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A NOTE ON p-HYPONORMAL OPERATORS

TADASI HURUYA

(Communicated by Palle E. T. Jorgensen)

Abstract. Let T be a p-hyponormal operator on a Hilbert space with polar

decomposition T = U |T | and let T̃ = |T |tU |T |r−t for r > 0 and r ≥ t ≥ 0.

We study order and spectral properties of T̃ . In particular we refine recent
Furuta’s result on p-hyponormal operators.

1. Introduction

An operator means a bounded linear transformation from a Hilbert space into
itself. For an operator T , let U |T | denote the polar decomposition of T , where U
is a partially isometric operator, |T | is a positive square root of T ∗T and N(T ) =
N(|T |) = N(U), where N(S) denotes the kernel of an operator S.

An operator T is said be p-hyponormal if (T ∗T )p ≥ (TT ∗)p for 1 ≥ p > 0.
If p = 1, T is called hyponormal, and if p = 1

2 , T is called semi-hyponormal. A
p-hyponormal operator T = U |T | is q-hyponormal for p ≥ q [11] and U |T |p is
hyponormal. In [15], Xia introduced the class of semi-hyponormal operators and
obtained results analogous to those of hyponormal operators. Aluthge [1] stud-
ied p-hyponormal operators for 1 ≥ p > 0. In particular, he defined the operator

T̃ = |T | 12U |T | 12 which is called the Aluthge transformation of T. Aluthge trans-
formations have significant applications (see, e.g., [4], [7], [9], [12]). Recently Fu-
ruta [9] extended order properties of Aluthge transformations to those of operators

T̃ = |T |qU |T |q with N(U) = N(U∗) (see also Addendum in [9]). In this paper,
we refine Furuta’s result by dropping this kernel condition. Applying this result,
we give a general version of Patel’s theorem [12, Theorem 1] on the normality
for a p-hyponormal operator. We also study spectral properties of p-hyponormal
operators.

Throughout this paper, let 1 ≥ p > 0.

2. Generalized Aluthge transformations

In this section, using Furuta inequality we study order properties of p-hyponormal
operators. We also generalize Patel’s Theorem [12] on the normality of a p-hypo-
normal operator.
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Lemma 1. Let T = U |T | be the polar decomposition of a p-hyponormal operator
on a Hilbert space H. Then there exists an isometric operator V satisfying V |T | =
U |T | and |T |V = |T |U.

Moreover Û =

(
V I − V V ∗

0 −V ∗

)
is a unitary operator on H ⊕ H such that

Û

(|T | 0
0 0

)
is p-hyponormal.

Proof. Proof is based on an idea of [16, p. 41, Lemma 3.5]. Since N(U) = N(|T |) =
N(T ) ⊆ N(T ∗), we define V by V ξ = Uξ for ξ ∈ H 	 N(U) and V ξ = ξ for ξ ∈
N(U). It is easy to see that V has the desired properties.

Furuta established the following result as an extension of Löwner-Heinz inequal-
ity.

The Furuta inequality ([8, Theorem 1]). If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (BrApBr)
1
q ≥ (BrBpBr)

1
q

and
(ii) (ArApAr)

1
q ≥ (ArBpAr)

1
q

hold for p ≥ 0 and q ≥ 1 with (1 + 2r)q ≥ p+ 2r.

p

(0, –2r)

(1+2r) =p+2r

(1, 0)

(1,1)

=1

p=

Figure

The domain surrounded by p, q and r in the figure is the best possible one for
the Furuta inequality in [14].

Theorem 2. Let T = U |T | be the polar decomposition of a p-hyponormal operator.

For r > 0 and r ≥ t ≥ 0, let q = min{ p+t
r , p+(r−t)

r , 1} and T̃ = |T |tU |T |r−t. Then

T̃ satisfies that (T̃ ∗T̃ )q ≥ |T |2rq ≥ (T̃ T̃ ∗)q. In particular, T̃ is q-hyponormal.

Proof. We first prove that if W is a unitary operator such that T = W |T |, then
S = |T |tW |T |r−t is q-hyponormal. This part is close to the proof of [1, Theorem
2] or [9, Theorem 1]. Put

A = W ∗|T |2pW, B = |T |2p and C = W |T |2pW ∗.
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Then we have that for any s > 0,

As = W ∗|T |2spW and Cs = W |T |2spW ∗.

Since T is p-hyponormal, we have (T ∗T )p ≥ (TT ∗)p, or equivalently

A ≥ B ≥ C.

