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CHARACTERIZATIONS OF W-TYPE SPACES

J. J. BETANCOR AND L. RODRÍGUEZ-MESA

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we obtain new characterizations of certain spaces of
W-type.

1. Introduction

The spaces of W-type were studied by B.L. Gurevich [5] and I.M. Gelfand and
G.E. Shilov [4]. They investigated the behaviour of the Fourier transformation
on the W-spaces. Also W-spaces are applied to the theory of partial differential
equations. These spaces are generalizations of spaces of S-type [3].

R.S. Pathak [6] and S.J.L. van Eijndhoven and M.J. Kerkhof [2] introduced new
spaces of W-type and investigated the behaviour of the Hankel transformation over
them.

In this paper, motivated by the work of R.S. Pathak and S.K. Upadhyay [7], we
give new characterizations of the spaces of W-type introduced in [2].

In our investigation the Hankel integral transformation defined by

hµ(φ)(x) =

∫ ∞

0

y2µ+1(xy)−µJµ(xy)φ(y)dy , x ∈ (0,∞) ,

plays an important role, where as usual Jµ denotes the Bessel function of the first
kind and order µ. Throughout this paper µ will always represent a real number
greater than −1/2.

It is known (Corollary 4.8, [1]) that hµ is an automorphism of the space Se
constituted by all those complex valued even smooth functions φ = φ(x), x ∈ R,
such that

γm,n(φ) = sup
x∈R

|xmDnφ(x)| <∞ , for every m,n ∈ N .

Moreover h−1
µ , the inverse of hµ, coincides with hµ on Se.

Throughout this paper we will denote by K the following set of functions:

K=
{
M ∈ C2([0,∞)) :M(0)=M ′(0)=0,M ′(∞)=∞ and M ′′(x)>0, x∈ (0,∞)

}
.

For every M ∈ K we will represent by Mx the Young dual function of M ([4],
p.19). Interesting and useful properties of the functions in K can be found in [2]
and [4].

Received by the editors February 27, 1996 and, in revised form, October 14, 1996.
1991 Mathematics Subject Classification. Primary 46F12.
Key words and phrases. W-spaces, Hankel transformation, Bessel.
Partially supported by DGICYT Grant PB 94-0591 (Spain).

c©1998 American Mathematical Society

1371



1372 J. J. BETANCOR AND L. RODRÍGUEZ-MESA

In [4] the W-spaces were defined as follows. Let M,Ω ∈ K and a, b > 0.
The space WM,a consists of all those complex valued and smooth functions φ on

R such that for every m ∈ N− {0} and k ∈ N there exists Cm,k > 0 for which

|Dkφ(x)| ≤ Cm,k exp
(
−M(a(1− 1

m
)|x|)

)
, x ∈ R .

The space WΩ,b consists of all entire functions φ such that for every m ∈ N−{0}
and k ∈ N there exists Cm,k > 0 for which

|zkφ(z)| ≤ Cm,k exp
(
Ω(b(1 +

1

m
)|=z|)

)
, z ∈ C .

An entire function φ is in WΩ,b
M,a if, and only if, for each m, k ∈ N − {0} there

exists Cm,k for which

|φ(z)| ≤ Cm,k exp
(
−M(a(1− 1

m
)|<z|) + Ω(b(1 +

1

k
)|=z|)

)
, z ∈ C .

S.J.L. van Eijndhoven and M.J. Kerkhof [2] investigated the behaviour of the
transformation hµ on the subspaces of the W-spaces defined as follows.

A function φ is in WeM,a (respectively, WeΩ,b and WeΩ,bM,a) when φ is even and

φ is in WM,a (respectively, WΩ,b and WΩ,b
M,a).

We now introduce new spaces of W-type.
Let M,Ω ∈ K, a, b > 0 and 1 ≤ p ≤ ∞. A complex valued and smooth function

φ = φ(x) , x ∈ I = (0,∞), is in Wepµ,M,a if, and only if, φ belongs to Se and∥∥∥exp
(
M [a(1− 1

m
)x]
)
∆k
µφ(x)

∥∥∥
p
<∞ for every m ∈ N− {0} and k ∈ N .

