CHARACTERIZATIONS OF W-TYPE SPACES

J. J. BETANCOR AND L. RODRÍGUEZ-MESA
(Communicated by Palle E. T. Jorgensen)

Abstract

In this paper we obtain new characterizations of certain spaces of W-type.

1. Introduction

The spaces of W-type were studied by B.L. Gurevich [5] and I.M. Gelfand and G.E. Shilov [4]. They investigated the behaviour of the Fourier transformation on the W-spaces. Also W-spaces are applied to the theory of partial differential equations. These spaces are generalizations of spaces of S-type [3].
R.S. Pathak [6] and S.J.L. van Eijndhoven and M.J. Kerkhof [2] introduced new spaces of W-type and investigated the behaviour of the Hankel transformation over them.

In this paper, motivated by the work of R.S. Pathak and S.K. Upadhyay [7], we give new characterizations of the spaces of W-type introduced in [2].

In our investigation the Hankel integral transformation defined by

$$
h_{\mu}(\phi)(x)=\int_{0}^{\infty} y^{2 \mu+1}(x y)^{-\mu} J_{\mu}(x y) \phi(y) d y, x \in(0, \infty),
$$

plays an important role, where as usual J_{μ} denotes the Bessel function of the first kind and order μ. Throughout this paper μ will always represent a real number greater than $-1 / 2$.

It is known (Corollary 4.8, [1]) that h_{μ} is an automorphism of the space $S e$ constituted by all those complex valued even smooth functions $\phi=\phi(x), x \in \mathbb{R}$, such that

$$
\gamma_{m, n}(\phi)=\sup _{x \in \mathbb{R}}\left|x^{m} D^{n} \phi(x)\right|<\infty, \text { for every } m, n \in \mathbb{N}
$$

Moreover h_{μ}^{-1}, the inverse of h_{μ}, coincides with h_{μ} on $S e$.
Throughout this paper we will denote by K the following set of functions:
$K=\left\{M \in C^{2}([0, \infty)): M(0)=M^{\prime}(0)=0, M^{\prime}(\infty)=\infty\right.$ and $\left.M^{\prime \prime}(x)>0, x \in(0, \infty)\right\}$.
For every $M \in K$ we will represent by M^{x} the Young dual function of M ([4], p.19). Interesting and useful properties of the functions in K can be found in [2] and [4].

[^0]In [4] the W-spaces were defined as follows. Let $M, \Omega \in K$ and $a, b>0$.
The space $W_{M, a}$ consists of all those complex valued and smooth functions ϕ on \mathbb{R} such that for every $m \in \mathbb{N}-\{0\}$ and $k \in \mathbb{N}$ there exists $C_{m, k}>0$ for which

$$
\left|D^{k} \phi(x)\right| \leq C_{m, k} \exp \left(-M\left(a\left(1-\frac{1}{m}\right)|x|\right)\right), x \in \mathbb{R}
$$

The space $W^{\Omega, b}$ consists of all entire functions ϕ such that for every $m \in \mathbb{N}-\{0\}$ and $k \in \mathbb{N}$ there exists $C_{m, k}>0$ for which

$$
\left|z^{k} \phi(z)\right| \leq C_{m, k} \exp \left(\Omega\left(b\left(1+\frac{1}{m}\right)|\Im z|\right)\right), z \in \mathbb{C}
$$

An entire function ϕ is in $W_{M, a}^{\Omega, b}$ if, and only if, for each $m, k \in \mathbb{N}-\{0\}$ there exists $C_{m, k}$ for which

$$
|\phi(z)| \leq C_{m, k} \exp \left(-M\left(a\left(1-\frac{1}{m}\right)|\Re z|\right)+\Omega\left(b\left(1+\frac{1}{k}\right)|\Im z|\right)\right), z \in \mathbb{C}
$$

S.J.L. van Eijndhoven and M.J. Kerkhof [2] investigated the behaviour of the transformation h_{μ} on the subspaces of the W-spaces defined as follows.

A function ϕ is in $W e_{M, a}$ (respectively, $W e^{\Omega, b}$ and $W e_{M, a}^{\Omega, b}$) when ϕ is even and ϕ is in $W_{M, a}$ (respectively, $W^{\Omega, b}$ and $W_{M, a}^{\Omega, b}$).

