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THERE IS A PARACOMPACT Q-SET SPACE IN ZFC

ZOLTAN T. BALOGH

(Communicated by Franklin D. Tall)

Abstract. We construct a paracompact space QX such that every subset of
QX is an Fσ-set, yet QX is not σ-discrete. We will construct our space not
to have a Gδ-diagonal, which answers questions of A.V. Arhangel′skǐı and D.
Shakhmatov on cleavable spaces.

Introduction

In this paper we will construct a hereditarily paracompact, perfectly normal Q-
set space QX without a quasi-Gδ-diagonal. QX answers questions on Q-set spaces,
and on cleavable spaces of A.V. Arhangel′skǐı.

A topological spaceX is a Q-set space [B] if every subset ofX is aGδ-set andX
is not σ-discrete. H. Junnila [J] (and Bregman-Shapirovskǐı-Soštak) asked whether
there were any Q-set spaces in ZFC. This problem was answered affirmatively for
regular Q-set spaces, and the question was raised whether there are (perfectly)
normal Q-set spaces [B]. In this paper we shall combine the technique of the
regular examples with a new inductive method to show not only that the answer is
yes, but that one can also construct paracompact examples.

A.V. Arhangel′skǐı and D.B. Shakhmatov [AS], [A1] raised the question whether
every cleavable space has a Gδ-diagonal. Arhangel′skǐı [A2] also asked whether
spaces cleavable over the rationals had to be σ-discrete or had to possess Gδ-
diagonals. Since normal Q-set spaces are cleavable and also cleavable over the
rationals [A2], and our space QX will be constructed not to have a Gδ-diagonal, it
settles all of the above questions in the negative. (It should be pointed out here,
that a Q-space is defined in [A2] to be a space whose every subset is an Fσ-set.
Thus, Q-set spaces are precisely the non-σ-discrete Q-spaces).
QX will have cardinality c+, which is necesssary only to make it not have a

Gδ-diagonal. If we only want to construct a paracompact Q-set space, then it can
be done on c (Theorem 2.1).

Terminology and notation. We use the standard terminology and notation
of set-theoretic topology (see [KV]). π will always denote first projection, i.e.
πA = {a : there is a b with 〈a, b〉 ∈ A}. A sequence of 〈Gm〉m∈ω of families of
open subsets of a space X is said to be a quasi-Gδ-diagonal, if for every x ∈
X,
⋂{st(x,Gm) : m ∈ ω and x ∈ ⋃Gm} = {x}.
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1. The space QX

Theorem 1.1. There is a (hereditarily) paracompact, perfectly normal Q-set space
QX without a quasi-Gδ-diagonal.

Proof. The underlying set ofQX is c+, the first cardinal bigger than the continum c.

The topology of QX will be inductively defined in λ = 2c
+

steps. For the purposes
of making every subset of QX a Gδ-set, let 〈Yξ〉ξ<λ be a one-to-one listing of all
subsets of c+. Also, let 〈Uξ〉ξ<λ be a list of all subsets of c+ × c+ such that U0 = φ
and each subset is listed λ times. This second list will, in particular, mention codes
for all future open covers of QX . If such an open cover first occurs at step ξ, then
we’ll add a clopen partition refining that cover to the topology of QX . To carry
out the program above we shall define, by induction of ξ < λ,

(a) a function gξ : c+ −→ ω + 1;
(b) a number h(ξ) ∈ {0, 1};
(c) a function wξ : c+ −→ c+\ω if h(ξ) = 1.
We will set
(a′) Gξn = {α < c+ : gξ(α) ≥ n} for every n ∈ ω;
(b′) H = {ξ < λ : h(ξ) = 1};
(c′) Wξρ = {α < c+ : wξ(α) = ρ} for every ξ ∈ H and ρ with ω ≤ ρ < c+.

A subbase for the topology τQ of QX will be

B = {Gξn : ξ < λ, n ∈ ω} ∪ {Wξρ : ξ ∈ H and ρ ∈ c+\ω}.
Adding the Gξn’s will make every subset of X a Gδ-set. {Wξρ : ρ ∈ c+\ω} will
be a clopen partition refinement of the open cover coded by rows ω ≤ ρ < c+ of
Uξ ⊂ c+ × c+ if ξ ∈ H .

In order to make sure that QX does not have a quasi-Gδ-diagonal we will need
the concept of a control pair. We will say that 〈A, u〉 is a control pair if

(C-1) A ∈ [c+]ω;
(C-2) u = 〈u0, u1, u2〉, and u0, u1, u2 are functions with domain A;
(C-3) for every α ∈ A, u0(α) ∈ [P (A)×ω]<ω, u1(α) ∈ [P (A×A)]<ω and u2(α) ∈

[P (A×A)\u1(α)]<ω ;
(C-4) if α, α′ ∈ A and α 6= α′, then πu0(α)∩πu0(α

′) = φ and u1(α)∩u1(α
′) = φ.

