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Abstract. By a finite quantum group, we will mean in this paper a finite-
dimensional Hopf algebra. A left Haar measure on such a quantum group is
a linear functional satisfying a certain invariance property. In the theory of
Hopf algebras, this is usually called an integral. It is well-known that, for a
finite quantum group, there always exists a unique left Haar measure. This
result can be found in standard works on Hopf algebras.

In this paper we give a direct proof of the existence and uniqueness of the
left Haar measure on a finite quantum group. We introduce the notion of a
faithful functional and we show that the Haar measure is faithful. We consider
the special case where the underlying algebra is a ∗-algebra with a faithful
positive linear functional. Then the left and right Haar measures coincide.
Finally, we treat an example of a root of unity algebra. It is an example of a
finite quantum group where the left and right Haar measures are different.

This note does not contain many new results but the treatment of the
finite-dimensional case is very concise and instructive.

0. Introduction

Let A be an algebra over C with identity. A comultiplication is a homomorphism
∆ from A to A ⊗ A that satisfies the coassociativity law (∆ ⊗ ι)∆ = (ι ⊗ ∆)∆
where ι is the identity map. A counit is a homomorphism ε : A → C such that
(ε⊗ ι)∆ = (ι⊗ ε)∆ = ι. An antipode is a anti-homomorphism S : A→ A such that
m(S ⊗ ι)∆(a) = m(ι ⊗ S)∆(a) = ε(a)1 for all a ∈ A where m : A ⊗ A → A is the
linear map defined by m(a⊗ b) = ab when a, b ∈ A. If the counit and the antipode
exist, then they are unique. A pair (A,∆) where ∆ is a comultiplication on A is
called a Hopf algebra if such a counit and an antipode exist. We refer to the books
of Abe [1] and Sweedler [6] for results on Hopf algebras. See also the survey paper
on dual pairs of Hopf ∗-algebras [7].

If A is a Hopf algebra, the space A′ of linear functionals is again an algebra with
identity. The product is given by (fg)(a) = (f⊗g)∆(a) and ε is the identity. If A is
finite-dimensional, A′ is again a Hopf algebra with comultiplication ∆ : A′ → A′⊗A′

defined by (∆f)(a ⊗ b) = f(ab). Here we identify A′ ⊗ A′ with (A ⊗ A)′. This is
possible because A is finite-dimensional. The counit on A′ is given by ε(f) = f(1)
and the antipode on A′ is defined by (Sf)(a) = f(Sa) for all a ∈ A.

If G is a finite group and A the algebra of functions f : G → C with pointwise
operations, then A is a Hopf algebra if we define ∆ by (∆f)(p, q) = f(pq) where
we identify A ⊗ A with the complex functions on G × G. The counit is given by
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ε(f) = f(e) where e is the identity in G and the antipode is given by (Sf)(p) =
f(p−1). The dual A′ of A can be identified with the space of complex functions on
G but now the product in A′ is the convolution product. So A′ is the usual group
algebra of G over C. If we denote by λp the image of the element p ∈ G in A′, then
∆(λp) = λp ⊗ λp, ε(λp) = 1 and S(λp) = λp−1 for all p.

In the example above we can consider the linear map ϕ : A → C given by
ϕ(f) =

∑
p∈G f(p). Because

∑
p∈G f(qp) =

∑
p∈G f(p) for all q ∈ G we have

(ι⊗ ϕ)∆(f) = ϕ(f)1.

In the general case, a (non-zero) linear map ϕ : A→ C is called a left invariant Haar
functional if (ι ⊗ ϕ)∆(a) = ϕ(a)1 for all a ∈ A. Similarly, a linear map ψ : A→ C
is called a right invariant Haar functional if (ψ⊗ ι)∆(a) = ψ(a)1 for all a ∈ A. Also
for the group algebra we have a Haar functional. It is given by ϕ(λp) = 0 if p 6= e
and ϕ(λe) = 1.

