THERE IS A PARACOMPACT Q-SET SPACE IN ZFC

ZOLTAN T. BALOGH

(Communicated by Franklin D. Tall)

ABSTRACT. We construct a paracompact space QX such that every subset of QX is an F_{σ} -set, yet QX is not σ -discrete. We will construct our space not to have a G_{δ} -diagonal, which answers questions of A.V. Arhangel'skiĭ and D. Shakhmatov on cleavable spaces.

Introduction

In this paper we will construct a hereditarily paracompact, perfectly normal Q-set space QX without a quasi- G_{δ} -diagonal. QX answers questions on Q-set spaces, and on cleavable spaces of A.V. Arhangel'skiĭ.

A topological space X is a **Q-set space** [B] if every subset of X is a G_{δ} -set and X is not σ -discrete. H. Junnila [J] (and Bregman-Shapirovskiĭ-Soštak) asked whether there were any Q-set spaces in ZFC. This problem was answered affirmatively for regular Q-set spaces, and the question was raised whether there are (perfectly) normal Q-set spaces [B]. In this paper we shall combine the technique of the regular examples with a new inductive method to show not only that the answer is yes, but that one can also construct paracompact examples.

A.V. Arhangel'skiĭ and D.B. Shakhmatov [AS], [A1] raised the question whether every cleavable space has a G_{δ} -diagonal. Arhangel'skiĭ [A2] also asked whether spaces cleavable over the rationals had to be σ -discrete or had to possess G_{δ} -diagonals. Since normal Q-set spaces are cleavable and also cleavable over the rationals [A2], and our space QX will be constructed not to have a G_{δ} -diagonal, it settles all of the above questions in the negative. (It should be pointed out here, that a Q-space is defined in [A2] to be a space whose every subset is an F_{σ} -set. Thus, Q-set spaces are precisely the non- σ -discrete Q-spaces).

QX will have cardinality c^+ , which is necessary only to make it not have a G_{δ} -diagonal. If we only want to construct a paracompact Q-set space, then it can be done on c (Theorem 2.1).

Terminology and notation. We use the standard terminology and notation of set-theoretic topology (see [KV]). π will always denote *first* projection, i.e. $\pi A = \{a : \text{there is a } b \text{ with } \langle a,b \rangle \in A\}$. A sequence of $\langle \mathcal{G}_m \rangle_{m \in \omega}$ of families of open subsets of a space X is said to be a *quasi-G_\delta-diagonal*, if for every $x \in X$, $\bigcap \{st(x,\mathcal{G}_m) : m \in \omega \text{ and } x \in \bigcup \mathcal{G}_m\} = \{x\}$.

Received by the editors August 24, 1995.

1991 Mathematics Subject Classification. Primary 54Dxx.

Key words and phrases. Paracompact, Q-set space, G_{δ} -diagonal, cleavable.

Research supported by NSF Grant DMS-9108476.

1. The space QX

Theorem 1.1. There is a (hereditarily) paracompact, perfectly normal Q-set space QX without a quasi- G_{δ} -diagonal.

Proof. The underlying set of QX is c^+ , the first cardinal bigger than the continum c. The topology of QX will be inductively defined in $\lambda = 2^{c^+}$ steps. For the purposes of making every subset of QX a G_{δ} -set, let $\langle Y_{\xi} \rangle_{\xi < \lambda}$ be a one-to-one listing of all subsets of c^+ . Also, let $\langle U_{\xi} \rangle_{\xi < \lambda}$ be a list of all subsets of $c^+ \times c^+$ such that $U_0 = \phi$ and each subset is listed λ times. This second list will, in particular, mention codes for all future open covers of QX. If such an open cover first occurs at step ξ , then we'll add a clopen partition refining that cover to the topology of QX. To carry out the program above we shall define, by induction of $\xi < \lambda$,

- (a) a function $g_{\xi}: c^+ \longrightarrow \omega + 1$;
- (b) a number $h(\xi) \in \{0, 1\};$
- (c) a function $w_{\xi}: c^+ \longrightarrow c^+ \setminus \omega$ if $h(\xi) = 1$.