We now introduce new spaces of W-type.
Let $M, \Omega \in K, a, b>0$ and $1 \leq p \leq \infty$. A complex valued and smooth function $\phi=\phi(x), x \in I=(0, \infty)$, is in $W e_{\mu, M, a}^{p}$ if, and only if, ϕ belongs to $S e$ and

$$
\left\|\exp \left(M\left[a\left(1-\frac{1}{m}\right) x\right]\right) \Delta_{\mu}^{k} \phi(x)\right\|_{p}<\infty \text { for every } m \in \mathbb{N}-\{0\} \text { and } k \in \mathbb{N}
$$

Here and in the sequel $\left\|\|_{p}\right.$ denotes the norm in the Lebesgue space $L_{p}(0, \infty)$. By Δ_{μ} we denote the Bessel operator $x^{-2 \mu-1} D x^{2 \mu+1} D$.

The space $W e^{p, \Omega, b}$ consists of $\phi \in S e$ that admit a holomorphic extension to the whole complex plane and that satisfy the following two conditions:
(i) there exists $\epsilon>0$ such that for every $k \in \mathbb{N}$ we can find $C_{k}>0$ for which

$$
\left|z^{k} \phi(z)\right| \leq C_{k} \exp (\Omega(b \epsilon|\Im z|)), z \in \mathbb{C}
$$

(ii) $\sup _{y \in \mathbb{R}}\left\|\exp \left(-\Omega\left[b\left(1+\frac{1}{n}\right)|y|\right]\right)(x+i y)^{m} \phi(x+i y)\right\|_{p}<\infty$, for every $n \in \mathbb{N}-\{0\}$ and $m \in \mathbb{N}$.

A complex valued and smooth function $\phi=\phi(x), x \in I$, is in $W e_{M, a}^{p, \Omega, b}$ if, and only if, ϕ is in $S e$ admitting a holomorphic extension to the whole complex plane and ϕ satisfies (i) and
(iii) $\sup _{y \in \mathbb{R}}\left\|\exp \left(M\left[a\left(1-\frac{1}{m}\right) x\right]-\Omega\left[b\left(1+\frac{1}{n}\right)|y|\right]\right) \phi(x+i y)\right\|_{p}<\infty$ for every $m, n \in$ $\mathbb{N}-\{0\}$.

In Section 2 we establish that $W e_{\mu, M, a}^{p}=W e_{M, a}, W e^{p, \Omega, b}=W e^{\Omega, b}$ and $W e_{M, a}^{p, \Omega, b}=$ $W e_{M, a}^{\Omega, b}$, for every $\mu>-1 / 2$ and $1 \leq p \leq \infty$.

Throughout this paper for every $1<p<\infty$ we denote by p^{\prime} the conjugate of p (i.e., $\left.p^{\prime}=\frac{p}{p-1}\right)$. Also by C we always represent a suitable positive constant, not necessarily the same in each occurrence.

2. Characterizations of We-spaces

In this Section we prove, by using the Hankel transformation h_{μ}, that $W e_{\mu, M, a}^{p}=$ $W e_{M, a}, W e^{p, \Omega, b}=W e^{\Omega, b}$ and $W e_{M, a}^{p, \Omega, b}=W e_{M, a}^{\Omega, b}$, for every $\mu>-1 / 2$ and $1 \leq p \leq$ ∞.

Lemma 2.1. Let $1 \leq p \leq \infty$ and $\mu>-1 / 2$. Then $W e_{\mu, M, a}^{p}$ is contained in $W e_{M, a}$.

Proof. Assume first that $1<p<\infty$. Let ϕ be in $W e_{\mu, M, a}^{p}$. Define

$$
\begin{equation*}
\psi(y)=h_{\mu}(\phi)(y)=\int_{0}^{\infty}(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x, y \in \mathbb{C} \tag{1}
\end{equation*}
$$