In [1] and [6] it is shown that such a left invariant Haar functional exists in the
case of a finite-dimensional Hopf algebra and that it is unique in any case. Of
course, the same is true for right invariant Haar functionals.

In this paper we give a short direct proof of the existence and uniqueness of the
left Haar functional ϕ on a finite-dimensional Hopf algebra. We prove that ϕ is
faithful in the sense that ϕ(ba) = 0 for all b implies a = 0. The argument can
even be simplified a little if we have given a faithful functional. This applies to the
case where A is a finite-dimensional C∗-algebra. This case can be characterized by
the fact that A is a ∗-algebra with a faithful positive linear functional. Then, we
also give an argument for the positivity of the Haar functional and we use it to
show that A′ is again a C∗-algebra. In this case, the left and right Haar functionals
coincide. They are traces. We also give a short argument for the fact that here
S2 = ι. We explain the relation with the formula for the Haar functional in [8] on
discrete quantum groups. See also [2], [3] and [9] for this finite-dimensional case.

In the last section of this paper we treat an example of a finite-dimensional Hopf
algebra with different left and right Haar functionals. We obtain explicit formulas
for these functionals and we also illustrate some other aspects of the theory here.

We will work with the common index notation in Hopf algebras. So we use

∆(a) =
∑
(a)

a(1) ⊗ a(2),

(∆⊗ ι)∆(a) =
∑
(a)

a(1) ⊗ a(2) ⊗ a(3).

Formulas like m(ι⊗ S)∆(a) = ε(a)1 and (ε⊗ ι)∆(a) = a e.g. become∑
(a)

a(1)Sa(2) = ε(a)1,

∑
(a)

ε(a(1))a(2) = a.

The reader is assumed to have (or to get) some acquaintance with these formulas.
We will sometimes write 〈f, a〉 for f(a) when f ∈ A′ and a ∈ A to avoid the use

of too many brackets. This will increase the readability of the formulas. For the
same reason we leave out brackets in Sab when we mean (S(a))b.
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1. The Haar functional on finite-dimensional Hopf algebras

Let A be a finite-dimensional Hopf algebra over C. We will give a short and
direct proof of the existence, uniqueness and faithfulness (to be defined later) of
the left and right Haar functionals on A. In fact, we will construct these functionals
first on the dual Hopf algebra A′. Observe that the left Haar functional on A′ is
given by a non-zero element h in A such that ah = ε(a)h for all a ∈ A.

1.1. Proposition. There exists a non-zero element h in A such that ah = ε(a)h
for all a ∈ A.

Proof. Let (ai) be a basis for A and let (fi) be the dual basis for A′. For any b ∈ A,
define h ∈ A by

h =
∑
i,(ai)

〈fi, S2ai(2)b〉ai(1).

We will show first that ah = ε(a)h for all a ∈ A.
Take a ∈ A. Then we get

ε(a)h =
∑

i,(ai),(a)

〈fi, a(1)Sa(2)S
2ai(2)b〉ai(1)

=
∑

i,j,(ai),(a)

〈fi, a(1)aj〉〈fj , Sa(2)S
2ai(2)b〉ai(1)

=
∑

j,(aj),(a)

〈fj , Sa(3)S
2(a(2)aj(2))b〉a(1)aj(1)

=
∑
j,(aj)

〈fj , S2aj(2)b〉aaj(1)

= ah.

Now let hj denote the element associated with aj . Then∑
j

〈fj , Shj〉 =
∑

i,j,(ai)

〈fi, S2ai(2)aj〉〈fj , Sai(1)〉

=
∑
i,(ai)

〈fi, S2ai(2)Sai(1)〉

=
∑
i

ε(ai)〈fi, 1〉

= ε(1) = 1.

Hence, some hj must be non-zero. This proves the result.

This proposition proves the existence of a left Haar functional on A′. By duality,
we also get the existence of a left Haar functional on A. Uniqueness will follow
easily from the next result.