We will set

- (a') $G_{\xi n} = \{ \alpha < c^+ : g_{\xi}(\alpha) \ge n \}$ for every $n \in \omega$;
- (b') $H = \{ \xi < \lambda : h(\xi) = 1 \};$
- (c') $W_{\xi\rho} = \{\alpha < c^+ : w_{\xi}(\alpha) = \rho\}$ for every $\xi \in H$ and ρ with $\omega \leq \rho < c^+$. \square

A subbase for the topology τ_Q of QX will be

$$\mathcal{B} = \{ G_{\xi n} : \xi < \lambda, \ n \in \omega \} \cup \{ W_{\xi \rho} : \xi \in H \text{ and } \rho \in c^+ \backslash \omega \}.$$

Adding the $G_{\xi n}$'s will make every subset of X a G_{δ} -set. $\{W_{\xi \rho} : \rho \in c^+ \setminus \omega\}$ will be a clopen partition refinement of the open cover coded by rows $\omega \leq \rho < c^+$ of $U_{\xi} \subset c^+ \times c^+ \text{ if } \xi \in H.$

In order to make sure that QX does not have a quasi- G_{δ} -diagonal we will need the concept of a control pair. We will say that $\langle A, \underline{u} \rangle$ is a control pair if

- (C-1) $A \in [c^+]^{\omega}$;
- (C-2) $\underline{u} = \langle u_0, u_1, u_2 \rangle$, and u_0, u_1, u_2 are functions with domain A;
- (C-3) for every $\alpha \in A$, $u_0(\alpha) \in [P(A) \times \omega]^{<\omega}$, $u_1(\alpha) \in [P(A \times A)]^{<\omega}$ and $u_2(\alpha) \in$ $[P(A \times A) \setminus u_1(\alpha)]^{<\omega};$
- (C-4) if α , $\alpha' \in A$ and $\alpha \neq \alpha'$, then $\pi u_0(\alpha) \cap \pi u_0(\alpha') = \phi$ and $u_1(\alpha) \cap u_1(\alpha') = \phi$.

(Note that $\pi u_0(\alpha) = \{B \subset A \text{ there is an } n \in \omega \text{ with } \langle B, n \rangle \in u_0(\alpha) \}$).

Roughly speaking, $\langle A, u \rangle$ will code a countable approximation to a neighborhood assignment in QX. Let $\langle A_{\beta}, \underline{u}_{\beta} \rangle_{\beta < c^{+}}$ list all control pairs, mentioning each c^{+}

The last ingredient we need is the notion of an initially ξ -open set. A subset $E \subset c^+$ will be called *initially* ξ -open, if E is an open subset in the topology generated by

$$\mathcal{B}_{\xi} = \{X\} \cup \{G_{\eta n} : \eta < \xi, \ n \in \omega\} \cup \{W_{\eta \rho} : \eta < \xi, \ h(\eta) = 1 \text{ and } \rho \in c^+ \setminus \omega\}.$$

For every $\xi < \lambda$ and $\rho \in c^+ \setminus \omega$, let $U_{\xi\rho} = \{ \gamma < c^+ : \langle \gamma, \rho \rangle \in U_{\xi} \}$.

We are going to construct g_{ξ} , $h(\xi)$ and w_{ξ} (if $h(\xi) = 1$) in such a way that the following hypotheses are satisfied:

- (1 $_{\xi}$) for every $\beta < c^{+}$, $g_{\xi}(\beta) = \omega$ iff $\beta \in Y_{\xi}$; (2 $_{\xi}$) if $\alpha < \beta < c^{+}$ and $\langle Y_{\xi} \cap A_{\beta}, n \rangle \in u_{0\beta}(\alpha)$, then $g_{\xi}(\beta) \geq n$;

- (3_{ξ}) $h(\xi) = 1$ if and only if $\langle U_{\xi\rho}\rangle_{\rho\in c^+\setminus\omega}$ is a cover of c^+ consisting of initially ξ -open sets and there is no $\xi' < \xi$ such that $U_{\xi'} = U_{\xi}$ and $\langle U_{\xi'\rho}\rangle_{\rho\in c^+\setminus\omega}$ is a cover by initially ξ' -open sets;
- (4_{ξ}) if $h(\xi) = 1$, then
- (a) for every $\beta < c^+$, $\beta \in U_{\xi w_{\xi}(\beta)}$;
- (b) if $\alpha < \beta < c^+$, $U_{\xi} \cap (A_{\beta} \times A_{\beta}) \in u_{1\beta}(\alpha)$ and $\beta \in U_{\xi w_{\xi}(\alpha)}$, then $w_{\xi}(\beta) = w_{\xi}(\alpha)$;
- (c) if $\alpha < \beta < c^+$, $U_{\xi} \cap (A_{\beta} \times A_{\beta}) \in u_{2\beta}(\alpha)$ and $\beta \in U_{\xi w_{\xi}(\alpha)}$, then there is an $\alpha' \in A_{\beta}$ such that $w_{\xi}(\beta) = w_{\xi}(\alpha')$.