According to Corollary 4.8 in [1], ψ is in $S e$. Moreover, the last integral is defined for every $y \in \mathbb{C}$. In fact, for every $y \in \mathbb{C}$ and $n \in \mathbb{N}-\{0\}$, by virtue of (5.3.b) of [2] and Hölder's inequality we have

$$
\begin{gathered}
\int_{0}^{\infty}\left|(x y)^{-\mu} J_{\mu}(x y) \| \phi(x)\right| x^{2 \mu+1} d x \leq C \int_{0}^{\infty} \exp (x|\Im y|)|\phi(x)| x^{2 \mu+1} d x \\
\leq C \int_{0}^{\infty} \exp \left[x|\Im y|-M\left(a\left(1-\frac{1}{n}\right) x\right)\right] \exp \left[M\left(a\left(1-\frac{1}{n}\right) x\right)\right]|\phi(x)| x^{2 \mu+1} d x \\
\leq C\left(\int_{0}^{\infty}\left|\exp \left[x|\Im y|-M\left(a\left(1-\frac{1}{n}\right) x\right)\right] x^{2 \mu+1}\right|^{p^{\prime}} d x\right)^{1 / p^{\prime}} \\
\cdot\left(\int_{0}^{\infty}\left|\exp \left[M\left(a\left(1-\frac{1}{n}\right) x\right)\right] \phi(x)\right|^{p} d x\right)^{1 / p} \\
\leq C\left(\int_{0}^{\infty}\left|\exp \left[x|\Im y|-M\left(a\left(1-\frac{1}{n}\right) x\right)\right] x^{2 \mu+1}\right|^{p^{\prime}} d x\right)^{1 / p^{\prime}}
\end{gathered}
$$

Moreover, denoting as usual by M^{x} the Young dual of M, according to wellknown properties of $M^{\mathrm{x}}([4])$ we obtain for every $x \in I, y \in \mathbb{C}, n, m \in \mathbb{N}-\{0\}$, where $1<m<n$,

$$
\begin{gathered}
x|\Im y|-M\left(a\left(1-\frac{1}{n}\right) x\right)=\frac{x|\Im y|}{a(1-1 / m)} a\left(1-\frac{1}{m}\right)-M\left(a\left(1-\frac{1}{n}\right) x\right) \\
\leq M\left(a\left(1-\frac{1}{m}\right) x\right)-M\left(a\left(1-\frac{1}{n}\right) x\right)+M^{\mathrm{x}}\left(\frac{|\Im y|}{a(1-1 / m)}\right) \\
\leq-M\left(a\left(\frac{1}{m}-\frac{1}{n}\right) x\right)+M^{\mathrm{x}}\left(\frac{|\Im y|}{a(1-1 / m)}\right)
\end{gathered}
$$

Hence for every $m, n \in \mathbb{N}-\{0\}$ with $1<m<n$ we can write

$$
\begin{gathered}
\int_{0}^{\infty}\left|(x y)^{-\mu} J_{\mu}(x y)\right||\phi(x)| x^{2 \mu+1} d x \\
\leq C\left(\int_{0}^{\infty}\left(\exp \left[-M\left(a\left(\frac{1}{m}-\frac{1}{n}\right) x\right)\right] x^{2 \mu+1}\right)^{p^{\prime}} d x\right)^{1 / p^{\prime}} \exp \left[M^{\mathrm{x}}\left(\frac{|\Im y|}{a(1-1 / m)}\right)\right] \\
\leq C \exp \left[M^{\mathrm{x}}\left(\frac{|\Im y|}{a(1-1 / m)}\right)\right], y \in \mathbb{C}
\end{gathered}
$$

because $\lim _{x \rightarrow \infty} M^{\prime}(x)=\infty$.
If $p=1$ or $p=\infty$ we can argue in a similar way.
Thus we conclude that the integral in the right hand side of (1) is a continuous extension of ψ to the whole complex plane. Moreover, by proceeding in a similar way we can see that it also is entire. Such an extension will be denoted again by ψ. Note that ψ is an even function.

We prove that $\psi \in W e^{M^{\mathrm{x}}, 1 / a}$.
It is not difficult to deduce from Lemma 5.4 -1 of [9] that for every $k \in \mathbb{N}$

$$
y^{2 k} \psi(y)=(-1)^{k} \int_{0}^{\infty}(x y)^{-\mu} J_{\mu}(x y) \Delta_{\mu}^{k}[\phi(x)] x^{2 \mu+1} d x, \quad y \in \mathbb{C}
$$