1.2. Lemma. Let h be a non-zero element in A such that ah = ε(a)h for all a ∈ A.
Then the map ω → (ι⊗ ω)∆(h) from A′ to A is bijective.
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Proof. It is enough to show that this map is injective. So assume ω ∈ A′ and
(ι⊗ ω)∆(h) = 0. For any element a ∈ A we have

(1⊗ a)∆(h) =
∑
(a)

(Sa(1)a(2) ⊗ a(3))∆(h)

=
∑
(a)

(Sa(1) ⊗ 1)∆(a(2)h)

= (Sa⊗ 1)∆(h).

So (ι⊗ ω)((1⊗ a)∆(h)) = Sa((ι⊗ ω)∆(h)) = 0. Then, if we apply ∆, and replace
a by aSb, we find ∑

(h)

ω(aSbh(3))h(1) ⊗ h(2) = 0

for all a, b ∈ A. If we replace b by ai, apply ι⊗ fi (where (ai) and (fi) are a basis
and a dual basis as before) and if we sum over i, we find∑

(h)

ω(aSh(2)h(3))h(1) = 0.

Then, ω(a)h = 0 for all a and because h 6= 0, we have ω = 0.

If now ϕ is a left Haar functional, then (ι ⊗ ϕ)∆(h) = ϕ(h)1. By the above
result, ϕ(h) 6= 0. So we can normalise ϕ such that ϕ(h) = 1. Again by the above
result, ϕ is unique. So we get the following.

1.3. Theorem ([1], [6]). There is a unique (up to a scalar) left invariant Haar
functional on any finite-dimensional Hopf algebra.

If we reformulate Lemma 1.2 for the left Haar functional ϕ, we get that the map
a → ϕ( · a) from A to A′ is bijective. This brings us naturally to the following
definition.

1.4. Definition. Let A be any algebra over C and f a linear functional. We call
f faithful if f(ba) = 0 for all b implies a = 0.

In principle there is a left and a right notion. However, because here A is finite-
dimensional, one implies the other. Indeed, assume that f is faithful. So the map
a→ f(· a) from A to A′ is injective. Then it is also surjective. If b 6= 0 there exists
g ∈ A′ such that g(b) 6= 0. But g has the form f(· a) for some a. Hence if f(ba) = 0
for all a, then b = 0.

It is clear that there exist algebras without a faithful functional (e.g. if ab = 0
for all a and b). We have seen however that, when A is a finite-dimensional Hopf
algebra, the Haar functionals are always faithful.

We have the following characterization of the left Haar functional on A′.

1.5. Proposition. Let A be a finite-dimensional Hopf algebra and f any faithful
linear functional on A. There is a unique element h in A given by f(ah) = ε(a) for
all a. This element satisfies ah = ε(a)h for all a in A.

Proof. Because f is faithful, any linear functional is given by a translation of f . If
we apply this to ε we get the element h. It is also unique.
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For all a, b ∈ A we have

f(aε(b)h) = ε(b)f(ah) = ε(b)ε(a)

= ε(ab) = f(abh).

By uniqueness bh = ε(b)h.

So we see that, given a faithful functional, we get the existence and uniqueness
of the left Haar functional on A′ very easily. And if we use Lemma 1.2, we find
that this functional is faithful on A′ and the result above, applied to A, gives the
unique left Haar functional on A.

From the above results, we can also give a short argument for the fact that S
must be injective for a finite-dimensional Hopf algebra. Suppose Sa = 0. Then

Sa = Sa(ι⊗ ϕ)∆(h) = (ι⊗ ϕ)((1 ⊗ a)∆(h)) = 0.

Hence ϕ(a · ) = 0. Then ϕ(ab) = 0 for all b. By the surjectivity of the above map,
ω(a) = 0 for all ω and a = 0.

By symmetry we also have a unique right Haar functional. The one can be
obtained from the other by means of the antipode. Considering these two Haar
functionals, we can distinguish two different cases :

1.6. Proposition. If A is a finite-dimensional Hopf algebra then one of the fol-
lowing statements in true :

i) One can choose a left Haar functional ϕ such that ϕ(1) = 1. Then ϕ is
invariant under S and it is also a right Haar functional.

ii) For any left Haar functional ϕ and right Haar functional ψ we have ϕ(1) =
ψ(1) = 0.

