# HOPF SUBALGEBRAS OF POINTED HOPF ALGEBRAS AND APPLICATIONS

### D. ŞTEFAN

(Communicated by Ken Goodearl)

ABSTRACT. In this paper we construct certain Hopf subalgebras of a pointed Hopf algebra over a field of characteristic 0. Some applications are given in the case of Hopf algebras of dimension 6,  $p^2$  and pq, where p and q are different prime numbers.

## 1. Preliminaries

Throughout this paper k will be an algebraically closed field of characteristic 0. In the first part of this note we shall prove that for any finite dimensional pointed Hopf algebra over k there is a Hopf subalgebra generated as an algebra by two elements g and x, where g is a group-like element and x is a g, 1-primitive element (Theorem 2). This result is then used for describing the isomorphism classes of pointed Hopf algebras of dimension  $p^2$  and for proving that a pointed Hopf algebra of dimension pq is semisimple (p and q are different prime numbers). In the second part of the paper we shall prove that any Hopf algebra of dimension 6 is semisimple, so by [1], it is a group algebra or the dual of the group algebra of the symmetric group  $S_3$ .

Let H be a finite dimensional Hopf algebra over an algebraically closed field k, with  $\operatorname{char}(k)=0$ . We recall that an element  $g\neq 0$  is called a  $\operatorname{group-like}$  element if  $\Delta(g)=g\otimes g$ . By definition,  $x\in H$  is a g,h-primitive element if  $\Delta(x)=x\otimes g+h\otimes x$ , where g,h are two group-like elements. In the particular case when g=h=1 we say that x is a  $\operatorname{primitive}$  element. We denote by G(H), P(H) and  $P_{g,h}(H)$ , respectively, the sets of group-like elements, of primitive elements and of g,h-primitive elements of H. A Hopf algebra H is called  $\operatorname{pointed}$  if all its simple subcoalgebras are of dimension one. The results of the following proposition are "folklore", so their proofs will be omitted.

**Proposition 1.** Let H be a finite dimensional Hopf algebra over k.

- (a) If H' is a pointed commutative Hopf subalgebra of H, then H' = k[G'], where G' is a certain subgroup of G(H).
  - (b) P(H) = 0.
- (c) Let H be a pointed Hopf algebra. Then  $G(H) = \{1\}$  if and only if  $\dim(H) = 1$ . Moreover, if H is not cosemisimple, then there is  $g \in G(H)$  such that  $P_{g,1}(H)$  is not contained in the coradical of H.

Received by the editors December 4, 1995 and, in revised form, June 10, 1996.

1991 Mathematics Subject Classification. Primary 16W30.

 $Key\ words\ and\ phrases.$  Hopf algebras.

**Theorem 2.** Let H be a pointed Hopf algebra. If H is not semisimple, then there exist two natural numbers m, n, with  $m \neq 1$  and m divides n, an mth primitive root of 1 (denoted by  $\omega$ ) and two elements  $g, x \in H$  such that

- (a)  $gx = \omega xg$ ;
- (b) g is a group-like element of order n;
- (c)  $x \in P_{g,1}(H)$  and  $x^m$  is either 0 or  $g^m 1$ .

Proof. Let  $g \neq 1$  be a group-like element as in the third part of Proposition 1. Let  $\phi_g$  be the inner automorphism of H afforded by g. Let n be the order of g. Obviously  $\phi_g$  is semisimple, so its restriction to  $P_{g,1}(H)$  has an eigenvalue  $\omega \neq 1$ ; otherwise there is x in  $P_{g,1}(H)$  which is not in k[G(H)], such that gx = xg. The subalgebra generated by x and g is a group algebra (it is pointed and commutative), thus  $x \in k[G(H)]$ , a contradiction. We choose an eigenvalue  $\omega \neq 1$  and a corresponding eigenvector x of  $\phi_g$ . Hence  $gx = \omega xg$  and x is in  $P_{g,1}(H)$  by construction. Let m be the order of  $\omega$ . Of course, m divides n, so we have only to prove that  $x^m$  equals either 0 or  $g^m-1$ . Indeed, by [3, Proposition 1] we obtain  $\Delta(x^m) = x^m \otimes g^m + 1 \otimes x^m$ ; therefore the subalgebra H' generated by g and  $x^m$  is a group algebra (being a commutative Hopf subalgebra of H). We end the proof by remarking that  $x^m$  is a  $g^m$ , 1-primitive element in H'.