Then, proceeding as above, we get for every $k, m \in \mathbb{N}, m>1$,

$$
\begin{align*}
& \left|y^{2 k} \psi(y)\right| \leq \int_{0}^{\infty}\left|(x y)^{-\mu} J_{\mu}(x y)\right|\left|\Delta_{\mu}^{k}[\phi(x)]\right| x^{2 \mu+1} d x \\
& \quad \leq C \int_{0}^{\infty} \exp (x|\Im y|) x^{2 \mu+1}\left|\Delta_{\mu}^{k}[\phi(x)]\right| d x \\
& \quad \leq C \exp \left[M^{\mathrm{x}}\left(\frac{|\Im y|}{a(1-1 / m)}\right)\right], y \in \mathbb{C} \tag{2}
\end{align*}
$$

Hence ψ is in $W e^{M^{\mathrm{x}}, 1 / a}$.
Since $h_{\mu}=h_{\mu}^{-1}$ on $S e$, according to Lemma 7.4 of [2], we conclude that $W e_{\mu, M, a}^{p}$ is contained in $W e_{M, a}$.

Lemma 2.2. Let $1 \leq p \leq \infty$ and $\mu>-1 / 2$. Then $W e_{M, a}$ is contained in $W e_{\mu, M, a}^{p}$.

Proof. By virtue of Lemma 7.3 of $[2], h_{\mu}\left(W e_{M, a}\right) \subset W e^{M^{\mathrm{x}}, 1 / a}$. Let $\phi \in W e^{M^{\mathrm{x}}, 1 / a}$. Since $h_{\mu}=h_{\mu}^{-1}$ on $S e$, our result will be established when we see that $h_{\mu}(\phi)$ is in $W e_{\mu, M, a}^{p}$.

Note first that according to Corollary 4.8 of [1], $h_{\mu} \phi$ is in $S e$.
Let $k \in \mathbb{N}$. By invoking Lemma 5.4-1 of [9] we can obtain that

$$
\begin{equation*}
\Delta_{\mu}^{k} h_{\mu}(\phi)(x)=(-1)^{k} h_{\mu}\left(z^{2 k} \phi(z)\right)(x), \quad x \in I \tag{3}
\end{equation*}
$$

A procedure similar to the one developed in the proof of Lemma 6.1 of [2] allows us to write, for every $x>1$ and $\tau>0$,

$$
\Delta_{\mu}^{k} h_{\mu}(\phi)(x)=\frac{1}{2} \int_{-\infty}^{\infty}(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+2 k+1} d \sigma
$$

where $H_{\mu}^{(1)}$ denotes the Hankel function ([8], p. 73).
Now for every $x>1$ and $\tau>0$ we divide the last integral as follows:

$$
\begin{gathered}
\int_{-\infty}^{\infty}(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+2 k+1} d \sigma \\
=\left(\int_{|x(\sigma+i \tau)| \leq 1}+\int_{|x(\sigma+i \tau)|>1}\right)(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)} \\
\cdot(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+2 k+1} d \sigma .
\end{gathered}
$$

We will analyze each of the integrals separately.
Assume first that $\mu \geq 1 / 2$. On the one hand, by using (5.3.c) of [2], we get for every $n \in \mathbb{N}-\{0\}$

$$
\begin{align*}
& \int_{|x(\sigma+i \tau)| \leq 1}\left|(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+2 k+1}\right| d \sigma \\
& \quad \leq C \exp (-x \tau) \int_{-\infty}^{\infty}|\phi(\sigma+i \tau)| d \sigma \tag{4}\\
& \quad \leq C \exp \left(-x \tau+M^{\mathrm{x}}\left[\frac{1}{a}\left(1+\frac{1}{n}\right) \tau\right]\right), x>1 \text { and } \tau>0
\end{align*}
$$

on the other hand, by using again (5.3.c) of [2], for every $n \in \mathbb{N}-\{0\}$

$$
\begin{align*}
& \int_{|x(\sigma+i \tau)|>1}\left|(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+2 k+1}\right| d \sigma \\
& \quad \leq C \exp (-x \tau) \int_{-\infty}^{\infty}\left|\phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+2 k+1}\right| d \sigma \tag{5}\\
& \quad \leq C \exp \left(-x \tau+M^{\mathrm{x}}\left[\frac{1}{a}\left(1+\frac{1}{n}\right) \tau\right]\right), x>1 \text { and } \tau>0
\end{align*}
$$

