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HOPF SUBALGEBRAS OF POINTED HOPF ALGEBRAS

AND APPLICATIONS

D. ŞTEFAN

(Communicated by Ken Goodearl)

Abstract. In this paper we construct certain Hopf subalgebras of a pointed
Hopf algebra over a field of characteristic 0. Some applications are given in the
case of Hopf algebras of dimension 6, p2 and pq, where p and q are different
prime numbers.

1. Preliminaries

Throughout this paper k will be an algebraically closed field of characteristic 0.
In the first part of this note we shall prove that for any finite dimensional pointed
Hopf algebra over k there is a Hopf subalgebra generated as an algebra by two
elements g and x, where g is a group-like element and x is a g, 1-primitive element
(Theorem 2). This result is then used for describing the isomorphism classes of
pointed Hopf algebras of dimension p2 and for proving that a pointed Hopf algebra
of dimension pq is semisimple (p and q are different prime numbers). In the second
part of the paper we shall prove that any Hopf algebra of dimension 6 is semisimple,
so by [1], it is a group algebra or the dual of the group algebra of the symmetric
group S3.

Let H be a finite dimensional Hopf algebra over an algebraically closed field k,
with char(k) = 0. We recall that an element g 6= 0 is called a group-like element if
∆(g) = g⊗g. By definition, x ∈ H is a g, h-primitive element if ∆(x) = x⊗g+h⊗x,
where g, h are two group-like elements. In the particular case when g = h = 1 we say
that x is a primitive element. We denote by G(H), P (H) and Pg,h(H), respectively,
the sets of group-like elements, of primitive elements and of g, h-primitive elements
of H . A Hopf algebra H is called pointed if all its simple subcoalgebras are of
dimension one. The results of the following proposition are “folklore”, so their
proofs will be omitted.

Proposition 1. Let H be a finite dimensional Hopf algebra over k.
(a) If H ′ is a pointed commutative Hopf subalgebra of H, then H ′ = k[G′], where

G′ is a certain subgroup of G(H).
(b) P (H) = 0.
(c) Let H be a pointed Hopf algebra. Then G(H) = {1} if and only if dim(H) =

1. Moreover, if H is not cosemisimple, then there is g ∈ G(H) such that Pg,1(H)
is not contained in the coradical of H.
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Theorem 2. Let H be a pointed Hopf algebra. If H is not semisimple, then there
exist two natural numbers m,n, with m 6= 1 and m divides n, an mth primitive root
of 1 (denoted by ω) and two elements g, x ∈ H such that

(a) gx = ωxg;
(b) g is a group-like element of order n;
(c) x ∈ Pg,1(H) and xm is either 0 or gm − 1.

Proof. Let g 6= 1 be a group-like element as in the third part of Proposition 1. Let φg
be the inner automorphism of H afforded by g. Let n be the order of g. Obviously
φg is semisimple, so its restriction to Pg,1(H) has an eigenvalue ω 6= 1; otherwise
there is x in Pg,1(H) which is not in k[G(H)], such that gx = xg. The subalgebra
generated by x and g is a group algebra (it is pointed and commutative), thus
x ∈ k[G(H)], a contradiction. We choose an eigenvalue ω 6= 1 and a corresponding
eigenvector x of φg. Hence gx = ωxg and x is in Pg,1(H) by construction. Let m
be the order of ω. Of course, m divides n, so we have only to prove that xm equals
either 0 or gm−1. Indeed, by [3, Proposition 1] we obtain ∆(xm) = xm⊗gm+1⊗xm;
therefore the subalgebra H ′ generated by g and xm is a group algebra (being a
commutative Hopf subalgebra of H). We end the proof by remarking that xm is a
gm, 1-primitive element in H ′.

Let n be a natural number and let ω be a primitive nth-root of 1. We recall that,
by definition, Hn2,ω is the Hopf algebra generated as an algebra by two elements g
and x satisfying the relations gn = 1, xn = 0, gx = ωxg. The coalgebra structure
is defined such that g is a group-like element and x is g, 1-primitive.

Corollary 3 (Andruskiewitsch, Chin). If p is a prime natural number and H is a
pointed Hopf algebra of dimension p2, then H ' k[G] or H ' Hp2,ω, where G is a
group with p2 elements and ω is a certain primitive nth-root of 1.

Corollary 4. Let p and q be two different prime numbers. If H is a pointed Hopf
algebra of dimension pq, then H is semisimple.

2. Hopf algebras of dimension 6

In this section we shall obtain the complete classification of Hopf algebras of
dimension 6, as an application of Corollary 4. Namely, we shall prove the following

Theorem 5. Let H be a Hopf algebra of dimension 6. Then H is isomorphic to
k[C6], k[S3] or k[S3]

∗, where C6 and S3 are respectively the cyclic group with 6
elements and the symmetric group with 6 elements.

Proof. We have to show that any Hopf algebra of dimension 6 is semisimple, as
such a Hopf algebra is isomorphic to k[C6], k[S3] or k[S3]

∗ (see [1]). Let us suppose
that H is a 6-dimensional Hopf algebra which is not semisimple. By the preceding
corollary, H is neither pointed nor cosemisimple (any finite dimensional cosemisim-
ple Hopf algebra over a field of characteristic 0 is semisimple). Then the coradical
of H is isomorphic to M2(k)

∗ or M2(k)
∗ ⊕ k. The first case is not possible, as εH∗

would induce an algebra map from M2(k) ' H∗/J(H∗) to k. Thus the coradical of
H must be M2(k)

∗⊕k and, by [2, Thm. 5.4.2], there exists a coideal I of dimension
1 such that H = corad(H) ⊕ I. Let x be an element of I which is not 0. Then
∆(x) = x ⊗ a + b ⊗ x, where a and b are in H . Writing explicitly the equality
(∆⊗ IH)∆(x) = (IH ⊗∆)∆(x) we can see easily that

∆(a) = a⊗ a+ c⊗ x, ∆(b) = b⊗ b+ x⊗ c, ∆(c) = a⊗ c+ c⊗ b,
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where c ∈ H . Therefore the vector space generated by a, b, c and x is a subcoalgebra
C of H . The coalgebra M2(k)

∗ is simple, hence M2(k)
∗ ∩C = M2(k)

∗ or M2(k)
∗ ∩

C = 0. In the first case it follows that M2(k)
∗ = C and then x ∈ M2(k)

∗, which
contradicts the choice of x. In conclusion M2(k)

∗ ∩C = 0, which implies dim(C) ≤
2. Actually, one gets dim(C) = 2 and M2(k)

∗⊕C = H . C cannot be cosemisimple,
otherwise H is semisimple, so corad(C) = k1 and H1 = C. But C1 = corad(C) ⊕
P (C), by [2, Lemma 5.3.2], thus 0 6= P (C) ⊆ P (H), a contradiction with the second
part of Proposition 1.

Remark 6. The referee informed us that the results of the preceding theorem were
already obtained by R. Williams [4].
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