Let us now pass to the construction. Suppose that $\xi < \lambda$ and that we are done for $\eta < \xi$.

We are going to define $g_{\xi}(\beta) \in \omega + 1$ by induction on $\beta < c^+$. Suppose we are done for every $\alpha < \beta$. We split the definition into two cases.

Case 1. Suppose that there is no $\alpha < \beta$ and $n \in \omega$ with $\langle Y_{\xi} \cap A_{\beta}, n \rangle \in u_{0\beta}(\alpha)$. Then let $g_{\xi}(\beta) = \omega$ if $\beta \in Y_{\xi}$, and $g_{\xi}(\beta) = 0$ if $\beta \notin Y_{\xi}$.

Case 2. Suppose now that there is an $\alpha < \beta$ such that $\langle Y_{\xi} \cap A_{\beta}, n \rangle \in u_{0\beta}(\alpha)$ for some $n \in \omega$. By (C-4), there is only one such α ; furthermore, since $u_{0\beta}(\alpha)$ is a finite set, there are only finitely many such $n \in \omega$. Set $g_{\xi}(\beta) = \max\{n \in \omega : \langle Y_{\xi} \cap A_{\beta}, n \rangle \in u_{0\beta}(\alpha)\}$, if $\beta \notin Y_{\xi}$, and $g_{\xi}(\beta) = \omega$, if $\beta \in Y_{\xi}$.

With these definitions, (1_{ξ}) and (2_{ξ}) are clearly satisfied.

Note that (3_{ξ}) permits exactly one of 0 or 1 to be $h(\xi)$ and define $h(\xi)$ according to (3_{ξ}) .

If $h(\xi) = 0$, then leave w_{ξ} undefined.

Suppose now that $h(\xi) = 1$. We are going to define $w_{\xi}(\beta)$ by induction on $\beta < c^+$. Suppose that we are done for every $\alpha < \beta$. We consider three cases.

Case 1. Suppose that there is an $\alpha < \beta$ such that $U_{\xi} \cap (A_{\beta} \times A_{\beta}) \in u_{1\beta}(\alpha)$ and $\beta \in U_{\xi w_{\xi}(\alpha)}$. Note that by (C-4) there is only one such α and that $\alpha \in A_{\beta}$. Set $w_{\xi}(\beta) = w_{\xi}(\alpha)$.

Case 2. Suppose that Case 1 does not hold, but there is an $\alpha < \beta$ such that $U_{\xi} \cap (A_{\beta} \times A_{\beta}) \in u_{2\beta}(\alpha)$ and $\beta \in U_{\xi w_{\xi}(\alpha)}$. Note that every such α belongs to A_{β} . Fix one such α and set $w_{\xi}(\beta) = w_{\xi}(\alpha)$ for that α .

Case 3. Suppose that neither Case 1 nor Case 2 holds. Then pick any $\rho \in c^+ \setminus \omega$ with $\beta \in U_{\xi\rho}$ (since $\langle U_{\xi\rho} \rangle_{\rho \in c^+ \setminus \omega}$ is a cover of c^+ , there is at least one such ρ) and set $w_{\xi}(\beta) = \rho$.

It is easy to check that (4ξ) is satisfied in all of the cases above.

To finish our construction, let τ denote the topology generated by

$$\mathcal{B} = \bigcup_{\xi < \lambda} \mathcal{B}_{\xi} = \{ G_{\xi n} : \xi < \lambda, n \in \omega \} \cup \{ W_{\xi \rho} : \rho \in c^+ \setminus \omega, \xi < \lambda \text{ and } h(\xi) = 1 \}$$

as a subbase.