For fixed $n \in \mathbb{N}-\{0\}$ we choose $\tau>0$ such that

$$
M^{\mathrm{x}^{\prime}}\left(\frac{1}{a}\left(1+\frac{1}{n}\right) \tau\right)=\frac{a x}{(1+1 / n)}
$$

Then from Lemma 2.4 of [2] we have

$$
\begin{equation*}
-x \tau+M^{\mathrm{x}}\left(\frac{1}{a}\left(1+\frac{1}{n}\right) \tau\right)=-M\left(\frac{a x}{(1+1 / n)}\right) \tag{6}
\end{equation*}
$$

Hence by combining (4), (5) and (6) it follows that

$$
\left|\Delta_{\mu}^{k} h_{\mu}(\phi)(x)\right| \leq C \exp \left(-M\left[a x\left(1-\frac{1}{n+1}\right)\right]\right), x>1 \text { and } n \in \mathbb{N}
$$

Note also that, if $-1 / 2<\mu<1 / 2$, by invoking (5.3.d) of [2] one has

$$
\left|\Delta_{\mu}^{k} h_{\mu}(\phi)(x)\right| \leq C \exp (-x \tau) \int_{-\infty}^{\infty}\left|\phi(\sigma+i \tau)(\sigma+i \tau)^{\mu+2 k+1 / 2}\right| d \sigma, \tau>0 \text { and } x>1
$$

Proceeding as above, we conclude that

$$
\left|\Delta_{\mu}^{k} h_{\mu}(\phi)(x)\right| \leq C \exp \left(-M\left[a x\left(1-\frac{1}{m}\right)\right]\right), x>1 \text { and } m \in \mathbb{N}-\{0\}
$$

Now let $x \in(0,1)$ and $m \in \mathbb{N}-\{0\}$. According to (5.3.b) of [2] we have

$$
\begin{gathered}
\left|\exp \left(M\left[a x\left(1-\frac{1}{m}\right)\right]\right) \Delta_{\mu}^{k}\left[h_{\mu}(\phi)(x)\right]\right|=\left|\exp \left(M\left[a x\left(1-\frac{1}{m}\right)\right]\right) h_{\mu}\left(z^{2 k} \phi(z)\right)(x)\right| \\
\leq C \int_{0}^{\infty} \sigma^{2 \mu+2 k+1}|\phi(\sigma)| d \sigma
\end{gathered}
$$

because M is an increasing function on $(0, \infty)$.
Hence, for every $k \in \mathbb{N}$ and $m \in \mathbb{N}-\{0\}$,

$$
\left|\exp \left(M\left[a x\left(1-\frac{1}{m}\right)\right]\right) \Delta_{\mu}^{k} h_{\mu}(\phi)(x)\right| \leq C, x>0
$$

and, if $m \in \mathbb{N}-\{0\}, k \in \mathbb{N}$ and $1 \leq p<\infty$, then

$$
\left\{\int_{0}^{\infty}\left|\exp \left(M\left[a x\left(1-\frac{1}{m}\right)\right]\right) \Delta_{\mu}^{k} h_{\mu}(\phi)(x)\right|^{p} d x\right\}^{1 / p} \leq C
$$

because $\int_{0}^{\infty} \exp \left(-p M\left[a x\left(\frac{1}{m}-\frac{1}{m+1}\right)\right]\right) d x<\infty$.
Thus we establish that $h_{\mu} \phi \in W e_{\mu, M, a}^{p}, 1 \leq p \leq \infty$, and the proof is finished.

From Lemmas 2.1 and 2.2 we deduce
Theorem 2.1. For every $1 \leq p \leq \infty$ and $\mu>-1 / 2, \quad W e_{\mu, M, a}^{p}=W e_{M, a}$.
Lemma 2.3. Let $1 \leq p \leq \infty$. Then $W e^{p, \Omega, b}$ is contained in $W e^{\Omega, b}$.
Proof. Let ϕ be in $W e^{p, \Omega, b}$. Assume that $\mu>-1 / 2$. Proceeding as in the proof of Lemma 2.2, we can establish that for every $k \in \mathbb{N}$ there exists $l=l(k)$ such that

$$
\left|\Delta_{\mu}^{k} h_{\mu}(\phi)(x)\right| \leq C \exp (-x \tau) \int_{-\infty}^{\infty}|\phi(\sigma+i \tau)|\left(|\sigma+i \tau|^{l}+1\right) d \sigma, \tau, x \in(0, \infty)
$$