Let q′ = 1
q . Then the Furuta inequality (i) gives

(S∗S)q = (|T |r−tW ∗|T |2tW |T |r−t)
1
q′

= (B
r−t
2p A

2t
2pB

r−t
2p )

1
q′ ≥ (B

r−t
2p B

2t
2pB

r−t
2p )

1
q′ = B

r
pq′ ,

since (1 + 2 r−t
2p )q′ ≥ p+r−t

p
r

p+r−t = r
p = 2t

2p + 2 r−t
2p and q′ ≥ 1.

Similarly, the Furuta inequality (ii) gives

B
r
pq′ = (B

t
2pB

2(r−t)
2p B

t
2p )

1
q′ ≥ (B

t
2pC

2(r−t)
2p B

t
2p )

1
q′

= (|T |tW |T |2(r−t)W ∗|T |t) 1
q′ = (SS∗)q,

since (1 + 2 t
2p )q′ ≥ p+t

p
r

p+t = r
p = 2(r−t)

2p + 2 t
2p and q′ ≥ 1.

Hence (S∗S)q ≥ |T |2rq ≥ (SS∗)q and S is q-hyponormal.
Suppose that U is not unitary. By Lemma 1, we choose an isometric oper-

ator V such that V |T | = U |T | and |T |V = |T |U. Put Û =

(
V ∗
0 ∗

)
, T̂ =

Û

(|T | 0
0 0

)
, Ŝ = |T̂ |tÛ |T̂ |r−t and Ê =

(
1 0
0 0

)
. Applying the above argument to

T̂ , we have

(|T̂ |r−tÛ∗|T̂ |2tÛ |T̂ |r−t)q = (Ŝ∗Ŝ)q ≥ |T̂ |2rq ≥ (ŜŜ∗)q = (|T̂ |tÛ |T̂ |2(r−t)Û∗|T̂ |t)q.
Then

|̂T |2rq =

(|T |2rq 0
0 0

)
, (ŜŜ∗)q =

(
(|T |tU |T |2(r−t)U∗|T |t)q 0

0 0

)
.

By Hansen’s inequality [10],(
(|T |r−tU∗|T |2tU |T |r−t)q 0

0 0

)
= (Ê(Ŝ∗Ŝ)Ê)q ≥ Ê(Ŝ∗Ŝ)qÊ.

Since Ê(Ŝ∗Ŝ)qÊ ≥ Ê|T̂ |2rqÊ = |T̂ |2rq, we obtain the desired inequalities.

Remark. With the notation of Theorem 2, Aluthge [1] and Furuta [9] considered T̃
in the greatest q for r = 1 and r ≥ p.

Theorem 3. Let T = U |T | be the polar decomposition of a p-hyponormal operator

on a Hilbert space H. For r > 0 and r ≥ t ≥ 0, put T̃ = |T |tU |T |r−t. If T̃ is
normal, then T is normal.
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Proof. There exists q > 0 such that T̃ is q-hyponormal by Theorem 2. Moreover
we have that

(|T |r−tU∗|T |t|T |tU |T |r−t)q = (T̃ ∗T̃ )q

≥ |T |2rq

≥ (T̃ T̃ ∗)q = (|T |tU |T |r−t|T |r−tU∗|T |t)q.
Since T̃ is normal,

(|T |r−tU∗|T |2tU |T |r−t)q = |T |2rq = (|T |tU |T |2(r−t)U∗|T |t)q,
that is,

|T |r−tU∗|T |2tU |T |r−t = |T |2r = |T |tU |T |2(r−t)U∗|T |t.(∗)
For an operator X on H , it is easy to see that N(X) = X∗(H)⊥, so that

N(X)⊥ = X∗(H), the closure of X∗(H). Let s be any positive number. Since
N(|T |s) = N(|T |), it holds that

|T |s(H) = |T |(H).

Let P denote the orthogonal projection having range |T |(H). Since

N(|T |s) = N(|T |) = N(T ) ⊆ N(T ∗) = N(U∗),

we have that

|T |sP = |T |s, U∗P = U∗.(∗∗)
(i) If r − t > 0, then the second equality of (∗) implies that |T |2r−t|T |t =

|T |tU |T |2(r−t)U∗|T |t. It follows from (∗∗) that

|T |2r−t = |T |2r−tP = |T |tU |T |2(r−t)U∗P = |T |tU |T |2(r−t)U∗.

Taking adjoints, we have that |T |2r−t = U |T |2(r−t)U∗|T |t. Thus

|T |2(r−t) = U |T |2(r−t)U∗ = |T ∗|2(r−t),

so that |T | = |T ∗|. Therefore T is normal.
(ii) If r−t = 0, then (∗) implies that U∗|T |2rU = |T |2r = |T |rUU∗|T |r, and hence

|T |r = |T |rP = |T |rUU∗P = |T |rUU∗. Then we have that N(U∗) ⊆ N(|T |) =
N(U), so that UU∗ = U∗U. We obtain that

|T ∗|2r = U |T |2rU∗ = UU∗|T |2rUU∗ = |T |2r.
Therefore T is normal. This completes the proof.

