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WEAKLY CONVERGENT SEQUENCE COEFFICIENT

IN KÖTHE SEQUENCE SPACES

YUNAN CUI

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper, we have discussed the weakly convergent sequence
coefficient in Köthe sequence spaces with (en) as their boundedly complete ba-
sis. Using those results, we can easily calculate the weakly convergent sequence
coefficient in Orlicz sequence spaces.

1. Introduction

Our aim is to calculate the weakly convergent sequence coefficient in the Köthe
sequence spaces. The weakly convergent sequence coefficient concerned with nor-
mal structure is an important geometric parameter (see [1], [2], [10], [8]). It was
introduced by Bynum (see [1]). In the sequel, X denotes a Banach space and S(X)
denotes the unit sphere of X . l0 stands for the space of all infinite real sequences.
Let N and R be the set of natural numbers and the set of real numbers, respectively.

Definition 1. The weakly convergent sequence coefficient of X , denoted WCS(X),
is defined as follows:

WCS(X) = sup{k : for each weakly convergent sequence {xn}∞n=1,

there exists some y ∈ co({xn}) such that k · lim sup
n→∞

‖xn − y‖ ≤ A({xn})};

here co({xn}) denotes the convex hull of the elements of {xn}∞n=1.

It is easy to see that 1 ≤ WCS(X) ≤ 2 (see [1]). The notion of normal structure
has been introduced by Brodskĭı and Millman in [4] connected with the fixed point
theory. For a bounded subset A of X , the Chebyshev self-radius of A is the number

r(A) = inf{sup{‖x− y‖ : y ∈ A} : x ∈ co(A)}.
Definition 2. A Banach space X is said to have normal structure if r(A) <
Diam(A) for every non-singleton bounded subset A of X .

It is known that a Banach space with normal structure has the fixed point
property (see [1], [3], [4], [9]), and every reflexive Banach space with WCS(X) > 1
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has normal structure (see [1]). For a sequence {xn}∞n=1 of X , we define

A({xn}) = lim sup
n→∞

{‖xi − xj‖ : i, j ≥ n, i 6= j}

and

A1({xn}) = lim inf
n→∞ {‖xi − xj‖ : i, j ≥ n, i 6= j}.

Definition 3. A sequence {xn} is said to be an asymptotic equidistant sequence if
A({xn}) = A1({xn}) (see [2]).

The result that WCS(X) = inf{A({xn}) : {xn} a sequence in S(X) and xn
w−→

0} = inf{A({xn}) : {xn} an asymptotic equidistant sequence in S(X) and xn
w−→ 0}

is obtained in [2].

Definition 4. A Banach space X is said to have weakly uniformly normal structure
if WCS(X) > 1 (see [7]).

A complete normed sequence space X is called a Köthe sequence space if x =
(x(1), x(2), . . . ) ∈ l0 and y = (y(1), y(2), . . . ) ∈ X such that |x(i)| ≤ |y(i)| for all
i ∈ N , then x ∈ X and ‖x‖ ≤ ‖y‖.
Definition 5. A map M : R → R is called an Orlicz function if it satisfies the
following conditions:

(1) M is even, continuous, convex, and M(0) = 0 if and only if u = 0;

(2) limu→∞
M(u)
u = ∞ and limu→0

M(u)
u = 0.

For every Orlicz function M we define the complementary function M∗ : R→ R
by the formula M∗(ν) = supu>0{u|ν| −M(u)} for every ν ∈ R.

An Orlicz sequence space lM generated by M is defined as follows:

lM = {x ∈ l0 : RM (kx) =
∑

M(kx(i)) <∞ for some k > 0}.
The Orlicz sequence spaces lM are considered as Banach spaces equipped with the

Luxemburg norm ‖x‖(M) = inf{k > 0 : RM (xk ) ≤ 1}, or with the Orlicz-Amemiya

norm ‖x‖M = inf{ 1
k (1 +RM (kx)) : k > 0}.

To simplify notation, we put l(M) = (lM , ‖ ‖(M)) and lM = (lM , ‖ ‖M ).