Hence, according to Hölder's inequality and (6), we obtain for each $k \in \mathbb{N}$, $m \in \mathbb{N}-\{0\}$ and suitable $\tau>0$

$$
\begin{gathered}
\exp \left(\Omega^{\mathrm{x}}\left[\frac{1}{b}\left(1-\frac{1}{m}\right) x\right]\right)\left|\Delta_{\mu}^{k} h_{\mu}(\phi)(x)\right| \\
\leq C \exp \left(\Omega^{\mathrm{x}}\left[\frac{1}{b}\left(1-\frac{1}{m}\right) x\right]-\Omega^{\mathrm{x}}\left[\frac{1}{b}\left(1-\frac{1}{m+1}\right) x\right]\right)\left\{\int_{-\infty}^{\infty} \frac{d \sigma}{\left(1+\sigma^{2}\right)^{p^{\prime}}}\right\}^{1 / p^{\prime}} \\
\cdot\left\{\int_{-\infty}^{\infty}\left(\exp \left[-\Omega\left[b\left(1+\frac{1}{m}\right) \tau\right]\right](|\sigma+i \tau|+1)\left(|\sigma+i \tau|^{l}+1\right)|\phi(\sigma+i \tau)|\right)^{p} d \sigma\right\}^{1 / p} \\
\leq C, x \in(0, \infty)
\end{gathered}
$$

provided that $1<p<\infty$. When $p=1$ or $p=\infty$ we can proceed in a similar way. Thus we prove that $h_{\mu}(\phi) \in W e_{\mu, \Omega^{\mathrm{x}}, 1 / b}^{\infty}$. Therefore Theorem 2.1 shows that $h_{\mu}(\phi) \in W e_{\Omega^{\mathrm{x}}, 1 / b}$.

Since $h_{\mu}=h_{\mu}^{-1}$ on $S e$, it is sufficient to take into account Lemma 7.3 of [2] to see that $\phi \in W e^{\Omega, b}$, and the proof of this lemma is complete.

The next result is not hard to see.
Lemma 2.4. Let $1 \leq p \leq \infty$. Then $W e^{\Omega, b}$ is contained in $W e^{p, \Omega, b}$.
As an immediate consequence of Lemmas 2.3 and 2.4 we obtain the following
Theorem 2.2. Let $1 \leq p \leq \infty$. Then $W e^{p, \Omega, b}=W e^{\Omega, b}$.
Lemma 2.5. Let $1 \leq p \leq \infty$. Then $W e_{M, a}^{p, \Omega, b}$ is contained in $W e_{M, a}^{\Omega, b}$.
Proof. Let ϕ be in $W e_{M, a}^{p, \Omega, b}$. Choose $\mu \geq 1 / 2$. Since $h_{\mu}=h_{\mu}^{-1}$ on $S e$, by virtue of Lemma 7.5 of [2], to prove this lemma it is sufficient to see that $h_{\mu} \phi$ is in $W e_{\Omega^{\mathrm{x}}, 1 / b}^{M^{\mathrm{x}}, 1 / a}$. The Hankel transformation $h_{\mu} \phi$ of ϕ is in Se (Corollary 4.8 [1]). Moreover, proceeding as in the proof of Lemma 2.1, we can see that $h_{\mu} \phi$ can be holomorphically extended to the whole complex plane.

Let $\tau>0$. An argument similar to the one developed in Lemma 6.1 of [2] allows us to write

$$
\left(h_{\mu} \phi\right)(x)=\frac{1}{2} \int_{-\infty}^{\infty}(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+1} d \sigma,|x|>1
$$

As in the proof of Lemma 2.2,

$$
\begin{aligned}
&\left(h_{\mu} \phi\right)(x)=\frac{1}{2}\left(\int_{|x(\sigma+i \tau)| \leq 1}+\int_{|x(\sigma+i \tau)|>1}\right)(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \\
& \cdot \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+1} d \sigma,|x|>1
\end{aligned}
$$

