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CHARACTERIZATIONS OF W-TYPE SPACES
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ABSTRACT. In this paper we obtain new characterizations of certain spaces of
W-type.

1. INTRODUCTION

The spaces of W-type were studied by B.L. Gurevich [5] and I.M. Gelfand and
G.E. Shilov [4]. They investigated the behaviour of the Fourier transformation
on the W-spaces. Also W-spaces are applied to the theory of partial differential
equations. These spaces are generalizations of spaces of S-type [3].

R.S. Pathak [6] and S.J.L. van Eijndhoven and M.J. Kerkhof [2] introduced new
spaces of W-type and investigated the behaviour of the Hankel transformation over
them.

In this paper, motivated by the work of R.S. Pathak and S.K. Upadhyay [7], we
give new characterizations of the spaces of W-type introduced in [2].

In our investigation the Hankel integral transformation defined by

o (8)(x) = / P ) (ey)d(y)dy , @ € (0,00)

plays an important role, where as usual J,, denotes the Bessel function of the first
kind and order p. Throughout this paper p will always represent a real number
greater than —1/2.

It is known (Corollary 4.8, [1]) that h, is an automorphism of the space Se
constituted by all those complex valued even smooth functions ¢ = ¢(z), € R,
such that

Ym,n (@) = supla™ D" ¢(z)| < oo, for every m,n € N.
zeR
Moreover h;', the inverse of h,,, coincides with h, on Se.
Throughout this paper we will denote by K the following set of functions:

K={M € C*([0,00)): M(0)=M'(0) =0, M'(c0) =00 and M"(z)>0,z€(0,00)} .

For every M € K we will represent by M* the Young dual function of M ([4],
p.19). Interesting and useful properties of the functions in K can be found in [2]
and [4].
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In [4] the W-spaces were defined as follows. Let M, € K and a,b > 0.
The space Wy, consists of all those complex valued and smooth functions ¢ on
R such that for every m € N — {0} and k € N there exists C, 1 > 0 for which

[D*6(a)] < Con g exp (M (a(1 - %)m))  z€R.

The space W consists of all entire functions ¢ such that for every m € N—{0}
and k € N there exists C,, > 0 for which

[246(2)] < Oiexp(2b(1 + -)[32])) 2 € C.

An entire function ¢ is in WAS}[Z if, and only if, for each m,k € N — {0} there
exists Cy, 1 for which

6(2)] < Con i exp(~M (a1 - %)|§Rz|) LB+ %)|Sz|)) L zecC.

S.J.L. van Eijndhoven and M.J. Kerkhof [2] investigated the behaviour of the
transformation h,, on the subspaces of the W-spaces defined as follows.

A function ¢ is in Weps,q (respectively, Wet and Wesj\lfa) when ¢ is even and
¢ is in Wiy, (vespectively, W and WA%Z)

We now introduce new spaces of W—ty[;e.

Let M,Q € K, a,b>0and 1<p<oo. A complex valued and smooth function
p=0¢(x), rel=(0,00),isin WeZ)M)a if, and only if, ¢ belongs to Se and

Hexp(M[a(l - %)x])Afm(m)H < oo for every m € N— {0} and k € N.
P

Here and in the sequel || ||, denotes the norm in the Lebesgue space L,(0, c0).
By A, we denote the Bessel operator x 721 D20t D,

The space WeP*2 consists of ¢ € Se that admit a holomorphic extension to the
whole complex plane and that satisfy the following two conditions:

(i) there exists € > 0 such that for every k € N we can find Cj, > 0 for which

|2Fp(2)] < Cy, exp(Q(be|%z|)) , z€C,

1
(1%) supHexp(—Q[b(l + E)|y|])(3: +iy)" (T + zy)H < 00, for every n € N— {0}
yeR p
and m € N.
A complex valued and smooth function ¢ = ¢(z),z € I, is in Wef\’ﬁ;b if, and
only if, ¢ is in Se admitting a holomorphic extension to the whole complex plane
and ¢ satisfies (7) and

1 1
(#i1) supHexp(M[a(l ——)z] = Qb1+ —)|y|])¢(m+zy)H < oo for every m,n €
yER m n P
N - {0}.
In Section 2 we establish that WeZ)M)a =Wenra, WePhP =Wet and We’]\)’ﬁ;b =

Wb, for every > —1/2 and 1 < p < oo.
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Throughout this paper for every 1 < p < oo we denote by p’ the conjugate of p

(i.e.7 p = %) Also by C' we always represent a suitable positive constant, not

necessarily the same in each occurrence.