(Note that πu0(α) = {B ⊂ A there is an n ∈ ω with 〈B, n〉 ∈ u0(α)}).
Roughly speaking, 〈A, u〉 will code a countable approximation to a neighborhood

assignment in QX . Let 〈Aβ , uβ〉β<c+ list all control pairs, mentioning each c+

times.
The last ingredient we need is the notion of an initially ξ-open set. A subset

E ⊂ c+ will be called initially ξ-open, if E is an open subset in the topology
generated by

Bξ = {X} ∪ {Gηn : η < ξ, n ∈ ω} ∪ {Wηρ : η < ξ, h(η) = 1 and ρ ∈ c+\ω}.
For every ξ < λ and ρ ∈ c+\ω, let Uξρ = {γ < c+ : 〈γ, ρ〉 ∈ Uξ}.

We are going to construct gξ, h(ξ) and wξ (if h(ξ) = 1) in such a way that the
following hypotheses are satisfied:

(1ξ) for every β < c+, gξ(β) = ω iff β ∈ Yξ;
(2ξ) if α < β < c+ and 〈 Yξ ∩ Aβ , n 〉 ∈ u0β(α), then gξ(β) ≥ n;
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(3ξ) h(ξ) = 1 if and only if 〈Uξρ〉ρ∈c+\ω is a cover of c+ consisting of initially
ξ-open sets and there is no ξ′ < ξ such that Uξ′ = Uξ and 〈Uξ′ρ〉ρ∈c+\ω is a
cover by initially ξ′-open sets;

(4ξ) if h(ξ) = 1, then
(a) for every β < c+, β ∈ Uξwξ(β);

(b) if α < β < c+, Uξ∩(Aβ×Aβ) ∈ u1β(α) and β ∈ Uξwξ(α), then wξ(β) = wξ(α);

(c) if α < β < c+, Uξ ∩ (Aβ × Aβ) ∈ u2β(α) and β ∈ Uξwξ(α), then there is an
α′ ∈ Aβ such that wξ(β) = wξ(α

′).
Let us now pass to the construction. Suppose that ξ < λ and that we are done

for η < ξ.
We are going to define gξ(β) ∈ ω + 1 by induction on β < c+. Suppose we are

done for every α < β. We split the definition into two cases.

Case 1. Suppose that there is no α < β and n ∈ ω with 〈Yξ ∩ Aβ , n〉 ∈ u0β(α).
Then let gξ(β) = ω if β ∈ Yξ, and gξ(β) = 0 if β /∈ Yξ.
Case 2. Suppose now that there is an α < β such that 〈Yξ ∩ Aβ , n〉 ∈ u0β(α)
for some n ∈ ω. By (C-4), there is only one such α; furthermore, since u0β(α) is
a finite set, there are only finitely many such n ∈ ω. Set gξ(β) = max{n ∈ ω :
〈Yξ ∩Aβ , n〉 ∈ u0β(α)}, if β /∈ Yξ, and gξ(β) = ω, if β ∈ Yξ.

With these definitions, (1ξ) and (2ξ) are clearly satisfied.
Note that (3ξ) permits exactly one of 0 or 1 to be h(ξ) and define h(ξ) according

to (3ξ).
If h(ξ) = 0, then leave wξ undefined.
Suppose now that h(ξ) = 1. We are going to define wξ(β) by induction on

β < c+. Suppose that we are done for every α < β. We consider three cases.

Case 1. Suppose that there is an α < β such that Uξ ∩ (Aβ × Aβ) ∈ u1β(α) and
β ∈ Uξwξ(α). Note that by (C-4) there is only one such α and that α ∈ Aβ . Set
wξ(β) = wξ(α).

Case 2. Suppose that Case 1 does not hold, but there is an α < β such that
Uξ ∩ (Aβ ×Aβ) ∈ u2β(α) and β ∈ Uξwξ(α). Note that every such α belongs to Aβ .
Fix one such α and set wξ(β) = wξ(α) for that α.

Case 3. Suppose that neither Case 1 nor Case 2 holds. Then pick any ρ ∈ c+\ω
with β ∈ Uξρ (since 〈Uξρ〉ρ∈c+\ω is a cover of c+, there is at least one such ρ) and
set wξ(β) = ρ.