We must analyze each of the two integrals.
According to (5.3.c) of [2] we have, for every $n, m \in \mathbb{N}-\{0\}$,

$$
\begin{aligned}
& \int_{|x(\sigma+i \tau)|>1}\left|(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+1}\right| d \sigma \\
& \quad \leq C|x|^{-\mu-1 / 2} \int_{-\infty}^{\infty} \exp (-(\Re x) \tau-(\Im x) \sigma)\left|\phi(\sigma+i \tau)(\sigma+i \tau)^{\mu+1 / 2}\right| d \sigma \\
& \quad \leq C|x|^{-\mu-1 / 2} \\
& \quad \cdot\left\{\int _ { - \infty } ^ { \infty } \left(\exp \left[-(\Re x) \tau+|\Im x||\sigma|-M\left(a\left(1-\frac{1}{n}\right) \sigma\right)+\Omega\left(b\left(1+\frac{1}{m}\right) \tau\right)\right]\right.\right. \\
& \left.\left.\cdot|\sigma+i \tau|^{\mu+1 / 2}\right)^{p^{\prime}} d \sigma\right\}^{1 / p^{\prime}}
\end{aligned}
$$

where $|x|>1$, provided that $1<p<\infty$. By Lemma 2.4 of [2],

$$
|\Im x||\sigma| \leq M^{\mathrm{x}}\left(\frac{|\Im x|}{a(1-1 / l)}\right)+M\left(a\left(1-\frac{1}{l}\right)|\sigma|\right), \sigma \in \mathbb{R}, x \in \mathbb{C} \text { and } l \in \mathbb{N}, l>1
$$

Then

$$
|\Im x||\sigma|-M\left(a\left(1-\frac{1}{n}\right)|\sigma|\right) \leq M^{\mathrm{x}}\left(\frac{|\Im x|}{a(1-1 / l)}\right)-M\left(a\left(\frac{1}{l}-\frac{1}{n}\right)|\sigma|\right)
$$

where $\sigma \in \mathbb{R}, x \in \mathbb{C}$ and $l, n \in \mathbb{N}, n>l>1$.

We assume now that $\Re x>0$, and we choose $\tau>0$ such that

$$
\Omega^{\prime}\left(b\left(1+\frac{1}{m}\right) \tau\right)=\frac{\Re x}{b(1+1 / m)}
$$

Then, again by Lemma 2.4 of [2],

$$
\tau \Re x=\Omega\left(b\left(1+\frac{1}{m}\right) \tau\right)+\Omega^{\mathrm{x}}\left(\frac{\Re x}{b(1+1 / m)}\right)
$$

Hence, since $-\mu-\frac{1}{2} \leq 0$ and $1<p<\infty$, we obtain for every $|x| \geq 1$ and $\Re x>0$

$$
\begin{align*}
& \int_{|x(\sigma+i \tau)|>1}\left|(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+1}\right| d \sigma \tag{7}\\
& \leq C \exp \left[M^{\mathrm{x}}\left(\frac{|\Im x|}{a(1-1 / l)}\right)-\Omega^{\mathrm{x}}\left(\frac{\Re x}{b(1+1 / m)}\right)\right] \\
& \quad \cdot\left(\int_{-\infty}^{\infty}\left(\exp \left[-M\left(a\left(\frac{1}{l}-\frac{1}{n}\right)|\sigma|\right)\right]|\sigma+i \tau|^{\mu+1 / 2}\right)^{p^{\prime}} d \sigma\right)^{1 / p^{\prime}} \\
& \leq C \exp \left[M^{\mathrm{x}}\left(\frac{|\Im x|}{a(1-1 / l)}\right)-\Omega^{\mathrm{x}}\left(\frac{\Re x}{b(1+1 / m)}\right)\right] n, m, l \in \mathbb{N}-\{0\}, 1<l<n \\
& \text { because } \int_{-\infty}^{\infty}\left(\exp \left[-M\left(a\left(\frac{1}{l}-\frac{1}{n}\right)|\sigma|\right)\right]|\sigma+i \tau|^{\mu+1 / 2}\right)^{p^{\prime}} d \sigma<\infty
\end{align*}
$$