2. CHARACTERIZATIONS OF We-spaces

In this Section we prove, by using the Hankel transformation A, that Wez) Ma =

Went,a, WeP b = et and We’]\)’ﬂﬂl;b = Wegj\zfa, for every p > —1/2and 1 <p <
00.

Lemma 2.1. Let 1 < p < oo and p > —1/2. Then WeZ)M)a is contained in
WeM,a.

Proof. Assume first that 1 < p < co. Let ¢ be in Wez)M)a. Define
M) )=k = [ @) s, e,
0
According to Corollary 4.8 in [1], ¢ is in Se. Moreover, the last integral is defined

for every y € C. In fact, for every y € C and n € N — {0}, by virtue of (5.3.b) of
[2] and Holder’s inequality we have

/oo|(xy)_uju($y)||¢($)|(52N+1d:§ < C/OO exp(x|§y|>|¢($)|$zﬂ+ld$
0 0

< C/OOO exp {x|%y| (a1 - %)x)} exp {M(a(l - l)x)} 6|22+ d

n

<C </ooo‘exp [:c|%y| - M(a(l — %)x)]x%ﬂr)’dx)l/p,
(e or(atr =)t e)
T CECE e

Moreover, denoting as usual by M* the Young dual of M, according to well-
known properties of M* ([4]) we obtain for every z € I, y € C, n,m € N — {0},
where 1 < m < n,

1/p'

] =31 (s0 = 32) = 2 s = 0 = (a1 = )

) ot o ()

< —M(a(% - %)x) + M (%) .
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Hence for every m,n € N — {0} with 1 <m < n we can write

/ooo|($y)_“=fu($y)lIsb(x)lva““daf

= </om (eXp [~ (a(% - m)}xzw)?/dx) e exp [Mx(%)]

SOGXpl:MX(%)] ,yeC,

3=

because zlgrolo M'(x) = cc.

If p=1or p= oo we can argue in a similar way.

Thus we conclude that the integral in the right hand side of (1) is a continuous
extension of 1 to the whole complex plane. Moreover, by proceeding in a similar
way we can see that it also is entire. Such an extension will be denoted again by
1. Note that 1 is an even function.

We prove that ¢ € WeM /e,

It is not difficult to deduce from Lemma 5.4-1 of [9] that for every k € N

P u(y) = ()" / " (ay)  Tu(ay) AR ()] de | yeC.

Then, proceeding as above, we get for every k,m € N, m > 1,

Pl < [ L) )| A b
0

<0 [ exp(afyl)a AL o)z

1Sy

(2) SC’exp{M"(m)] , yeC.

Hence v is in WeM ™ 1/e,
Since h,, = h;l on Se, according to Lemma 7.4 of [2], we conclude that Weﬁ M
is contained in Weps,q-

a

Lemma 2.2. Let 1 < p < oo and p > —1/2. Then Wepn,q is contained in
Weﬁ Ma-

Proof. By virtue of Lemma 7.3 of [2], h,(Wear,,) C WeM /2, Let ¢ € WeM™ 1/,
Since h, = h;l on Se, our result will be established when we see that h,(¢) is in
Web v a

Note first that according to Corollary 4.8 of [1], h,¢ is in Se.

Let k € N. By invoking Lemma 5.4-1 of [9] we can obtain that

(3) Aphu(9)(@) = (1) hu(z*¢(2))(x) , z€ 1.

A procedure similar to the one developed in the proof of Lemma 6.1 of [2] allows
us to write, for every x > 1 and 7 > 0,

Aﬁhu(@(x) = % /00 (x(o + iT))_“Hle)(x(a +i7))p(0 + iT) (0 + iT) T2+ g,

— 00
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where H, ,(,1) denotes the Hankel function ([8], p. 73).
Now for every z > 1 and 7 > 0 we divide the last integral as follows:

/oo (x(o + iT))—#HlSl) (z(0 +i1))p(0 + iT) (0 +iT) T2 do

— 0o

= </ +/ ) (x(o + ir))_“Hlsl) :
|z(o+iT)|<1 |z(oc+iT)|>1

(x(o 4+ i7))p(o +iT) (0 +iT)?H T

We will analyze each of the integrals separately.
Assume first that g > 1/2. On the one hand, by using (5.3.c) of [2], we get for
every n € N — {0}

