) and Z(Q)
as vector spaces over GF(q) with bases {Z1, 73, - ,T10} and {z1, 22}, respectively.
(Here ~ denotes quotient mod Z(Q).)

What are the degrees of the irreducible characters of Q7 Since @ is g-special
with |Q : Z(Q)| = ¢*° it follows that @ has ¢'° linear characters. Notice that
Q/{z1) is isomorphic to the direct product of an extra-special group of order ¢°
having exponent q with Z, x Z,. Also Q/(z2) is an extra-special group of order ¢!
having exponent ¢q. These quotients give some information about Irr(Q) and about
cd(Q). In particular, we have {1,¢* ¢°} C cd(Q). In fact, with the assumption
g = 3 mod 4, we can show that these are the only irreducible character degrees of
Q. The following fact is required:

Claim. For each nonlinear character 6 € Irr(Q) we have

(i) Q/ker(#) is an extra-special g-group with center Z(#)/ ker(6).

(if) Z(0) < (21,22, 9, T10)-
In particular, we have 6(1) is ¢* or ¢° and every automorphism that centralizes
(21, 22, T9, T10) fixes 6.

Fix a nonlinear character 6 € Irr(Q). Since Q' = Z(Q) we have Z(Q) £ ker(0);
also Z(Q) - ker(f) < Z(#). The nontrivial group Z(#)/ ker(6) is cyclic of exponent
g; thus it has order ¢q. Further Z(0) = ker(f) - Z(Q). It follows that Q/ker(6)
has a center of order ¢ and that the factor group modulo the center is elementary
g-abelian. Thus part (i) holds and from this we have 6(1)? = |Q : Z(6)|. Now since
|(z1, 22, 79, T10)| = ¢*, the final statement of the claim will hold once part (ii) is
established.

As before, let ~ denote quotient mod Z(Q). Using additive notation in each of
the abelian groups Q and Z(Q), for an element y € Z(#) we may write:

Y=c1T] + 2Tz + -+ +c10T19 with ¢; € GF(q)
For each element z € Z(Q) and for each generator x; we have [z;,yz] = [z;,y].
Using the defining relations for the group @), it follows that:
[21,y] = caz1 +caze and  [23,y] = caz1 — c220.

Observe that for each element y € Z(0) and = € Q we have [y, z] € Q' Nker(d) =
Z(Q) Nker(8); thus each of [x1,y] and [z3,y] lie in Z(Q) N K. Viewing Z(Q) N K
as a 1-dimensional subspace of Z(Q), the vectors coz1 + c422 and cq2z1 — cozo are
dependent. If either ¢y or ¢4 is nonzero, then both are nonzero and ¢4 = acy and
¢y = —acy for some o € GF(q); in which case —a? = 1. Invoking the hypothesis
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q = 3 mod 4, there is no solution for —a? = 1 in GF(g). This forces ¢y = ¢4 = 0.
Under the same assumption, similar comparisons (e.g. [z2,y] and [z4,y]) force
c1 =c3=c¢5 =cg =cr =cg =0. Thus we have Z(0) < (9, 10, 21, 22) and the
claim is proved.

Now let r and s be distinct primes dividing ¢ — 1. We will define the action of
a cyclic group H of order rs on the group . First, we define actions on @ by
automorphisms a and b of orders r and s respectively. Let 6 and € be primitive r
and s roots of unity in GF'(q) respectively. The actions of a and b are defined on
the generators of @), where all unspecified generators are fixed:

. oa ] a 51 a & a 571,
fora:af =af, 25 =5 , 25 =23, vj =2, ;

for b:al =af, 2b = xéfl, 2 =5, 2 = ngl.

We must verify that the proposed definitions interact well with the defining
relations among the generators. That is, it must be shown that: if [z;, z;] = [zk, z1],
then [z;,2;]% = [vk, 2;)* and [2;,2;]° = [k, 24]". In fact, more is true. If we write

= 2" and 2§ = 277, then [z, 2;]* = [af,29] = [2{",277] = [2s,2;]%%9; and
whenever [x;,z;] # 1 we have oya; = 1. Thus every commutator [z;,z;] is fixed
by a. The same holds for b. It follows that a and of b act as automorphisms on
Q@ and that the subgroup (z1, 22, xg, 210) is centralized by both a and b. It is also
clear that ab = ba. Since a and b are commuting automorphisms of @ of relatively
prime orders, the cyclic group H = (a) X (b) acts on Q. Note that |H| = rs and H
centralizes (21, 22, Zg, T10)-

Now we consider the action of H on Z(Q) and on Q/Z(Q). As observed, H
centralizes Z(Q). To understand the action of H on Q/Z(Q), we return to a vector
space point of view. As before, let ~ denote quotients mod Z(Q) and use additive
notation. From this perspective, the set {Z1,7Z3,...,T10} is a basis for Q/Z(Q)
consisting of eigenvectors of @ and b with corresponding eigenvalues—

fora:6, 671, 6, 671, 1,1,1,1, 1, 1;

a
€L;

forb:1,1,1,1,¢ ¢ ' e e, 1, 1.

It follows that a and b act diagonally on @ and that the orbits of the action of H
on Q have sizes 1, 7, s, and rs.

To complete the construction, define the group: I' = Qx H.

Now we consider cd(T"). The coprime action of H on the abelian group Q/Z(Q)
is permutation isomorphic to the action of H on Irr(Q/Z(Q)). The orbit sizes of
the former action are {1,r,s,rs}. Since H is cyclic, it follows that ¢cd(T'/Z(Q)) =
{1,r,8,7s}. On the other hand, we see from the claim that each nonlinear irre-
ducible character of @ is fixed by H, since H centralizes (z1, 22, T9, z19). Again,
since H is cyclic and since the action of H on @ is coprime, the remaining elements
of ¢d(T") are exactly the nonlinear irreducible character degrees of c¢d(Q). It follows
that cd(T) = {1,r,s,7s,q¢* ¢°}.

The next construction will show that for infinitely many values of k there exist
groups which satisfy property Py and have 3(k — 1) irreducible character degrees.
It follows that the bound of Theorem A cannot be better than the linear bound
3(k—1).

For any two distinct primes p and g and for an appropriate n, one can let a
cyclic group of order p act on an extra-special g-group of order (211 such that the
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irreducible character degrees of the resulting semidirect product are {1, p, ¢"}. Let
the group G be the direct product of m groups of this sort such that all of the primes
involved are distinct. Then | cd(G)| = 3™; further, since a single prime divides no
more than 30™~1) irreducible character degrees of G, we have k = k(G) = 3(m~D 1.
It follows that |ed(G)| = 3(k — 1), showing that the bound of Theorem A can be
no better than 3(k — 1).

Finally, observe that if, as in the preceding construction, we let A = A x B for
groups A and B with cd(A) = {1,2,3} and cd(B) = {1,5,11}, then A satisfies
P, and has |cd(A)] = 9. Thus A verifies the sharpness of the bound in the case
k = 4 and completes our collection of examples for each of the exceptional cases of
Theorem A.
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