Proof. If ϕ and ψ are left and right Haar functionals, then (ψ⊗ϕ)∆(a) = ψ(a)ϕ(1)
= ψ(1)ϕ(a) for all a. Then the result follows easily.

In the next section we will see that we are automatically in the first case when
the underlying algebra A is a finite-dimensional C∗-algebra. In section 3 we will
give an example where the second alternative is true and where left and right Haar
functionals are different.

2. Finite-dimensional Hopf C
∗
-algebras

If A is a ∗-algebra and f a positive linear functional then f satisfies the Cauchy-
Schwarz inequality

|f(b∗a)|2 ≤ f(b∗b)f(a∗a).

It follows that f is faithful (in the sense of Definition 1.4) if and only if f(a∗a) = 0
implies a = 0. This is the usual notion of faithfulness for positive linear functions
on a ∗-algebra. The finite-dimensional algebra A has a faithful positive linear
functional if and only if it has a faithful ∗-representation on a finite-dimensional
Hilbert space. This means that A is a finite-dimensional C∗-algebra.

In particular, if (A,∆) is a finite-dimensional Hopf algebra and if A is a C∗-
algebra we can use the argument in the previous section to obtain the Haar func-
tionals.

We will now assume that A is a finite-dimensional C∗-algebra further in this
section and see what can be said more in this case.
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2.1. Proposition. There exists an element h such that ε(h) = 1 satisfying ah =
ε(a)h for all a. This element is unique and also satisfies ha = ε(a)h for all a and
h2 = h = h∗.

Proof. Suppose that h is non-zero and satisfies ah = ε(a)h for all a. Then h∗h =

ε(h∗)h = ε(h)h. If ε(h) = 0 then h∗h = 0 and h = 0. Hence we can assume
ε(h) = 1 so that h∗h = h. Then h is self-adjoint. By taking adjoints, we find that
also ha = ε(a)h when a is in A.

This shows that we are in the first situation of Proposition 1.6 for the algebra
A′.

From the uniqueness one can easily show that the Haar functional is positive in
this case (using the decomposition of linear functionals). This will imply that also
for A we have a Haar functional which is left and right invariant. But in this case
one can prove a lot more. The result is due to Woronowicz (see [9], [10]). We give
a short proof here.

2.2. Theorem. The left and right Haar functionals on A coincide and they are
positive traces.

Proof. Let h be the element obtained in the previous proposition. We have seen in
the proof of Lemma 1.2 that (1 ⊗ a)∆(h) = (Sa⊗ 1)∆(h) for all a ∈ A. Similarly
we have ∆(h)(a⊗ 1) = ∆(h)(1 ⊗ Sa).

Now consider the trace Tr on A, normalized such that minimal projections get
trace 1. This exists because A is a finite-dimensional C∗-algebra. Define K =
(Tr⊗ ι)∆(h). This will give a positive element in A. We claim that it is invertible.
If it is not, there exists a non-zero positive linear functional ω on A such that
ω(K) = 0. So Tr((ι ⊗ ω)∆(h)) = 0 and this is impossible because (ι ⊗ ω)∆(h) is
positive and non-zero.

For any a we have

aK = (Tr⊗ ι)((1 ⊗ a)∆(h))

= (Tr⊗ ι)((Sa⊗ 1)∆(h))

= (Tr⊗ ι)(∆(h)(Sa ⊗ 1))

= (Tr⊗ ι)(∆(h)(1 ⊗ S2a))

= KS2a.

Now let ϕ be a left Haar functional on A. We have seen that we can assume
ϕ(h) = 1. Because aK = (Tr ⊗ ι)((Sa ⊗ 1)∆(h)) we will get ϕ(aK) = Tr(Sa).
We must have that Tr(Sa) = Tr(a) because S is an anti-homomorphism and the
uniqueness of the trace. Hence ϕ(a) = Tr(aK−1) for all a. It follows that ϕ is
positive and ϕ(1) 6= 0. Then left and right functionals coincide. This proves the
first statement in the theorem and the positivity.