Here and in the sequel ‖ ‖p denotes the norm in the Lebesgue space Lp(0,∞).
By ∆µ we denote the Bessel operator x−2µ−1Dx2µ+1D.

The space Wep,Ω,b consists of φ ∈ Se that admit a holomorphic extension to the
whole complex plane and that satisfy the following two conditions:

(i) there exists ε > 0 such that for every k ∈ N we can find Ck > 0 for which

|zkφ(z)| ≤ Ck exp
(
Ω(bε|=z|)

)
, z ∈ C ,

(ii) sup
y∈R

∥∥∥exp
(
−Ω[b(1 +

1

n
)|y|]

)
(x+ iy)mφ(x+ iy)

∥∥∥
p
<∞, for every n ∈ N−{0}

and m ∈ N.
A complex valued and smooth function φ = φ(x), x ∈ I, is in Wep,Ω,bM,a if, and

only if, φ is in Se admitting a holomorphic extension to the whole complex plane
and φ satisfies (i) and

(iii) sup
y∈R

∥∥∥exp
(
M [a(1− 1

m
)x]−Ω[b(1 +

1

n
)|y|]

)
φ(x+ iy)

∥∥∥
p
<∞ for every m,n ∈

N− {0}.
In Section 2 we establish thatWepµ,M,a=WeM,a, Wep,Ω,b=WeΩ,b andWep,Ω,bM,a =

WeΩ,bM,a, for every µ > −1/2 and 1 ≤ p ≤ ∞.
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Throughout this paper for every 1 < p <∞ we denote by p′ the conjugate of p(
i.e., p′ =

p

p− 1

)
. Also by C we always represent a suitable positive constant, not

necessarily the same in each occurrence.

2. Characterizations of We-spaces

In this Section we prove, by using the Hankel transformation hµ, that Wepµ,M,a =

WeM,a, Wep,Ω,b = WeΩ,b and Wep,Ω,bM,a = WeΩ,bM,a, for every µ > −1/2 and 1 ≤ p ≤
∞.

Lemma 2.1. Let 1 ≤ p ≤ ∞ and µ > −1/2. Then Wepµ,M,a is contained in
WeM,a.

Proof. Assume first that 1 < p <∞. Let φ be in Wepµ,M,a. Define

ψ(y) = hµ(φ)(y) =

∫ ∞

0

(xy)−µJµ(xy)φ(x)x2µ+1dx , y ∈ C .(1)

According to Corollary 4.8 in [1], ψ is in Se. Moreover, the last integral is defined
for every y ∈ C. In fact, for every y ∈ C and n ∈ N − {0}, by virtue of (5.3.b) of
[2] and Hölder’s inequality we have∫ ∞

0

|(xy)−µJµ(xy)||φ(x)|x2µ+1dx ≤ C

∫ ∞

0

exp
(
x|=y|

)
|φ(x)|x2µ+1dx

≤ C

∫ ∞

0

exp

[
x|=y| −M

(
a(1− 1

n
)x
)]

exp

[
M
(
a(1 − 1

n
)x
)]
|φ(x)|x2µ+1dx

≤ C

(∫ ∞

0

∣∣∣exp

[
x|=y| −M

(
a(1− 1

n
)x
)]
x2µ+1

∣∣∣p′

dx

)1/p′

·
(∫ ∞

0

∣∣∣exp

[
M
(
a(1− 1

n
)x
)]
φ(x)

∣∣∣pdx)1/p

≤ C

(∫ ∞

0

∣∣∣exp

[
x|=y| −M

(
a(1− 1

n
)x
)]
x2µ+1

∣∣∣p′

dx

)1/p′

.