Definition 6. We say an Orlicz function M satisfies the δ2-condition (M ∈ δ2, for
short) if there exist constants K ≥ 2 and u0 > 0 such that

M(2u) ≤ KM(u) for every |u| ≤ u0.

For more details about Orlicz spaces, we refer the reader to [5], [9], [11] or [12].

2. Results

Theorem 1. Let X be a Köthe sequence space with {en} as its boundedly complete

basis, where en = (0, 0, . . . , 0,
nth
1 , 0, . . . ). Then

WCS(X) = inf

A({xn}) : xn =

In∑
i=I(n−1)+1

xn(i)ei, xn
w−→ 0, I1 < I2 < · · ·

 .
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Proof. Let d = inf{A({xn}) : xn =
∑In

i=I(n−1)+1 xn(i)ei, xn
w−→ 0, I1 < I2 < · · · }.

We need only show that WCS(X) ≥ d.
For any ε > 0, by the definition of WCS(X), there exists an asymptotic equidis-

tant sequence {xn} in S(X) with xn
w−→ 0 such that A({xn}) < WCS(X) + ε.

By xn
w−→ 0, we have that

xn(i) → 0 as n→∞ (i = 1, 2, . . . ).(1)

Let v1 = x1 and take I1 ∈ N so that ‖∑∞
i=I1

v1(i)ei‖ < ε. By (1) we can choose
N1 ∈ N such that ∥∥∥∥∥

I1∑
i=1

xn(i)ei

∥∥∥∥∥ < ε

whenever n ≥ N1.
Let v2 = xN1 and take I2 > I1 such that ‖∑∞

i=I2+1 v2(i)ei‖ < ε. By (1), we can
find N2 > N1 so that for n ≥ N2,∥∥∥∥∥

I2∑
i=1

xn(i)ei

∥∥∥∥∥ < ε.

Let v3 = xN2 and take I3 > I2, so that ‖∑∞
i=I3+1 v3(i)ei‖ < ε.

In such a way, we can obtain a sequence {In} of positive integers with 0 < I1 <
I2 < . . . , and a subsequence {vn} of {xn} satisfying A({xn}) = A({vn}) and∥∥∥∥∥∥

In−1∑
i=1

vn(i)ei

∥∥∥∥∥∥ < ε,

∥∥∥∥∥
∞∑

i=In+1

vn(i)ei

∥∥∥∥∥ < ε, n = 1, 2, 3, . . . ,

where I0 = 0.
Hence, for any n < m we have

‖vn − vm‖

=

∥∥∥∥∥∥
I(n−1)∑

i=1

+

In∑
i=I(n−1)+1

+

I(m−1)∑
i=In+1

+

Im∑
i=I(m−1)+1

+
∞∑

i=Im+1

 (vn(i)− vm(i))ei

∥∥∥∥∥∥
≥
∥∥∥∥∥∥
 In∑
i=I(n−1)+1

+

Im∑
i=I(m−1)+1

 (vn(i)− vm(i))ei

∥∥∥∥∥∥
−
∥∥∥∥∥∥
I(n−1)∑

i=1

+

I(m−1)∑
i=In+1

+
∞∑

i=Im+1

 (vn(i)− vm(i))ei

∥∥∥∥∥∥
≥
∥∥∥∥∥∥

In∑
i=I(n−1)+1

vn(i)ei +

Im∑
i=I(m−1)+1

vm(i)ei

∥∥∥∥∥∥− 2ε− 6ε

≥
∥∥∥∥∥∥

In∑
i=I(n−1)+1

un(i)ei +

Im∑
i=I(m−1)+1

ym(i)ei

∥∥∥∥∥∥− 8ε,

where un =
∑In

i=In−1+1 vn(i)ei/‖
∑In

i=I(n−1)+1 vn(i)ei‖, so ‖un‖ = 1.
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Thus A({un}) ≤ A({vn}) + 8ε ≤ A({xn}) + 8ε ≤ WCS(X) + 9ε. In view of the
arbitrariness of ε > 0, we have d ≤ WCS(X).

Theorem 2. Orlicz sequence spaces l(M) (or lM ) has the weak uniform normal
structure if and only if M ∈ ∆2.