3. Spectra

In this section, we show a property of the point spectrum of a p-hyponormal
operator. Applying this property, we give a spectral mapping theorem for the Weyl
spectrum of a p-hyponormal operator.

Throughout this section, let r > 0 and r ≥ t ≥ 0.
The following two lemmas are known. We include proofs for completeness.

Lemma 4. Let A and B be operators and suppose that A = A∗. Then AB is
invertible if and only if BA is invertible.
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Proof. (i) If AB is invertible, there exists an operator X such that ABX = I.
Then (BX)∗A = I, so that A is invertible. Since AB and A are invertible, so is B.
Therefore BA is invertible.

(ii) If BA is invertible, a similar argument implies that A and B are invertible.
Therefore AB is invertible.

Lemma 5. If T is an operator such that T = V |T | with partial isometric operator
V, then σ(|T |tV |T |r−t) = σ(V |T |r).
Proof. It is well-known that σ(|T |t(V |T |r−t))− {0} = σ((V |T |r−t)|T |t)− {0} (see,
for example, [3, Proposition 5.3 in Chapter I]). By Lemma 4 we have σ(|T |tV |T |r−t)
= σ(V |T |r).

The following is a general version of [5, Theorem 3].

Theorem 6. Let T = U |T | be the polar decomposition of a p-hyponormal operator
on a Hilbert space H. Then σ(U |T |r) = {eiθρr : eiθρ ∈ σ(T )}.
Proof. If U is unitary, the equality holds by [5, Theorem 3]. Suppose that U is not
unitary. From Lemma 1 there exists a unitary operator W on H ⊕ H such that

W

(|T | 0
0 0

)
=

(
T 0
0 0

)
is p-hyponormal. Put A =

(|T | 0
0 0

)
. Then we have that

σ(T ) ∪ {0} = σ(WA) and σ(WAr) = σ(U |T |r) ∪ {0}. We choose q > 0 such that
WA and WAr are q-hyponormal.

Using [5, Theorem 3], we have that σ(WAr) = {eiθρr : eiθρ ∈ σ(WA)}. Then
σ(U |T |r) − {0} = σ(WAr) − {0} = {eiθρr : eiθρ ∈ σ(T ) − {0}}, 0 ∈ σ(U |T |r) and
0 ∈ σ(U |T |) = σ(T ). Then σ(U |T |r) = {eiθρr : eiθρ ∈ σ(T )}.
Corollary 7. Let T = U |T | be the polar decomposition of a p-hyponormal operator.
Then σ(|T |tU |T |r−t) = {eiθρr : eiθρ ∈ σ(T )}.
Proof. By Lemma 5 we have that σ(|T |tU |T |r−t) = σ(U |T |r). It follows from The-
orem 6 that σ(U |T |r) = {eiθρr : eiθρ ∈ σ(T )}.
Theorem 8. Let T = U |T | be the polar decomposition of a p-hyponormal operator
on a Hilbert space H. Then |T |tU |T |r−tξ = eiθρrξ if and only if Tξ = eiθρξ for
eiθρ ∈ C and ξ∈ H.
Proof. (i) In the case of ρ = 0, let ξ ∈ N(T ). Since ξ ∈ N(T ) = N(U), |T |tU |T |r−tξ
= 0. Conversely, if ξ ∈ N(|T |tU |T |r−t), then |T |r−tξ ∈ N(U). Since T |T |r−tξ =
U |T |1+r−tξ = 0 and 1 + r−t > 0, we have that ξ ∈ N(|T |1+r−t) = N(|T |) = N(T ).

(ii) In the case of ρ 6= 0, let Tξ = eiθρξ. Using [4, Theorem 4] (see also [12,
Theorem 2]), we have

|T |ξ = ρξ and Uξ = eiθξ.

Then we have |T |tU |T |r−tξ = eiθρrξ.
Conversely, let |T |tU |T |r−tξ = βξ, where eiθρr = β. We first assume that t > 0.

Then there exists a unique vector η in T ∗(H), the closure of T ∗(H), such that

|T |tη = ξ.

Since |T |t 1
β (U |T |r−tξ)= ξ and U |T |r−tξ ∈ T (H) ⊆ T ∗(H), we have

1

β
U |T |r−tξ = η.
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Then

U |T |rη = U |T |r−t|T |tη = U |T |r−tξ = βη.

It follows from [4, Theorem 4] that

|T |rη = |β|η and Uη = eiθη.

Hence |T |r|T |tη = |T |t|β|η, that is, |T |rξ = |β|ξ = ρrξ. Also we have that

Uξ = U |T |tη = U |β| tr η = |β| tr eiθη = eiθ|T |tη = eiθξ.