If $p=1$ or $p=\infty$, we can proceed in a similar way.
On the other hand, by (5.3.c) of [2]

$$
\begin{align*}
& \int_{|x(\sigma+i \tau)| \leq 1}\left|(x(\sigma+i \tau))^{-\mu} H_{\mu}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2 \mu+1}\right| d \sigma \\
& \quad \leq C|x|^{-2 \mu} \int_{-\infty}^{\infty} \exp (-(\Re x) \tau+|\Im x||\sigma|)|\phi(\sigma+i \tau)(\sigma+i \tau)| d \sigma \tag{8}\\
& \quad \leq C \exp \left[M^{\mathrm{x}}\left(\frac{|\Im x|}{a(1-1 / l)}\right)-\Omega^{\mathrm{x}}\left(\frac{\Re x}{b(1+1 / m)}\right)\right],|x| \geq 1 \text { and } \Re x>0
\end{align*}
$$

for $m, l \in \mathbb{N}-\{0\}, 1<l$.
Hence from (7) and (8) we conclude that

$$
\begin{equation*}
\left|h_{\mu} \phi(x)\right| \leq C \exp \left[M^{\mathrm{x}}\left(\frac{1}{a}\left[1+\frac{1}{l-1}\right]|\Im x|\right)-\Omega^{\mathrm{x}}\left(\frac{1}{b}\left[1-\frac{1}{m+1}\right] \Re x\right)\right] \tag{9}
\end{equation*}
$$

for every $|x| \geq 1$ and $\Re x>0, m, l \in \mathbb{N}$, where $1<l$.
Since $h_{\mu} \phi$ is even, the corresponding inequality (9) also holds when $\Re x<0$.
Now let $|x|<1$. By using (5.3.b) of [2] we deduce that

$$
\left|h_{\mu} \phi(x)\right| \leq C \int_{0}^{\infty} \exp (t|\Im x|)|\phi(t)| t^{2 \mu+1} d t
$$

Proceeding as in the above case, we conclude that $h_{\mu} \phi \in W e_{\Omega^{\mathrm{x}}, 1 / b}^{M_{\mathrm{x}}, 1 / a}$.
The following result can be proved without difficulty.
Lemma 2.6. Let $1 \leq p \leq \infty$. Then $W e_{M, a}^{\Omega, b}$ is contained in $W e_{M, a}^{p, \Omega, b}$.

From Lemmas 2.5 and 2.6 we obtain
Theorem 2.3. Let $1 \leq p \leq \infty$. Then $W e_{M, a}^{p, \Omega, b}=W e_{M, a}^{\Omega, b}$.

Acknowledgment

The authors are thankful to the referee for valuable comments that led to the improvement of this paper.

References

[1] S.J.L. van Eijndhoven and J. de Graaf, Some results on Hankel invariant distribution spaces, Proc. Kon. Ned. Akad. van Wetensch., A 86 (1983), 77-87. MR 84e:46037
[2] S.J.L. van Eijndhoven and M.J. Kerkhof, The Hankel transformation and spaces of type W, Reports on Applied and Numerical Analysis, Departament of Mathematics and Computing Science, Eindhoven University of Technology, 1988.
[3] I.M. Gelfand and G.E. Shilov, Generalized functions, Vol. 2, Academic Press, New York, 1967. MR 37:5693
[4] _ Generalized functions, Vol. 3, Academic Press, New York, 1967. MR 36:507
[5] B.L. Gurevich, Nouveaux espaces de fonctions fondamentales et généralisés et le problemé de Cauchy pour des systems d'équations aux différences finis, D.A.N. SSSR, 99 (1954), 893-896; 108 (1956), 1001-1003. (Russian) MR 16:720b; MR 18:216e
[6] R.S. Pathak, On Hankel transformable spaces and a Cauchy problem, Can. J. Math., XXXVII(1) (1985), 84-106. MR 86d:46037
[7] R.S. Pathak and S.K. Upadhyay, W^{p}-spaces and Fourier transform, Proc. Amer. Math. Soc., 121(3) (1994), 733-738. MR 94i:46051
[8] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1956. MR 6:64a (1944 ed.)
[9] A.H. Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968. MR 54:10991

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife, Canary Islands, Spain

E-mail address: jbetanco@ull.es
E-mail address: lrguez@ull.es

[^0]: Received by the editors February 27, 1996 and, in revised form, October 14, 1996.
 1991 Mathematics Subject Classification. Primary 46F12.
 Key words and phrases. W-spaces, Hankel transformation, Bessel.
 Partially supported by DGICYT Grant PB 94-0591 (Spain).