Since left and right Haar functionals are the same, we must have ϕ(Sa) = ϕ(a)
for all a. This implies SK = K. If we apply S to the equation aK = KS2a we get
KSa = S3aK for all a and Ka = S2aK. So K2a = aK2. By positivity of K, we
also have Ka = aK for all a. This implies that ϕ is a trace.

Note that we get the same formula for the left Haar functional as in [8] for
discrete quantum groups. However, here we see that S2a = a for all a because K
commutes with a and implements S2.
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The formula obtained in the proof of 1.1, with b = 1 and dualized gives

ϕ(x) =
∑
i

fi(xS
2ai) =

∑
i

fi(xai).

This is indeed a trace because

ϕ(xy) =
∑
i

fi(xyai)

=
∑
i,j

fi(xaj)fj(yai) =
∑
j

fj(yxaj).

We see that the trace property of ϕ is connected with the fact that S2 = ι.
One can show that A′ is again a C∗-algebra. In a way, this is a surprising fact.

We prove this by more or less standard arguments using the positivity of the Haar
functional in the next proposition.

2.3. Proposition. Let ϕ be a positive left Haar functional on A. Consider the
G.N.S. representation associated with ϕ. On the associated Hilbert space there is
also a faithful ∗-representation of A′.

Proof. Let A′ act on A in the usual way by π(f)(a) = (ι ⊗ f)∆(a). It is easy to
see that π(fg) = π(f)π(g). This action is also faithful. Indeed, if π(f) = 0 then
(ι⊗ f)∆(a) = 0 for all a. Then apply ε to obtain that f(a) = 0 for all a and hence
f = 0.

We will show that

ϕ(a∗(π(f)b)) = ϕ((π(f∗)a)∗b)

for all a and b in A. This will complete the proof of the proposition.
Now

ϕ(a∗(π(f)b)) =
∑
(b)

ϕ(a∗b(1))f(b(2))

=
∑

(a),(b)

ϕ(a∗(1)b(1))f(S−1a∗(3)a
∗
(2)b(2))

=
∑
(a)

(ϕ · f(S−1a∗(2)·))(a∗(1)b)

=
∑
(a)

ϕ(a∗(1)b)f(S−1a∗(2))

=
∑
(a)

ϕ(a∗(1)b)f
∗(a(2))

−

= ϕ((π(f∗)a)∗b).

3. An example

In this section we treat an example of a finite-dimensional Hopf algebra where
left and right invariant Haar functionals are different. We will also illustrate some
other aspects of the theory.

Let λ ∈ C and |λ| = 1. Consider the ∗-algebra A over C with identity, generated
by two self-adjoint elements a and b such that a is invertible and ab = λba. This
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algebra can be made into a Hopf ∗-algebra if we define ∆ by ∆(a) = a ⊗ a and
∆(b) = a⊗ b+ b⊗ a−1 (see e.g. [7]). This Hopf ∗-algebra can also be paired with
itself. If z ∈ C and z2 = λ, such a pairing is given by

〈a, a〉 = z,

〈b, a〉 = 0,

〈a, b〉 = 0,

〈b, b〉 = iz̄.

If λ is not a root of unity, the pairing is non-degenerate. If λ is a root of unity,
the pairing is degenerate and gives rise to quotients that are (in most cases) finite-
dimensional. Again see [7]. We will consider these finite-dimensional cases here,
but we will obtain them directly. We will also be a little more general.

So let λ ∈ C and assume that λ is a root of unity. Let n be the smallest non-zero
element in N such that λ2n = 1. Assume n ≥ 2 (so we exclude the cases λ = 1 and
λ = −1). Also let m be any non-zero element in N such that λm = 1.

3.1. Definition. Let A be the ∗-algebra over C with identity generated by self-
adjoint elements a and b such that am = 1, bn = 0 and ab = λba.