Let $QX = \langle c^+, \tau \rangle$. The rest of the proof consists of checking that this space possesses the desired properties.

I. To check that every subset of QX is a G_{δ} -set, let $Y \subset c^+$. Then there is a $\xi < \lambda$ such that $Y = Y_{\xi}$. By (1_{ξ}) , $Y = Y_{\xi} = \bigcap_{n \in \omega} G_{\xi n}$, i.e. Y is a G_{δ} -set.

Note that since complements of singletons are G_{δ} -sets (and thus, open sets), every singleton set is closed, i.e. X is a T_1 -space.

II. In order to show that QX is **ultraparacompact** it is enough to prove that every open cover of QX has a refinement which is a partition of c^+ into pairwise disjoint clopen sets. So let \mathcal{U} be an arbitrary open cover of QX and let $\langle U_{\rho} \rangle_{\rho \in c^+ \setminus \omega}$ be a list of $\mathcal{U} \cup \{\phi\}$. Let $U = \bigcup_{\rho \in c^+ \setminus \omega} U_{\rho} \times \{\rho\}$. Since on the list $\langle U_{\xi} \rangle_{\xi < \lambda}$ of all subsets of $c^+ \times c^+$, U is listed λ times, and because $cf(\lambda) = cf(2^{c^+}) > c^+$, there is a first $\xi < \lambda$ such that $U_{\xi} = U$ and U_{ρ} is initially ξ -open for every $\rho \in c^+ \setminus \omega$. For this ξ , $\langle U_{\xi\rho} \rangle_{\rho \in c^+ \setminus \omega} = \langle U_{\rho} \rangle_{\rho \in c^+ \setminus \omega}$ and $h(\xi) = 1$. Therefore $w_{\xi} : c^+ \to c^+ \setminus \omega$ is defined and $\langle W_{\xi\rho} \rangle_{\rho \in c^+ \setminus \omega}$ is a refinement of $\langle U_{\rho} \rangle_{\rho \in c^+ \setminus \omega}$ to a partition of QX into clopen subsets.

III. **Perfect normality** of X follows from I and II.

IV. The rest of the proof consists of showing that QX does not have a quasi- G_{δ} -diagonal. From this it automatically follows that QX is not σ -discrete, because a σ -discrete space in which every point is a G_{δ} -set has a quasi- G_{δ} -diagonal.

First, for every $\langle \xi, \cdot \rangle \in \lambda \times \omega \cup H \times (c^+ \backslash \omega)$, let $Q_{\xi} = G_{\xi n}$ if $\langle \xi, \cdot \rangle = \langle \xi, n \rangle$ for some $n \in \omega$, and let $Q_{\xi} = W_{\xi \rho}$ if $\langle \xi, \cdot \rangle = \langle \xi, \rho \rangle$ for some $\rho \in c^+ \backslash \omega$. Further, let us note that $\langle U_{\xi} \rangle_{\xi \in H}$ is a one-to-one list.

Now, let us consider an arbitrary sequence $\langle \mathcal{G}_m \rangle_{m \in \omega}$ of families of open subsets of QX. We are going to show that $\langle \mathcal{G}_m \rangle_{m \in \omega}$ does not form a quasi- G_δ -diagonal in QX. For this purpose we can assume without loss of generality that each \mathcal{G}_m is a non-empty family of non-empty sets and that $\mathcal{G} = \bigcup_{m \in \omega} \mathcal{G}_m$ covers QX.

For each $m \in \omega$ let $q_m : \bigcup \mathcal{G}_m \to [\lambda \times \omega \cup H \times (c^+ \setminus \rho)]^{<\omega}$ code a refinement of \mathcal{G}_m by basic open sets, i.e. for every $\alpha \in \bigcup \mathcal{G}_m$ there is a $G \in \mathcal{G}_m$ such that

$$\alpha \in Q_m(\alpha) = \bigcap \{Q_{\xi} : \langle \xi, \cdot \rangle \in q_m(\alpha)\} \subset G.$$

By extending $q_m(\alpha)$, if necessary, we can assume without loss of generality that for every $m \in \omega$ and $\alpha \in \bigcup \mathcal{G}_m$,