Proof. Necessity. In the case of X = lM , for any 0 < ε < 1/2, by WCS(X) = 1

there exists an asymptotic equidistant sequence {xn} in S(X) with xn
w−→ 0 such

that 1 ≤ A(xn) ≤ 1 + ε.
Without loss of generality, we may assume 1− ε ≤ ‖xn − x1‖M ≤ 1 + ε.
By ‖xn‖M ≥ 1/2 and M ∈ ∆2, there exists δ > 0 such that

∞∑
i=1

M(xn(i)) ≥ δ.(2)

Hence, when n > I1, we get

1 + ε ≥ ‖xn − x1‖M

=

(
1 +

∞∑
i=1

M(kn(xn(i)− x1(i)))

)
/kn

=

(
1 +

∞∑
i=1

M(kn(x1(i)))

)
/kn +

∞∑
i=1

M(kn(xn))/kn

≥
(

1 +

∞∑
i=1

M(kn(x1(i)))/kn

)
+ δ

≥ ‖x1‖M + δ ≥ 1 + δ.

This contradiction shows M /∈ ∆2.
Sufficiency. By M /∈ ∆2, for any ε > 0 there is a u > 0 such that u < ε and

εM((1 + ε)u) > M(u). Setting v = (1 + ε)u, we get M(v/(1 + ε)) < εM(v).
Since v < 2ε, we can find a positive integer m such that

1−M(2ε) < mM(v) ≤ 1.

Take c ≥ 0 satisfying mM(v) +M(c) = 1. Then M(c) < M(2ε). Put

x1 =
(
c,

m︷ ︸︸ ︷
v, . . . , v, 0, 0, . . .

)
,

x2 =
( m︷ ︸︸ ︷
0, . . . , 0, c,

m︷ ︸︸ ︷
v, . . . , v, 0, 0, . . .

)
,

· · · · · · · · · · · · · · · · · ·
and yn = xn/‖xn‖M . Then yn ∈ S(lM ) and {yn} is an asymptotic equidistant
sequence.

Next, we will show that yn
w−→ 0. It is obvious that yn(i) → 0 (i = 1, 2, . . . ).

Since

lim sup
k→0

RM (kxn)/k = lim sup
k→0

RM (kx1)/k = 0,

we have xn
lM∗−−→ 0 which means the convergence with respect to regular functionals.

It is obvious that Φ(xn) = 0 for any singular functional. Hence, yn
w−→ 0.
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Finally, we estimate A({yn}). We have

‖(yn − yk)/(1 + ε)‖M = ‖(xn − xk)/(1 + ε)‖x1‖M‖M
≤ ‖(xn − xk)/(1 + ε)‖M
≤ 1 +RM ((xn − xk)/(1 + ε))

= 1 + 2mM(v/(1 + ε)) + 2M(c/(1 + ε))

≤ 1 + 2mεM(v) + 2M(c)

< 1 + 2ε+ 2M(2ε).

This means that A({yn}) < (1 + ε)(1 + 2ε+ 2M(2ε)), i.e., WCS(lM ) = 1.
The proof of the case X = l(M) is similar to that of X = lM .

Recalling that Maluta’s coefficient D(X) of a Banach space X is defined by
[10] D(X) = sup{lim sup d(xn+1, {xi}ni=1)/A({xn}) : xn a bounded nonconstant
sequence in X} and WCS(X) = 1/D(X) for reflexive spaces X (cf. [13]) and
D(X) = 1 for nonreflexive spaces X (cf. [10]), we obtain that there exists a Banach
space X such that WCS(X) 6= D(X).

Theorem 3. If M satisfies the ∆2-condition, we have

WCS(l(M)) = inf

{
c > 0:

n∑
i=1

M(u1/c) = 1/2,
n∑
i=1

M(ui) = 1, n = 1, 2, . . .

}
.

Proof. Let d = inf{c > 0:
∑n

i=1 M(ui/c) = 1/2,
∑n

i=1 M(ui) = 1, n = 1, 2, . . . }.
For any (u1, u2, . . . , un) satisfying

∑n
i=1 M(ui) = 1, define

xm =
( mn︷ ︸︸ ︷
0, . . . , 0, u1, u2, . . . , un, 0, . . .