Moreover, denoting as usual by Mx the Young dual of M , according to well-
known properties of Mx ([4]) we obtain for every x ∈ I, y ∈ C, n,m ∈ N − {0},
where 1 < m < n,

x|=y| −M
(
a(1− 1

n
)x
)

=
x|=y|

a(1− 1/m)
a(1 − 1

m
)−M

(
a(1 − 1

n
)x
)

≤M
(
a(1− 1

m
)x
)
−M

(
a(1− 1

n
)x
)

+Mx

( |=y|
a(1− 1/m)

)

≤ −M
(
a(

1

m
− 1

n
)x
)

+Mx

( |=y|
a(1− 1/m)

)
.
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Hence for every m,n ∈ N− {0} with 1 < m < n we can write∫ ∞

0

|(xy)−µJµ(xy)||φ(x)|x2µ+1dx

≤ C

(∫ ∞

0

(
exp
[
−M

(
a(

1

m
− 1

n
)x
)]
x2µ+1

)p′

dx

)1/p′

exp

[
Mx
( |=y|
a(1 − 1/m)

)]
≤ C exp

[
Mx
( |=y|
a(1 − 1/m)

)]
, y ∈ C ,

because lim
x→∞M ′(x) = ∞.

If p = 1 or p = ∞ we can argue in a similar way.
Thus we conclude that the integral in the right hand side of (1) is a continuous

extension of ψ to the whole complex plane. Moreover, by proceeding in a similar
way we can see that it also is entire. Such an extension will be denoted again by
ψ. Note that ψ is an even function.

We prove that ψ ∈ WeM
x,1/a.

It is not difficult to deduce from Lemma 5.4-1 of [9] that for every k ∈ N

y2kψ(y) = (−1)k
∫ ∞

0

(xy)−µJµ(xy)∆k
µ[φ(x)]x2µ+1dx , y ∈ C .

Then, proceeding as above, we get for every k,m ∈ N, m > 1,

|y2kψ(y)| ≤
∫ ∞

0

∣∣(xy)−µJµ(xy)
∣∣ |∆k

µ[φ(x)]|x2µ+1dx

≤ C

∫ ∞

0

exp
(
x|=y|

)
x2µ+1|∆k

µ[φ(x)]|dx

≤ C exp

[
Mx
( |=y|
a(1− 1/m)

)]
, y ∈ C .(2)

Hence ψ is in WeM
x,1/a.

Since hµ = h−1
µ on Se, according to Lemma 7.4 of [2], we conclude that Wepµ,M,a

is contained in WeM,a.

Lemma 2.2. Let 1 ≤ p ≤ ∞ and µ > −1/2. Then WeM,a is contained in
Wepµ,M,a.

Proof. By virtue of Lemma 7.3 of [2], hµ(WeM,a) ⊂WeM
x,1/a. Let φ ∈WeM

x,1/a.
Since hµ = h−1

µ on Se, our result will be established when we see that hµ(φ) is in

Wepµ,M,a.

Note first that according to Corollary 4.8 of [1], hµφ is in Se.
Let k ∈ N. By invoking Lemma 5.4-1 of [9] we can obtain that

∆k
µhµ(φ)(x) = (−1)khµ(z2kφ(z))(x) , x ∈ I .(3)

A procedure similar to the one developed in the proof of Lemma 6.1 of [2] allows
us to write, for every x > 1 and τ > 0,

∆k
µhµ(φ)(x) =

1

2

∫ ∞

−∞
(x(σ + iτ))−µH(1)

µ (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+2k+1dσ,
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where H
(1)
µ denotes the Hankel function ([8], p. 73).

Now for every x > 1 and τ > 0 we divide the last integral as follows:∫ ∞

−∞
(x(σ + iτ))−µH(1)

µ (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+2k+1dσ

=

(∫
|x(σ+iτ)|≤1

+

∫
|x(σ+iτ)|>1

)
(x(σ + iτ))−µH(1)

µ ·

· (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+2k+1dσ .