Therefore Tξ = eiθρξ. If t = 0, then U |T |rξ = βξ. A similar argument implies that
Tξ = eiθρξ.

For an operator T, let π00(T ) denote the set of isolated eigenvalues of finite
multiplicity of T and let w(T ) denote the Weyl spectrum, that is,

w(T ) = ∩{σ(T +K) : K compact}.
We need the following two conditions introduced by Baxley [2].
C-1: if {λn} is an infinite sequence of distinct points of the set of eigenvalues

of finite multiplicity of T and {xn} is any sequence of corresponding normalized
eigenvectors, then the sequence {xn} does not converge.

C-2: if λ ∈ π00(T ), then T − λI has closed range and index 0, that is,

dimN(T − λI) = dim(R(T − λI))⊥ <∞,

where R(T − λI) denotes the range of T − λI.

Proposition 9. Let T = U |T | be the polar decomposition of a p-hyponormal oper-
ator. Then T satisfies C-2.

Proof. Let λ ∈ π00(T ). By [4, Theorem 4], N(T − λI) is a reducing subspace for
U and |T |. Let T1 and T2 be the restrictions of T and U |T |p to N(T − λI)⊥, re-
spectively. Then T1 is p-hyponormal, σ(T1) ⊆ σ(T ) and σ(T2) ⊆ σ(U |T |p). By
Corollary 7, σ(U |T |) and σ(T1) are homeomorphic to σ(U |T |p) and σ(T2), respec-
tively. Suppose that λ ∈ σ(T1). Then λ = eiθ|λ| is an isolated point of σ(T1). Since
T2 is hyponormal, it follows from [13, Theorem 2] that eiθ|λ|p is an eigenvalue of T2.
By Theorem 8, λ is an eigenvalue of T1. But this is a contradiction since N(T−λI)⊥
contains no eigenvectors of T corresponding to λ. Hence λ /∈ σ(T1) and we have
that

R(T − λI) = R(T1 − λI) = N(T − λI)⊥.

Therefore, T − λI has closed range and index 0.

Chō, Itoh and Ōshiro [6] showed that a p-hyponormal operator T holds Weyl’s
theorem, that is, w(T ) = σ(T )−π00(T ). Chō informed us that Patel gave a different

proof by the property π00(T ) = π00(|T | 12U |T | 12 ). We give another proof.

Theorem 10 ([6, Theorem]). If T is a p-hyponormal operator, then w(T ) = σ(T )−
π00(T ).

Proof. If Tx = zx, then T ∗x = z̄x by [4, Theorem 4]. Then T satisfies C-1. By
Proposition 9 T satisfies C-2. It follows from [2, Lemmas 3 and 4] that w(T ) =
σ(T )− π00(T ).

Corollary 11. Let T = U |T | be the polar decomposition of a p-hyponormal opera-

tor and put T̃ = |T |tU |T |r−t. Then w(T̃ ) = {eiθρr : eiθρ ∈ w(T )}.
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Proof. Using Corollary 7 and Theorem 8, we have that

σ(T̃ ) = {eiθρr : eiθρ ∈ σ(T )} and π00(T̃ ) = {eiθρr : eiθρ ∈ π00(T )}.
It follows from Theorem 2 and Theorem 10 that

w(T̃ ) = σ(T̃ )− π00(T̃ ).

Hence we obtain that w(T̃ ) = {eiθρr : eiθρ ∈ w(T )}.
We define ψ on C by ψ(ρeiθ)= ρteiθρr−t and put ψ(T ) = |T |tU |T |r−t. Restating

Corollary 7, Theorem 8 and Corollary 11, we have the following spectral mapping
result:

σ(ψ(T )) = ψ(σ(T )), π00(ψ(T )) = ψ(π00(T )) and w(ψ(T )) = ψ(w(T )).
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Addendum

(1) We would like to cite the following result in Addendum of [9];

Theorem 1′. Let T = U |T | be the polar decomposition of p-hyponormal for 1 ≥
p > 0 with N(T ) = N(T ∗). Then T̃ = |T |sU |T |t is p+s

s+t -hyponormal for any s ≥ 0

and t ≥ max{p, s}.
(2) After this paper was written, the author have found Aluthge’s paper; “Some

generalized theorems on p-hyponormal operators, Integral Equations and Operator
Theory, 24 (1996), 497–501”, in which he proved a theorem (Theorem 1) closely
related to our Theorem 2. In fact, our theorem implies his theorem.
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4. M. Chō and T. Huruya, p-hyponormal operators for 0 < p < 1/2, Comment. Math. 33 (1993),
23–29. MR 95b:47021
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