3.2. Proposition. The elements {apbq | p = 0, 1, ...,m− 1 and q = 0, 1, ..., n− 1}
form a basis for A.

Proof. It is clear that these elements span A as a vector space. We show that they
are linearly independent by constructing a representation. Let V = Cm ⊗ Cn and
consider the standard basis {ep⊗ fq | p = 0, 1, ...,m− 1 and q = 0, 1, ..., n− 1}. Let
z = exp 2πi

m and define linear operators π(a) and π(b) on V by

π(a) ep ⊗ fq = zpλ−q ep ⊗ fq,

π(b) ep ⊗ fq =

{
ep ⊗ fq−1 if q 6= 0,

0 if q = 0.

It is easy to check that π(a)m = 1, π(b)n = 0 and π(a)π(b) = λπ(b)π(a). So
we obtain a representation of A (not a ∗-representation). It is clear that in this
representation, the elements apbq are linearly independent.

3.3. Proposition. A is a Hopf ∗-algebra if we define ∆(a) = a ⊗ a and ∆(b) =
a⊗ b+ b⊗ a−1. The counit ε is given by ε(a) = 1 and ε(b) = 0 and the antipode S
is given by Sa = a−1 and Sb = −λ−1b.

Proof. To prove the existence of ∆, given by the above formulas, we essentially only
have to show that (a⊗ b+ b⊗ a−1)n = 0 in A⊗A.

Now, by induction one can show that, if q = 0, 1, ..., n, we have

(a⊗ b+ b⊗ a−1)q =

q∑
k=0

Cq
k a

kbq−k ⊗ a−(q−k)bk

where Cq
0 = Cq

q = 1 and

Cq
k =

r1...rq
r1...rkr1...rq−k

if k = 1, 2, ..., q − 1 and where

rk =
λk − λ−k

λ− λ−1

if k = 1, 2, ..., n (see e.g. [4] for similar calculations).
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Note that λ 6= 1 and λ 6= −1, so that the formula for rk makes sense, and that
rk 6= 0 for all k = 1, ..., n− 1 so that the formula for Cq

k makes sense.
Because λ2n = 1 we have rn = 0 and Cn

k = 0 when k = 1, 2, ..., n− 1. Hence

(a⊗ b+ b⊗ a−1)n = an ⊗ bn + bn ⊗ a−n.

This is 0 because bn = 0 in A.
The rest of the proof is standard. The counit ε is well-defined on A because the

pair (1, 0) satisfies the same relations as the pair (a, b) and the antipode is well-
defined because the pair (a−1,−λ−1b) satisfies the same relations for the opposite
product. See e.g. [7] for more complete arguments.

Let us now try to obtain some information about A′. We do this by considering
two special elements and by looking at the action of A′ on A.

3.4. Definition. Let z be any non-zero complex number. Define elements c and
d in A′ by

〈c, apbq〉 =

{
zp if q = 0,

0 if q 6= 0,

〈d, apbq〉 =

{
1 if q = 1,

0 if q 6= 1.

We know that A′ acts on A by means of the formula 〈x, π(y)z〉 = 〈xy, z〉whenever
x, y ∈ A′ and z ∈ A. In the next proposition we obtain π(c) and π(d).

3.5. Proposition. For all p and q we have

π(c)apbq = zp−qapbq,

π(d)apbq =

{
rqa

p+1bq−1, q 6= 0,

0, q = 0.

Proof. For any x ∈ A′ and p, q we have

〈xc, apbq〉 = 〈x⊗ c, (ap ⊗ ap)(a⊗ b+ b⊗ a−1)q〉

=

q∑
k=0

Cq
k〈x, apakbq−k〉〈c, apa−(q−k)bk〉

= Cq
0 〈x, apbq〉zp−q

so that π(c)apbq = zp−qapbq.
Similarly, for any x ∈ A′ and p, q we have

〈xd, apbq〉 = 〈x⊗ d, (ap ⊗ ap)(a⊗ b+ b⊗ a−1)q〉

=

q∑
k=0

Cq
k〈x, apakbq−k〉〈d, apa−(q−k)bk〉

= Cq
1 〈x, ap+1bq−1〉

if q 6= 0. We get 0 if q = 0. So π(d)apbq = rqa
p+1bq−1 if q 6= 0 and π(d)apbq = 0 if

q = 0.
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We clearly have π(d)n = 0. So also dn = 0 because π is faithful. But we have
more.