We will analyze each of the integrals separately.
Assume first that µ ≥ 1/2. On the one hand, by using (5.3.c) of [2], we get for

every n ∈ N− {0}∫
|x(σ+iτ)|≤1

∣∣∣(x(σ + iτ))−µH(1)
µ (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+2k+1

∣∣∣dσ
≤C exp(−xτ)

∫ ∞

−∞
|φ(σ + iτ)|dσ

≤C exp
(
−xτ +Mx

[1
a
(1 +

1

n
)τ
])
, x > 1 and τ > 0;

(4)

on the other hand, by using again (5.3.c) of [2], for every n ∈ N− {0}∫
|x(σ+iτ)|>1

∣∣∣(x(σ + iτ))−µH(1)
µ (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+2k+1

∣∣∣ dσ
≤ C exp(−xτ)

∫ ∞

−∞
|φ(σ + iτ)(σ + iτ)2µ+2k+1|dσ

≤ C exp
(
−xτ +Mx

[1
a
(1 +

1

n
)τ
])

, x > 1 and τ > 0 .

(5)

For fixed n ∈ N− {0} we choose τ > 0 such that

Mx′
(1

a
(1 +

1

n
)τ
)

=
ax

(1 + 1/n)
.

Then from Lemma 2.4 of [2] we have

−xτ +Mx
(1

a
(1 +

1

n
)τ
)

= −M
(

ax

(1 + 1/n)

)
.(6)

Hence by combining (4), (5) and (6) it follows that∣∣∣∆k
µhµ(φ)(x)

∣∣∣ ≤ C exp
(
−M

[
ax(1− 1

n+ 1
)
])

, x > 1 and n ∈ N .

Note also that, if −1/2 < µ < 1/2, by invoking (5.3.d) of [2] one has∣∣∣∆k
µhµ(φ)(x)

∣∣∣ ≤ C exp(−xτ)
∫ ∞

−∞

∣∣∣φ(σ + iτ)(σ + iτ)µ+2k+1/2
∣∣∣dσ, τ > 0 and x > 1.

Proceeding as above, we conclude that∣∣∣∆k
µhµ(φ)(x)

∣∣∣ ≤ C exp
(
−M

[
ax(1 − 1

m
)
])

, x > 1 and m ∈ N− {0} .
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Now let x ∈ (0, 1) and m ∈ N− {0}. According to (5.3.b) of [2] we have

∣∣∣exp
(
M
[
ax(1− 1

m
)
])

∆k
µ[hµ(φ)(x)]

∣∣∣ =
∣∣∣exp

(
M
[
ax(1− 1

m
)
])
hµ(z2kφ(z))(x)

∣∣∣
≤ C

∫ ∞

0

σ2µ+2k+1|φ(σ)|dσ

because M is an increasing function on (0,∞).
Hence, for every k ∈ N and m ∈ N− {0},∣∣∣exp

(
M
[
ax(1 − 1

m
)
])

∆k
µhµ(φ)(x)

∣∣∣ ≤ C , x > 0 ,

and, if m ∈ N− {0}, k ∈ N and 1 ≤ p <∞, then{∫ ∞

0

∣∣∣exp
(
M
[
ax(1− 1

m
)
])

∆k
µhµ(φ)(x)

∣∣∣pdx}1/p

≤ C

because

∫ ∞

0

exp
(
−pM

[
ax(

1

m
− 1

m+ 1
)
])
dx <∞ .

Thus we establish that hµφ ∈Wepµ,M,a, 1 ≤ p ≤ ∞, and the proof is finished.

From Lemmas 2.1 and 2.2 we deduce

Theorem 2.1. For every 1 ≤ p ≤ ∞ and µ > −1/2, Wepµ,M,a = WeM,a.

Lemma 2.3. Let 1 ≤ p ≤ ∞. Then Wep,Ω,b is contained in WeΩ,b.