(F) if $\langle \xi, \rho \rangle \in q_m(\alpha) \cap (H \times (c^+ \backslash \omega))$, then there is a $t_{\xi m}(\alpha) \subset q_m(\alpha)$ such that (F-a) $\langle \eta, \cdot \rangle \in t_{\xi m}(\alpha)$ implies $\eta < \xi$;

(F-b)
$$\alpha \in T_{\xi m}(\alpha) = \bigcap \{Q_{\eta} : \langle \eta, \cdot \rangle \in t_{\xi m}(\alpha)\} \subset U_{\xi \rho}.$$

This can be done because if $\langle \xi, \rho \rangle \in q_m(\alpha) \cap (H \times (c^+ \setminus \omega))$, then $U_{\xi\rho}$ is an initially ξ -open set containing α . Also, note that $t_{\xi m}(\alpha)$ does not depend on ρ , because ξ and α determine ρ through the condition $\alpha \in W_{\xi\rho}$.

In order to prove that $\langle \mathcal{G}_m \rangle_{m \in \omega}$ is not a quasi- G_δ -diagonal it is enough to find two distinct elements β_0, β_1 of c^+ such that $\{m \in \omega : \beta_0 \in \bigcup \mathcal{G}_m\} = \{m \in \omega : \beta_1 \in \bigcup \mathcal{G}_m\}$, and if we denote this subset of ω by N, then

(*) for every
$$m \in N$$
 there is an $\alpha \in \bigcup \mathcal{G}_m$ such that $\{\beta_0, \beta_1\} \subset Q_m(\alpha)$.

In order to find such β_0 and β_1 , let M be a countable elementary submodel of $H((2^{c^+})^+)$ such that $\langle Y_\xi \rangle_{\xi < \lambda}$, $\langle U_\xi \rangle_{\xi \in H}$, $\langle g_\xi \rangle_{\xi < \lambda}$, $\langle w_\xi \rangle_{\xi \in H}$, $\langle \mathcal{G}_m \rangle_{m \in \omega}$ and $\langle q_m \rangle_{m \in \omega}$ are all elements of M. Let $A^* = M \cap c^+$ and let $\langle A^*, \underline{u}^* \rangle$ be a control pair such that if $v: c^+ \to [\lambda \times \omega \cup H \times (c^+ \setminus \omega)]^{<\omega}$ is an infinite partial function in M and $\{\pi v(\alpha) : \alpha \in dom(v)\}$ forms a Δ -system with root r_v , then there is an $\alpha \in A^*$ such that

$$u_0^*(\alpha) = \{ \langle Y_{\xi} \cap A^*, n \rangle : \langle \xi, n \rangle \in v(\alpha) \text{ and } \xi \notin r_v \};$$

$$(D) \qquad u_1^*(\alpha) = \{ U_{\xi} \cap (A^* \times A^*) : \xi \in (\pi v(\alpha) \backslash r_v) \cap H \};$$

$$u_2^*(\alpha) = \{ U_{\xi} \cap (A^* \times A^*) : \xi \in r_v \cap H \}.$$

To see that such a control pair $\langle A^*, u^* \rangle$ exists, let $\langle v_k \rangle_{k \in \omega}$ list all functions above.

By induction on $k \in \omega$, define a sequence $\langle \alpha_k \rangle_{k \in \omega}$ of distinct elements of $A^* = c^+ \cap M$ in such a way that $\pi v_k(\alpha_k) - r_{v_k}(k \in \omega)$ are pairwise disjoint. Then define $u_j^*(\alpha_k)$ (j = 0, 1, 2) as in (D), writing α_k and v_k in place of α and v, and set $u_j^*(\alpha) = \emptyset$ for $\alpha \in A^* \setminus \{\alpha_k : k \in \omega\}$. Then $\langle A^*, \underline{u}^* \rangle$, where $\underline{u}^*(\alpha) = \langle u_0^*(\alpha), u_1^*(\alpha), u_2^*(\alpha) \rangle$, is a control pair as desired. (Properties (C-3) and (c-4) of a control pair follow from (D), because M is an elementary submodel and the lists $\langle Y_\xi \rangle_{\xi < \lambda}$, $\langle U_\xi \rangle_{\xi \in H}$ are one-to-one.)