It is easy to check that (4ξ) is satisfied in all of the cases above.
To finish our construction, let τ denote the topology generated by

B =
⋃
ξ<λ

Bξ = {Gξn : ξ < λ, n ∈ ω} ∪ {Wξρ : ρ ∈ c+\ω, ξ < λ and h(ξ) = 1}

as a subbase.
Let QX = 〈c+, τ〉. The rest of the proof consists of checking that this space

possesses the desired properties.
I. To check that every subset of QX is a Gδ-set, let Y ⊂ c+. Then there is a

ξ < λ such that Y = Yξ. By (1ξ), Y = Yξ =
⋂
n∈ωGξn, i.e. Y is a Gδ-set.

Note that since complements of singletons are Gδ-sets (and thus, open sets),
every singleton set is closed, i.e. X is a T1-space.



1830 ZOLTAN T. BALOGH

II. In order to show that QX is ultraparacompact it is enough to prove that
every open cover of QX has a refinement which is a partition of c+ into pairwise
disjoint clopen sets. So let U be an arbitrary open cover of QX and let 〈Uρ〉ρ∈c+\ω
be a list of U ∪ {φ}. Let U =

⋃
ρ∈c+\ω Uρ × {ρ}. Since on the list 〈Uξ〉ξ<λ of all

subsets of c+ × c+, U is listed λ times, and because cf(λ) = cf(2c
+

) > c+, there
is a first ξ < λ such that Uξ = U and Uρ is initially ξ-open for every ρ ∈ c+\ω.
For this ξ, 〈Uξρ〉ρ∈c+\ω = 〈Uρ〉ρ∈c+\ω and h(ξ) = 1. Therefore wξ : c+ → c+\ω is
defined and 〈Wξρ〉ρ∈c+\ω is a refinement of 〈Uρ〉ρ∈c+\ω to a partition of QX into
clopen subsets.

III. Perfect normality of X follows from I and II.
IV. The rest of the proof consists of showing that QX does not have a quasi-

Gδ-diagonal. From this it automatically follows that QX is not σ-discrete, because
a σ-discrete space in which every point is a Gδ-set has a quasi-Gδ-diagonal.

First, for every 〈ξ, ·〉 ∈ λ × ω ∪H × (c+\ω), let Qξ· = Gξn if 〈ξ,·〉 = 〈ξ, n〉 for
some n ∈ ω, and let Qξ· = Wξρ if 〈ξ·〉 = 〈ξ, ρ〉 for some ρ ∈ c+\ω. Further, let us
note that 〈Uξ〉ξ∈H is a one-to-one list.

Now, let us consider an arbitrary sequence 〈Gm〉m∈ω of families of open subsets
of QX . We are going to show that 〈Gm〉m∈ω does not form a quasi-Gδ-diagonal in
QX . For this purpose we can assume without loss of generality that each Gm is a
non-empty family of non-empty sets and that G =

⋃
m∈ω Gm covers QX .

For each m ∈ ω let qm :
⋃Gm → [λ × ω ∪H × (c+\ρ)]<ω code a refinement of

Gm by basic open sets, i.e. for every α ∈ ⋃ Gm there is a G ∈ Gm such that

α ∈ Qm(α) =
⋂

{Qξ· : 〈ξ, ·〉 ∈ qm(α)} ⊂ G.

By extending qm(α), if necessary, we can assume without loss of generality that for
every m ∈ ω and α ∈ ⋃ Gm,

(F) if 〈ξ, ρ〉 ∈ qm(α) ∩ (H × (c+\ω)), then there is a tξm(α) ⊂ qm(α) such that
(F-a) 〈η, ·〉 ∈ tξm(α) implies η < ξ;
(F-b) α ∈ Tξm(α) =

⋂{Qη· : 〈η, ·〉 ∈ tξm(α)} ⊂ Uξρ.

This can be done because if 〈ξ, ρ〉 ∈ qm(α)∩(H×(c+\ω)), then Uξρ is an initially
ξ-open set containing α. Also, note that tξm(α) does not depend on ρ, because ξ
and α determine ρ through the condition α ∈ Wξρ.

In order to prove that 〈Gm〉m∈ω is not a quasi-Gδ-diagonal it is enough to find
two distinct elements β0, β1 of c+ such that {m ∈ ω : β0 ∈

⋃ Gm} = {m ∈ ω : β1 ∈⋃ Gm}, and if we denote this subset of ω by N, then

for every m ∈ N there is an α ∈
⋃

Gm such that {β0, β1} ⊂ Qm(α).(∗)
In order to find such β0 and β1, let M be a countable elementary submodel of