Proof. Let φ be in Wep,Ω,b. Assume that µ > −1/2. Proceeding as in the proof of
Lemma 2.2, we can establish that for every k ∈ N there exists l = l(k) such that

|∆k
µhµ(φ)(x)| ≤ C exp(−xτ)

∫ ∞

−∞
|φ(σ + iτ)|(|σ + iτ |l + 1)dσ , τ, x ∈ (0,∞) .

Hence, according to Hölder’s inequality and (6), we obtain for each k ∈ N,
m ∈ N− {0} and suitable τ > 0

exp
(
Ωx
[1
b
(1− 1

m
)x
])
|∆k

µhµ(φ)(x)|

≤ C exp
(
Ωx
[1
b
(1 − 1

m
)x
]
− Ωx

[1
b
(1− 1

m+ 1
)x
]){∫ ∞

−∞

dσ

(1 + σ2)p′

}1/p′

·
{∫ ∞

−∞

(
exp
[
−Ω[b(1 +

1

m
)τ ]
]
(|σ + iτ |+ 1)(|σ + iτ |l + 1)|φ(σ + iτ)|

)p
dσ

}1/p

≤ C , x ∈ (0,∞) ,

provided that 1 < p < ∞. When p = 1 or p = ∞ we can proceed in a similar
way. Thus we prove that hµ(φ) ∈ We∞µ,Ωx,1/b. Therefore Theorem 2.1 shows that

hµ(φ) ∈WeΩx,1/b.

Since hµ = h−1
µ on Se, it is sufficient to take into account Lemma 7.3 of [2] to

see that φ ∈ WeΩ,b, and the proof of this lemma is complete.
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The next result is not hard to see.

Lemma 2.4. Let 1 ≤ p ≤ ∞. Then WeΩ,b is contained in Wep,Ω,b.

As an immediate consequence of Lemmas 2.3 and 2.4 we obtain the following

Theorem 2.2. Let 1 ≤ p ≤ ∞. Then Wep,Ω,b = WeΩ,b.

Lemma 2.5. Let 1 ≤ p ≤ ∞. Then Wep,Ω,bM,a is contained in WeΩ,bM,a.

Proof. Let φ be in Wep,Ω,bM,a . Choose µ ≥ 1/2. Since hµ = h−1
µ on Se, by virtue of

Lemma 7.5 of [2], to prove this lemma it is sufficient to see that hµφ is in We
Mx,1/a
Ωx,1/b .

The Hankel transformation hµφ of φ is in Se (Corollary 4.8 [1]). Moreover, pro-
ceeding as in the proof of Lemma 2.1, we can see that hµφ can be holomorphically
extended to the whole complex plane.

Let τ > 0. An argument similar to the one developed in Lemma 6.1 of [2] allows
us to write

(hµφ)(x) =
1

2

∫ ∞

−∞
(x(σ + iτ))−µH(1)

µ (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+1dσ, |x| > 1.

As in the proof of Lemma 2.2,

(hµφ)(x) =
1

2

(∫
|x(σ+iτ)|≤1

+

∫
|x(σ+iτ)|>1

)
(x(σ + iτ))−µH(1)

µ (x(σ + iτ))

· φ(σ + iτ)(σ + iτ)2µ+1dσ , |x| > 1 .

We must analyze each of the two integrals.
According to (5.3.c) of [2] we have, for every n,m ∈ N− {0},

∫
|x(σ+iτ)|>1

∣∣∣(x(σ + iτ))−µH(1)
µ (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+1

∣∣∣dσ
≤ C|x|−µ−1/2

∫ ∞

−∞
exp
(
−(<x)τ − (=x)σ

)∣∣∣φ(σ + iτ)(σ + iτ)µ+1/2
∣∣∣dσ

≤ C|x|−µ−1/2

·
{∫ ∞

−∞

(
exp

[
−(<x)τ + |=x||σ| −M

(
a(1 − 1

n
)σ
)

+ Ω
(
b(1 +

1

m
)τ
)]

· |σ + iτ |µ+1/2

)p′

dσ

}1/p′

,

where |x| > 1, provided that 1 < p <∞. By Lemma 2.4 of [2],

|=x||σ| ≤Mx

( |=x|
a(1− 1/l)

)
+M

(
a(1− 1

l
)|σ|
)
, σ ∈ R, x ∈ C and l ∈ N, l > 1 .