)
(m = 1, 2, . . . ).

Obviously, xm
w−→ 0 and ‖(xn − xk)/c‖(M) = 1 if n 6= k, i.e., A({xn}) = c.

By M(u) ∈ ∆2, {en} is a boundedly complete base of l(M), whence WCS(l(M))
≤ d.

On the other hand, by M ∈ ∆2, we have ‖x‖(M) = 1 if and only if RM (xn) = 1.
For any

xn =

I(n)∑
i=I(n−1)+1

xn(i)ei ∈ S(X), where I1 < I2 < · · · ,

we have xn
w−→ 0 and RM ((xn − xk)/d) = RM (xn/d) + RM (xk/d) ≥ 1 (n 6= k).

This means that A({xn}) ≥ d, i.e., WCS(l(M)) ≥ d.

So, WCS(l(M)) = inf{c > 0:
∑n

i=1 M(ui/c) = 1/2,
∑n

i=1 M(ui) = 1, n =
1, 2, . . .}.

Corollary 1. For lp (1 < p <∞) we have WCS(lp) = 21/p (see [1] and [10]).

Theorem 4. If M ∈ ∆2, then WCS(lM ) = inf{inf{cx,k > 0: RM (kx/cx,k) =
(k − 1)/2} : x =

∑n
i=1 x(i)ei ∈ S(lM )}.

Proof. Let d = inf{inf(cx,k > 0: RM (kx/cx,k) = (k − 1)/2} : x =
∑n

i=1 x(i)ei ∈
S(lM )}.
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For any ε > 0, there is an x =
∑n

i=1 x(i)ei ∈ S(lM ), such that

inf

{
cx,k > 0: RM (kx/cx,k) = (k − 1)/2: x ∈

n∑
i=1

x(i)ei ∈ S(lM )

}
< d + ε.

So, there are k > 1 and cx,k < d + ε such that RM (kx/cx,k) = (k − 1)/2. Put

xm =
( mn︷ ︸︸ ︷
0, . . . , 0, u1, u2, . . . , un, 0, . . .

)
(m = 1, 2, . . . ).

By the same method as in the proof of Theorem 3, we have xn
w−→ 0.

For any k 6= n, observe that

‖(xn − xk)/(d + ε)‖M ≤ (1 +RM (k(xn − xk)/(d+ ε)))/k

= (1 + 2RM (kx/(d + ε)))/k

≤ (1 + 2RM (kx/cx,k))/k = 1.

This means that ‖xn − xk‖M ≤ d + ε, i.e., A({xn}) ≤ d + ε. By the arbitrariness
of ε, we have WCS(lM ) ≤ d.

Next, we will prove that WCS(lM ) ≥ d. Let xn =
∑In

i=I(n−1)
x(i)ei ∈ S(lM ) (I0 =

0) be an arbitrary equidistant sequence such that xn
w−→ 0. Take kn,m > 0 such

that

‖(xn − xm)/d‖M = (1 +RM (kn,m(xn − xm)/d))/kn,m.

We will estimate ‖(xn − xm)‖M by considering two cases:
I. kn,m ≤ 1. Then

‖(xn − xm)/d‖M > 1/kn,m ≥ 1,

whence, ‖(xn − xm)‖M > d.
II. 1 < kn,m. Without loss of generality, we assume that n < m. We have

‖(xn − xm)/d‖M = (1 +RM (kn,m(xn − xm)/d))

= (1 +RM (kn,mxn/d) +RM (kn,mxm/d))/kn,m

≥ (1 + (kn,m − 1)/2 + (kn,m − 1)/2)/kn,m = 1.

Consequently, A({xn}) ≥ d.
By the arbitrariness of {xn}, it follows that WCS(lM ) ≥ d, which finishes the

proof.

References

1. W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980),
427–436. MR 81m:46030

2. Guanglu Zhang, Weakly convergent sequence coefficient of product space, Proc. Amer. Math.
Soc. 117 (1993), 637–643. MR 93d:46037
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