Now, let $\beta_0, \beta_1 > \sup A^*$ be such that

- (i) $\langle A^*, \underline{u}^* \rangle = \langle A_{\beta i}, \underline{u}_{\beta i} \rangle$ for i = 0, 1;
- (ii) $\{m \in \omega : \beta_0 \in \bigcup \mathcal{G}_m\} = \{m \in \omega : \beta_1 \in \bigcup \mathcal{G}_m\} = N;$
- (iii) for every $m \in N$
- (iii-a) $q_m(\beta_0) \cap M = q_m(\beta_1) \cap M$ (denote this set by y_m);
- (iii-b) $\{\xi \in M \cap H : \langle \xi, w_{\xi}(\beta_0) \rangle \in q_m(\beta_0) \} = \{\xi \in M \cap H : \langle \xi, w_{\xi}(\beta_1) \rangle \in q_m(\beta_1) \}$ (denote this set by t_m). Note that (iii-a) and (iii-b) together imply
- (iii-c) $\pi q_m(\beta_0) \cap M = \pi q_m(\beta_1) \cap M$. Denote this set by S_m .

Note that $y_m, t_m, S_m \in M$.

To see that β_0, β_1 satisfy (*), fix $m \in N$. Let $\varphi(\alpha)$ be the conjunction of the following statements:

- (a) $\alpha \in \bigcup \mathcal{G}_m$;
- (b) $y_m \subset q_m(\alpha)$;
- (c) for every $\langle \xi, n \rangle \in S_m \times \omega$, $\langle \xi, n \rangle \in q_m(\alpha)$ iff $\langle \xi, n \rangle \in y_m$;
- (d) for every $\xi \in S_m \cap H$, $\langle \xi, w_{\xi}(\alpha) \rangle \in q_m(\alpha)$ iff $\xi \in t_m$.

Note that all the parameters of $\varphi(\alpha)$ are from M, and that $\varphi(\beta_0)$ (as well as $\varphi(\beta_1)$) holds. Therefore, by standard reflection, $\varphi(\alpha)$ is true for infinitely many $\alpha \in M$, in fact,

 ψ : there is an infinite function v such that $dom(v) \subset c^+$, $\varphi(\alpha)$ and $v(\alpha) = q_m(\alpha)$ hold for every $\alpha \in dom(v)$, and $\langle \pi v(\alpha) \rangle_{\alpha \in dom(v)}$ forms an infinite Δ -system with root $r_v = S_m$.

Since all parameters of ψ are from M we can choose a $v \in M$ as above. Let $\alpha \in A^*$ be such that (D) holds. We are going to show that $\{\beta_0, \beta_1\} \subset Q_m(\alpha)$. To see this, let $\xi_0 < \xi_1 < \cdots < \xi_{t-1}$ enumerate $\pi q_m(\alpha)$. By induction on k = 0, ..., t-1 we are going to prove

$$(I_k)$$
 if $\langle \xi_k, \cdot \rangle \in q_m(\alpha)$, then $\{\beta_0, \beta_1\} \subset Q_{\xi_k}$.

Let $0 \le k \le t-1$ and suppose that (I_j) holds for j < k. In order to prove (I_k) , let $\langle \xi_k, \cdot \rangle \in q_m(\alpha) = v(\alpha)$.

We are going to split our argument into two cases and consider two subcases in each case.

Case 1. Suppose $\langle \xi_k, \cdot \rangle = \langle \xi_k, n \rangle$ for some $n \in \omega$.

Subcase 1(a). Suppose $\xi_k \in S_m$. Then, since (c) of $\varphi(\alpha)$ holds and $\langle \xi_k, n \rangle \in q_m(\alpha)$, it follows that $\langle \xi_k, n \rangle \in q_m(\beta_i)$ for i = 0, 1. Thus $\{\beta_0, \beta_1\} \subset Q_{\xi_k n} (= G_{\xi_k n})$.

Subcase 1(b). Suppose $\xi_k \notin S_m = r_v$. Then, for i = 0, 1, it follows that $\alpha < \beta_i$ and $\langle Y_{\xi_k} \cap A^*, n \rangle \in u_0^*(\alpha)$ (i.e., $\langle Y_{\xi_k} \cap A_{\beta_i}, n \rangle \in u_{0\beta_i}(\alpha)$). By (2_{ξ_k}) it follows that $g_{\xi_k}(\beta_i) \geq n$, i.e. $\beta_i \in G_{\xi_k n} = Q_{\xi_k n}$.