Then

|=x||σ| −M
(
a(1− 1

n
)|σ|
)
≤Mx

( |=x|
a(1− 1/l)

)
−M

(
a(

1

l
− 1

n
)|σ|
)
,

where σ ∈ R, x ∈ C and l, n ∈ N , n > l > 1 .
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We assume now that <x > 0, and we choose τ > 0 such that

Ω′
(
b(1 +

1

m
)τ
)

=
<x

b(1 + 1/m)
.

Then, again by Lemma 2.4 of [2],

τ<x = Ω
(
b(1 +

1

m
)τ
)

+ Ωx

( <x
b(1 + 1/m)

)
.

Hence, since −µ− 1

2
≤ 0 and 1 < p <∞, we obtain for every |x| ≥ 1 and <x > 0

∫
|x(σ+iτ)|>1

∣∣∣(x(σ + iτ))−µH(1)
µ (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+1

∣∣∣ dσ
≤ C exp

[
Mx
( |=x|
a(1− 1/l)

)
− Ωx

( <x
b(1 + 1/m)

)]
·
(∫ ∞

−∞

(
exp

[
−M

(
a(

1

l
− 1

n
)|σ|
)]
|σ + iτ |µ+1/2

)p′

dσ

)1/p′

≤ C exp

[
Mx
( |=x|
a(1− 1/l)

)
− Ωx

( <x
b(1 + 1/m)

)]
n,m, l ∈ N− {0}, 1 < l < n ,

(7)

because

∫ ∞

−∞

(
exp

[
−M

(
a(

1

l
− 1

n
)|σ|
)]
|σ + iτ |µ+1/2

)p′

dσ <∞ .

If p = 1 or p = ∞, we can proceed in a similar way.
On the other hand, by (5.3.c) of [2]∫

|x(σ+iτ)|≤1

∣∣∣(x(σ + iτ))−µH(1)
µ (x(σ + iτ))φ(σ + iτ)(σ + iτ)2µ+1

∣∣∣ dσ
≤ C|x|−2µ

∫ ∞

−∞
exp
(
−(<x)τ + |=x||σ|

)∣∣∣φ(σ + iτ)(σ + iτ)
∣∣∣dσ

≤ C exp

[
Mx
( |=x|
a(1− 1/l)

)
− Ωx

( <x
b(1 + 1/m)

)]
, |x| ≥ 1 and <x > 0,

(8)

for m, l ∈ N− {0}, 1 < l.
Hence from (7) and (8) we conclude that

|hµφ(x)| ≤ C exp

[
Mx
(1

a
[1 +

1

l − 1
]|=x|

)
− Ωx

(1

b
[1− 1

m+ 1
]<x
)]

(9)

for every |x| ≥ 1 and <x > 0, m, l ∈ N, where 1 < l .
Since hµφ is even, the corresponding inequality (9) also holds when <x < 0.
Now let |x| < 1. By using (5.3.b) of [2] we deduce that

|hµφ(x)| ≤ C

∫ ∞

0

exp(t|=x|)|φ(t)|t2µ+1dt .

Proceeding as in the above case, we conclude that hµφ ∈ We
Mx,1/a
Ωx,1/b .

The following result can be proved without difficulty.

Lemma 2.6. Let 1 ≤ p ≤ ∞. Then WeΩ,bM,a is contained in Wep,Ω,bM,a .
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From Lemmas 2.5 and 2.6 we obtain

Theorem 2.3. Let 1 ≤ p ≤ ∞. Then Wep,Ω,bM,a = WeΩ,bM,a.
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Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna,

Tenerife, Canary Islands, Spain

E-mail address: jbetanco@ull.es

E-mail address: lrguez@ull.es