/ ‘(3:(0 + ir))_“Hle)(x(a +i7))p(o +iT)(0 + 1'7)2’”'2]~C+1 do
|z(o+iT)|<1
(4) <C exp(—xT)/ |¢p(o + iT)|do
1 1
SC’eXp(—a:T + M* [—(1 + —)TD,ZB >1 and 7> 0;
a n
on the other hand, by using again (5.3.c) of [2], for every n € N — {0}

/ ‘(a:(a + iT))_“ngl) (z(o +i1)) (o + i) (0 + iT) T2+ do
|z(o4iT)|>1

oo

(5) < Cexp(—z7) / |p(c + i7) (0 + i7) 22+ |do

1 1
< C’exp(—a:T—Fbe(l + E)TD ,x>land 7 >0.
For fixed n € N — {0} we choose 7 > 0 such that
1 1 ax
MY (—(1+ 2)r) = =
a( + n)T (1+1/n)
Then from Lemma 2.4 of [2] we have
1 1 ax
6 —ar 4 M¥(-(1+ 2)r) = =M (= |
(©) T a( +n)T <(1—|—1/n)>
Hence by combining (4), (5) and (6) it follows that

’Aﬁhﬂ(d))(x)‘ < C’exp(—M[aa:(l —

n+1)]),3:>1andn€N.

Note also that, if —1/2 < p < 1/2, by invoking (5.3.d) of [2] one has

‘Aﬁhu(qﬁ)(x)’ < Cexp(—xT)/

— 00

o0

‘¢(0 +ir)(oc+ iT)“+2k+1/2‘dU, 7>0and z > 1.
Proceeding as above, we conclude that

‘Aﬁhu(@(x)‘ < Cexp(—M[ax(l - %)]) ,x>1and meN-{0}.
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Now let z € (0,1) and m € N — {0}. According to (5.3.b) of [2] we have

exp(M [ar(1 = )] ) Ak (0)@)] = exp (M [azt ~ )] )=o)

< C/ 0,2u+2k+1 |¢(U)|d0
0

because M is an increasing function on (0, c0).
Hence, for every k € N and m € N — {0},

‘exp(M [ax(l - %)})Aﬁhu(qb)(x)’ <C,z>0,
and, if m € N— {0}, k € Nand 1 < p < oo, then

{[ o (arfasts = o)) sbono'ac} " <

o 1 1
because /0 exp(—pM {aw(g - m—H)Dd:E < 00.
Thus we establish that h,¢ € Wel, ,, ,, 1 <p < 0o, and the proof is finished.

|
From Lemmas 2.1 and 2.2 we deduce
Theorem 2.1. For every 1 <p <oc and p > —1/2, WeZMﬂ =Wewma-
Lemma 2.3. Let 1 < p < co. Then WeP% is contained in We'?P.

Proof. Let ¢ be in WeP4b. Assume that p > —1/2. Proceeding as in the proof of
Lemma 2.2, we can establish that for every k € N there exists I = (k) such that

o0

|Aﬁhﬂ(¢))(3:)| < C’exp(—a:r)/ |p(o +iT)|(|lo +iT|' + 1)do , 7,2 € (0,00) .

— 0o

Hence, according to Holder’s inequality and (6), we obtain for each k € N,
m € N — {0} and suitable 7 > 0

exp ([0 = —)a] ) |Akh (6)()

) o 1/p
< Cexp(QX [%(1 - %)x} —QF [%(1 — m;—l—l)x}) {/OO 0 +d0.2)p’ }

. {/OO (exp [~ 0061 + —y71] hor | + 1) (I + vl + D)oo + Z'T)|)pdcr}l/p

— 00

<C, z€(0,00),
provided that 1 < p < co. When p = 1 or p = oo we can proceed in a similar
way. Thus we prove that h,(¢) € We o ;- Therefore Theorem 2.1 shows that
hﬂ((b) S WeQX,l/b-
Since h, = h;l on Se, it is sufficient to take into account Lemma 7.3 of [2] to
see that ¢ € We'?, and the proof of this lemma is complete. O
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The next result is not hard to see.
Lemma 2.4. Let 1 <p < oo. Then Weshb s contained in WeP<bb,
As an immediate consequence of Lemmas 2.3 and 2.4 we obtain the following

Theorem 2.2. Let 1 <p < oo. Then Wep$hb = T eftib,
Lemma 2.5. Let 1 <p < oo. Then Weﬁ’ﬁ;b is contained in Wesj\a[’f)a,

Proof. Let ¢ be in Wef\ﬁ;b. Choose p > 1/2. Since h,, = h;l on Se, by virtue of
Lemma 7.5 of [2], to prove this lemma it is sufficient to see that h,¢ is in We?z/{:i%a.
The Hankel transformation h,¢ of ¢ is in Se (Corollary 4.8 [1]). Moreover, pro-
ceeding as in the proof of Lemma 2.1, we can see that h,¢ can be holomorphically
extended to the whole complex plane.