Case 2. Suppose $\langle \xi_k, \cdot \rangle = \langle \xi_k, \rho \rangle$ for some $\rho \in c^+ \backslash \omega$.

Subcase 2(a). Suppose $\xi_k \in S_m$. Then, since (I_j) holds for j < k and since $q_m(\alpha)$ satisfies (F), it follows that

$$\{\beta_0, \beta_1\} \subset T_{\xi_k m}(\alpha) \subset U_{\xi_k \rho} = U_{\xi_k w_{\xi_1}(\alpha)}.$$

Furthermore, since $\xi_k \in S_m \cap H = r_v \cap H$, it follows that $U_{\xi_k} \cap (A^* \times A^*) \in u_2^*(\alpha)$ (i.e., $U_{\xi_k} \cap (A_{\beta_i} \times A_{\beta_i}) \in u_{2\beta_i}(\alpha)$) for i = 0, 1. Thus by $(4_{\xi_k} - c)$ there are $\alpha_0, \alpha_1 \in A^*$ such that $w_{\xi_k}(\beta_i) = w_{\xi_k}(\alpha_i)$ for i = 0, 1. Let us denote these common values by ρ_i (i = 0, 1). Since $\xi_k \in M$ and $\langle w_{\xi} \rangle_{\xi \in H} \in M$, $w_{\xi_k} \in M$. Since $\alpha_i \in M$, $\rho_i = w_{\xi_k}(\alpha_i) \in M$. Thus $\langle \xi_k, \rho_i \rangle \in M$ for i = 0, 1. Furthermore, since $\langle \xi_k, \rho \rangle = \langle \xi_k, w_{\xi_k}(\alpha) \rangle \in q_m(\alpha)$, by part (d) of $\varphi(\alpha)$, $\xi_k \in t_m$, so $\langle \xi_k, \rho_i \rangle \in M \cap q_m(\beta_i) = y_m$ for i = 0, 1. By part (b) of $\varphi(\alpha)$, $y_m \subset q_m(\alpha)$, so $\langle \xi_k, \rho_i \rangle \in q_m(\alpha)$. Since $\langle \xi_k, \rho \rangle \in q_m(\alpha)$, this implies $\rho = \rho_0 = \rho_1$; hence $\beta_i \in W_{\xi_k \rho_i} = W_{\xi_k \rho}$ for i = 0, 1.

Subcase 2(b). Suppose $\xi_k \notin S_m$. Then $\xi_k \in \pi q_m(\alpha) \cap H \backslash S_m \subset \pi v(\alpha) \backslash r_v$, so $U_{\xi_k} \cap (A^* \times A^*) \in u_1^*(\alpha)$, (i.e. $U_{\xi_k} \cap (A_{\beta_i} \times A_{\beta_i}) \in u_{1\beta_i}(\alpha)$) for i = 0, 1. Furthermore, $\alpha < \beta_i$, and since (I_j) holds for j < k, and $q_m(\alpha)$ satisfies (F), it follows that

$$\{\beta_0, \beta_1\} \subset T_{\xi_k m}(\alpha) \subset U_{\xi_k \rho} = U_{\xi_k w_{\xi_k}(\alpha)}.$$

Thus by $(4_{\xi_k}$ -b), $\omega_{\xi}(\beta_i) = w_{\xi_k}(\alpha) = \rho$ holds for i = 0, 1, i.e. $\{\beta_0, \beta_1\} \subset W_{\xi_k}\rho = Q_{\xi_k\rho}$.

This concludes the proof of Theorem 1.1.

2. Final remarks, open questions

A. As pointed out earlier, QX is not σ -discrete, because a σ -discrete space in which all points are G_{δ} -sets has a quasi- G_{δ} -diagonal. (Indeed, if $Y = \bigcup_{m \in \omega} Y_m$ is such a space (with each Y_m a discrete subspace), then for each $y \in Y_m$, let us pick a sequence $\langle G_{ymk} \rangle_{k \in \omega}$ of open sets such that $\{y\} = \bigcap_{k \in \omega} G_{ymk}$ and $G_{ymk} \cap Y_m = \{y\}$ for every $k \in \omega$. Then $\langle \mathcal{G}_{mk} \rangle_{m,k \in \omega}$, where $\mathcal{G}_{mk} = \{G_{ymk} : y \in Y_m\}$, is a quasi- G_{δ} -diagonal). Moreover, if we only want to make sure that our Q-set space is not σ -discrete, then the construction of QX can be done on c instead of c^+ , with minimal changes.