3.6. Proposition. cd = z2dc.

Proof. If q 6= 0 we have

π(c)π(d)apbq = rqπ(c)ap+1bq−1

= rqz
p+1−q+1ap+1bq−1

= z2zp−qπ(d)apbq

= z2π(d)π(c)apbq.

If q = 0 we have π(c)π(d)apbq = 0 and π(d)π(c)apbq = 0. Again because π is
faithful we get the desired result.

If z is also a root of unity, some power of c will also be equal to 1. In fact, if
z2 = λ and zm = 1 we essentially get the same algebra as the one we started with.
This is related with the self-duality that was obtained in ([7]). Also remark that
we get here almost the same representation as in Proposition 3.2.

Let us now look at the left and right invariant elements in A.

3.7. Proposition. Let

h =
m∑
p=1

apbn−1 and k =
m∑
p=1

bn−1ap;

then xh = ε(x)h and kx = ε(x)k for all x ∈ A.

Proof. Because am = 1 we have

a
m∑
`=1

a` =
m∑
`=1

a`

and therefore ah = h = ε(a)h. Further

bh =

m∑
`=1

ba`bn−1 =

m∑
`=1

λ−`a`bn = 0

and bh = ε(b)h because ε(b) = 0. Because ε is a homomorphism, we then have
xh = ε(x)h for all x ∈ A. Similar arguments are used to show that kx = ε(x)k for
all x ∈ A.

It is easy to verify here that h and k are the unique elements satisfying these
equalities. Note that h 6= k. Indeed, this algebra is not a C∗-algebra because bn = 0
and b is self-adjoint. In a C∗-algebra this would imply b = 0.

Let us now verify the faithfulness of these elements. If we let c act on h we find

π(c)h =

m−1∑
p=0

zpz−n+1apbn−1.

So, if we choose z = exp 2πi
m as we did before, by repeated action of π(c) we will

obtain the space spanned by {apbn−1 | p = 0, ...,m − 1}. Then repeated action of
π(d) will give us all elements apbq. This shows the faithfulness of h. Similarly for
k.

We can also find easily the unique left and right Haar functionals on A.
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3.8. Proposition. Define ϕ and ψ on A by

ϕ(apbq) =

{
1 if ap = a−(n−1) and q = n− 1,

0 otherwise,

ψ(apbq) =

{
1 if ap = an−1 and q = n− 1,

0 otherwise;

then, ϕ is a left and ψ a right Haar functional on A.

Proof. Let p be any integer and let q = 0, 1, . . . , n− 1. Then

(ι⊗ ϕ)∆(apbq) =

q∑
k=0

Cq
ka

p+kbq−kϕ(ap−q+kbk).

The right-hand side will be 0 except if k = n− 1 and ap−q+k = a−(n−1). This can
only happen if q = n− 1 and ap = a−(n−1). In that case, we get precisely 1. Hence
(ι⊗ ϕ)∆(apbq) = ϕ(apbq) for all p, q.

Similarly

(ψ ⊗ ι)∆(apbq) =

q∑
k=0

Cq
kψ(ap+kbq−k)ap−q+kbk.

The right-hand side will be 0 except if q − k = n − 1 and ap+k = an−1. This will
only happen if k = 0, q = n − 1 and ap = an−1. Also here, we get 1 in that case.
And again (ψ ⊗ ι)∆(apbq) = ψ(apbq) for all p, q.

It is clear that also here, ϕ and ψ are different. Moreover, the formula for ψ can
be obtained from the formula for ϕ by applying the antipode S.
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