Let 7 > 0. An argument similar to the one developed in Lemma 6.1 of [2] allows
us to write

1

(huo)(z) = 5 /_ " (o + i) D (2o + 7)o + 7)o +in o o] > 1

As in the proof of Lemma 2.2,

le z(o +ir)) *HW® (2(0 + it
(hut)(2) 2( Lo /|I(W)|>l><< +ir) B (a(o + 7))

(o +it)(o +it)* T do | |x| > 1.

We must analyze each of the two integrals.
According to (5.3.c) of [2] we have, for every n,m € N — {0},

/ ‘(a:(a +i7)) HHD (w(0 + i7))p(0 + i) (0 + i) ‘da
|z (o+iT)|>1

< C|x|—#—1/2 /_Oo exp(—(%x)T — (%x)a) ‘qb(o +it)(o + Z'T)u+1/2‘da

< C|$|—,u—1/2

. {/oo <exp[_(a%x)f + |Sallo| - M (a(1 - %)0) +(b1+ %)T)]

—0o0

' 1/p'
o+ ¢T|“+”2> da} ,

where |z| > 1, provided that 1 < p < co. By Lemma 2.4 of [2],

|| 1
Sallo] < M= [ =2 ) 4 M(a(l - = R 1.
[Sz||o] < (a(l—l/l) + (a( l)|a|),a€ ,c€CandleN, >
Then
1 || 1 1
S ~Mla( == <m (=222 Y (el - =
allol = 31 (alt = Diol) < 00 (25 ) = 21 (alg — 2iel)

wherec e R, x € CandilneN n>1>1.
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We assume now that Rz > 0, and we choose 7 > 0 such that
1 Rx
(b s L) B
A+ 27 = i 17m)
Then, again by Lemma 2.4 of [2],

TRy = Q(b(l + %)T) + O <%) .

1
Hence, since —p — 3 <0and 1 < p < oo, we obtain for every || > 1 and Rz > 0

(7)
/( i) ‘(:E(J—FiT))_HHlsl)(x(a+iT))¢(g+Z'T)(J+Z-T)2#+1‘da

. Sz x Ra
gCeXp[M (ﬁ) & (m)}

| </OO (QXP[_M( (% - %NUI)} |a+iT|u+1/2)p'da>””'

— 00

<Cexp[Mx(%> _Qx(b(l—?—%ﬁ)} n,m,l e N—-{0}h1<l<n,

because /OO (exp —M( (— — —)|U|):| lo + iT|”+1/2)p,do < 00.

l
— 00 L
If p=1 or p= oo, we can proceed in a similar way.

On the other hand, by (5.3.c) of 2]

»/z(o+i7')<1 (a0 + i) HD (a(o + im))(o + i) (o + ir) %+ | do
(8) < Clz| =2 /_ZOO exp(—(%x)T + |%x||a|) ‘(b(a +it)(o + iT)’dO’
< C’exp[M’(%) — Qx(ﬁﬂ ,|z] > 1 and Rz > 0,

for m,l e N—{0},1 < [.
Hence from (7) and (8) we conclude that

O ot < Comp |2 (F11+ =10l % (511 - 1)

for every |z| > 1 and Rz > 0, m,l € N, where 1 <.
Since h, ¢ is even, the corresponding inequality (9) also holds when Rz < 0.
Now let |z| < 1. By using (5.3.b) of [2] we deduce that

|m¢|<c/ exp(t]Sa]) | $(8) |2+ dt |

M*1/a O

Proceeding as in the above case, we conclude that h,¢ € Weg, b -

The following result can be proved without difficulty.

Lemma 2.6. Let 1 <p < oo. Then Weg\zi is contained in Wep’Q b,
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From Lemmas 2.5 and 2.6 we obtain

Theorem 2.3. Let 1 < p < oo. Then We’]\”ﬁ;b = Wesj\l/}f)a-
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