Theorem 2.1. There is a paracompact perfectly normal Q-set space of cardinality c.

It is interesting to note that all normal Q-set spaces of cardinality $\leq c$ have a G_{δ} -diagonal (more generally, all cleavable spaces of cardinality $\leq c$ have a G_{δ} -diagonal [AS]); hence to get "QX has no (quasi-) G_{δ} -diagonal" it was necessary to work on c^+ instead of just c.

B. We can't hope that a Q-set space constructed in ZFC will have properties any closer to metrizability then being paracompact; indeed, under V = L, not only that there are no metrizable Q-set spaces, but there are no Q-set spaces with character $\leq c$ ([R], [H], [BJ]).

Under V=L, every Q-set space is σ -left separated [BJ], so a non- σ -left-separated Q-set space cannot be constructed in ZFC. Of course, under MA + \neg CH, even the real line has Q-set subspaces (see Miller's paper in [KV], e.g.).

C. There are several natural questions which are left open.

Problem 1. Is there a connected normal Q-set space?

For Q-spaces, this is a question of A.V. Arhangel'skiĭ [A2], who also points out that P. deCaux [C] constructed an infinite, regular, connected, σ -closed-discrete

space. (Note that, of course, a σ -closed discrete space is a Q-space, but not a Q-set space.)

Problem 2. Is there a strong Q-set space in ZFC, i.e. a space X such that all finite powers of X are Q-set spaces? Can such a space be normal or paracompact? (Note that under MA $+ \neg$ CH, the real line has strong Q-set subspaces.)

Problem 3. Is there, in ZFC, a Q-set space of size ω_1 ?

It is interesting to note that the answer is yes both under CH and $MA(\omega_1)$. Under CH the space in [B] works, and the space of Theorem 2.1 is an example which is even paracompact. Under $MA(\omega_1)$, any subset of cardinality ω_1 of the real line is an example.

References

- [A1] A.V. Arhangel'skiĭ, The general concept of cleavability of a topological space, Top. Applications 44 (1992), 27-36. MR 93k:54047
- [A2] A.V. Arhangel'skiĭ, Divisibility and cleavability of spaces, Recent Developments of General Topology and Applications, Math. Res., vol. 67, Akademie-Verlag, Berlin, 1992, pp. 13-26. MR 94e:54028
- [AS] A.V. Arhangel'skiĭ and D. Shakhmatov, Pointwise approximation of arbitrary functions by countable families of continuous functions, Trudy Sem. Petrovsk 13 (1988), 206-227; English transl., J. Soviet Math. 50 (1990), 1497-1511. MR 89m:41023
- [B] Z. Balogh, There is a Q-set space in ZFC, Proc. AMS 113 (1991), 557-561. MR 91m:54046
- [BJ] Z. Balogh and H. Junnila, Totally analytic spaces under V=L, Proc. Amer. Math. Soc. 87 (1983), 519-527. MR 84j:54026
- [C] P. deCaux, A nondegenerate σ-discrete Moore space which is connected, Colloq. Math. 41 (1979), 207-209. MR 81m:54058
- [H] R.W. Hansell, Some consequences of (V = L) in the theory of analytic sets, Proc. Amer. Math. Soc. 80 (1980), 311-319. MR 81j:54058
- [J] H. Junnila, Some topological consequences of the Product Measure Extension Axiom, Fund. Math. 115 (1983), 1-8. MR 85e:54021
- [KV] K. Kunen and J. Vaughan, eds., Handbook of Set-Theoretic Topology, North-Holland, 1984. MR 85k:54001
- [R] G.M. Reed, On normality and countable paracompactness, Fund. Math 110 (1980), 145-152.
 MR 82d:54033

DEPARTMENT OF MATHEMATICS AND STATISTICS, MIAMI UNIVERSITY, OXFORD, OHIO 45058 E-mail address: ZTBalogh@miavx1.muohio.edu