Let n be a natural number and let  $\omega$  be a primitive nth-root of 1. We recall that, by definition,  $H_{n^2,\omega}$  is the Hopf algebra generated as an algebra by two elements g and x satisfying the relations  $g^n = 1$ ,  $x^n = 0$ ,  $gx = \omega xg$ . The coalgebra structure is defined such that g is a group-like element and x is g, 1-primitive.

Corollary 3 (Andruskiewitsch, Chin). If p is a prime natural number and H is a pointed Hopf algebra of dimension  $p^2$ , then  $H \simeq k[G]$  or  $H \simeq H_{p^2,\omega}$ , where G is a group with  $p^2$  elements and  $\omega$  is a certain primitive nth-root of 1.

**Corollary 4.** Let p and q be two different prime numbers. If H is a pointed Hopf algebra of dimension pq, then H is semisimple.

# 2. Hopf algebras of dimension 6

In this section we shall obtain the complete classification of Hopf algebras of dimension 6, as an application of Corollary 4. Namely, we shall prove the following

**Theorem 5.** Let H be a Hopf algebra of dimension 6. Then H is isomorphic to  $k[C_6]$ ,  $k[S_3]$  or  $k[S_3]^*$ , where  $C_6$  and  $S_3$  are respectively the cyclic group with 6 elements and the symmetric group with 6 elements.

Proof. We have to show that any Hopf algebra of dimension 6 is semisimple, as such a Hopf algebra is isomorphic to  $k[C_6]$ ,  $k[S_3]$  or  $k[S_3]^*$  (see [1]). Let us suppose that H is a 6-dimensional Hopf algebra which is not semisimple. By the preceding corollary, H is neither pointed nor cosemisimple (any finite dimensional cosemisimple Hopf algebra over a field of characteristic 0 is semisimple). Then the coradical of H is isomorphic to  $M_2(k)^*$  or  $M_2(k)^* \oplus k$ . The first case is not possible, as  $\varepsilon_{H^*}$  would induce an algebra map from  $M_2(k) \simeq H^*/J(H^*)$  to k. Thus the coradical of H must be  $M_2(k)^* \oplus k$  and, by [2, Thm. 5.4.2], there exists a coideal I of dimension 1 such that  $H = \operatorname{corad}(H) \oplus I$ . Let x be an element of I which is not 0. Then  $\Delta(x) = x \otimes a + b \otimes x$ , where a and b are in H. Writing explicitly the equality  $(\Delta \otimes I_H)\Delta(x) = (I_H \otimes \Delta)\Delta(x)$  we can see easily that

$$\Delta(a) = a \otimes a + c \otimes x$$
,  $\Delta(b) = b \otimes b + x \otimes c$ ,  $\Delta(c) = a \otimes c + c \otimes b$ ,

where  $c \in H$ . Therefore the vector space generated by a,b,c and x is a subcoalgebra C of H. The coalgebra  $M_2(k)^*$  is simple, hence  $M_2(k)^* \cap C = M_2(k)^*$  or  $M_2(k)^* \cap C = 0$ . In the first case it follows that  $M_2(k)^* = C$  and then  $x \in M_2(k)^*$ , which contradicts the choice of x. In conclusion  $M_2(k)^* \cap C = 0$ , which implies  $\dim(C) \leq 2$ . Actually, one gets  $\dim(C) = 2$  and  $M_2(k)^* \oplus C = H$ . C cannot be cosemisimple, otherwise H is semisimple, so  $\operatorname{corad}(C) = k1$  and  $H_1 = C$ . But  $C_1 = \operatorname{corad}(C) \oplus P(C)$ , by [2, Lemma 5.3.2], thus  $0 \neq P(C) \subseteq P(H)$ , a contradiction with the second part of Proposition 1.

Remark 6. The referee informed us that the results of the preceding theorem were already obtained by R. Williams [4].

### References

- 1. A. Masuoka, Semisimple Hopf algebras of dimension 6 and 8, Israel J. Math. (to appear).
- S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, Vol. 82, Amer. Math. Soc., Providence, RI, 1993. MR 94i:16019
- D. Radford, On Kauffman's knot invariants arising from finite-dimensional Hopf algebras, Advances in Hopf Algebras, Lecture Notes in Pure and Applied Mathematics, vol. 158, Marcel Dekker, New York, 1994. MR 96g:57013
- 4. R. Williams, Ph.D. thesis (unpublished), Florida State University, 1988.

Facultatea de Matematică, Universitatea București, Str. Academiei 14, RO-70109 Bucharest 1, Romania

E-mail address: dstefan@al.math.unibuc.ro