H((2c
+

)+) such that 〈Yξ〉ξ<λ, 〈Uξ〉ξ∈H , 〈gξ〉ξ<λ, 〈wξ〉ξ∈H , 〈Gm〉m∈ω and 〈qm〉m∈ω
are all elements of M . Let A∗ = M ∩ c+ and let 〈A∗, u∗〉 be a control pair such
that if v : c+ → [λ × ω ∪ H × (c+\ω)]<ω is an infinite partial function in M and
{πv(α) : α ∈ dom(v)} forms a ∆-system with root rv, then there is an α ∈ A∗ such
that

u∗0(α) = {〈Yξ ∩ A∗, n〉 : 〈ξ, n〉 ∈ v(α) and ξ /∈ rv};
u∗1(α) = {Uξ ∩ (A∗ ×A∗) : ξ ∈ (πv(α)\rv) ∩H};(D)

u∗2(α) = {Uξ ∩ (A∗ ×A∗) : ξ ∈ rv ∩H}.
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To see that such a control pair 〈A∗, u∗〉 exists, let 〈vk〉k∈ω list all functions above.
By induction on k ∈ ω, define a sequence 〈αk〉k∈ω of distinct elements of A∗ =

c+ ∩M in such a way that πvk(αk)− rvk(k ∈ ω) are pairwise disjoint. Then define
u∗j(αk) (j = 0, 1, 2) as in (D), writing αk and vk in place of α and v, and set u∗j (α) =

∅ for α ∈ A∗\{αk : k ∈ ω}. Then 〈A∗, u∗〉, where u∗(α) = 〈u∗0(α), u∗1(α), u∗2(α)〉,
is a control pair as desired. (Properties (C-3) and (c-4) of a control pair follow
from (D), because M is an elementary submodel and the lists 〈Yξ〉ξ<λ, 〈Uξ〉ξ∈H
are one-to-one.)

Now, let β0, β1 > supA∗ be such that

(i) 〈A∗, u∗〉 = 〈Aβi,uβi〉 for i = 0, 1;
(ii) {m ∈ ω : β0 ∈

⋃Gm} = {m ∈ ω : β1 ∈
⋃ Gm} = N ;

(iii) for every m ∈ N
(iii-a) qm(β0) ∩M = qm(β1) ∩M (denote this set by ym);
(iii-b) {ξ ∈ M ∩H : 〈ξ, wξ(β0)〉 ∈ qm(β0)} = {ξ ∈ M ∩H : 〈ξ, wξ(β1)〉 ∈ qm(β1)}

(denote this set by tm). Note that (iii-a) and (iii-b) together imply
(iii-c) πqm(β0) ∩M = πqm(β1) ∩M . Denote this set by Sm.

Note that ym, tm, Sm ∈M .
To see that β0, β1 satisfy (*), fix m ∈ N . Let ϕ(α) be the conjunction of the

following statements:

(a) α ∈ ⋃Gm;
(b) ym ⊂ qm(α);
(c) for every 〈ξ, n〉 ∈ Sm × ω, 〈ξ, n〉 ∈ qm(α) iff 〈ξ, n〉 ∈ ym;
(d) for every ξ ∈ Sm ∩H, 〈ξ, wξ(α)〉 ∈ qm(α) iff ξ ∈ tm.

Note that all the parameters of ϕ(α) are from M , and that ϕ(β0) (as well as
ϕ(β1)) holds. Therefore, by standard reflection, ϕ(α) is true for infinitely many
α ∈M , in fact,
ψ: there is an infinite function v such that dom(v) ⊂ c+, ϕ(α) and v(α) = qm(α)

hold for every α ∈ dom(v), and 〈πv(α)〉α∈dom(v) forms an infinite ∆-system with
root rv = Sm.

Since all parameters of ψ are from M we can choose a v ∈ M as above. Let
α ∈ A∗ be such that (D) holds. We are going to show that {β0, β1} ⊂ Qm(α). To
see this, let ξ0 < ξ1 < · · · < ξt−1 enumerate πqm(α). By induction on k = 0, ..., t−1
we are going to prove

if 〈ξk, ·〉 ∈ qm(α), then {β0, β1} ⊂ Qξk· .(Ik)

Let 0 ≤ k ≤ t− 1 and suppose that (Ij) holds for j < k. In order to prove (Ik), let
〈ξk, ·〉 ∈ qm(α) = v(α).

We are going to split our argument into two cases and consider two subcases in
each case.

Case 1. Suppose 〈ξk, ·〉 = 〈ξk, n〉 for some n ∈ ω.

Subcase 1(a). Suppose ξk ∈ Sm. Then, since (c) of ϕ(α) holds and 〈ξk, n〉 ∈ qm(α),
it follows that 〈ξk, n〉 ∈ qm(βi) for i = 0, 1. Thus {β0, β1} ⊂ Qξkn(= Gξkn).

Subcase 1(b). Suppose ξk /∈ Sm = rv. Then, for i = 0, 1, it follows that α < βi
and 〈Yξk ∩ A∗, n〉 ∈ u∗0(α) (i.e., 〈Yξk ∩ Aβi, n〉 ∈ u0βi(α)). By (2ξk) it follows that
gξk(βi) ≥ n, i.e. βi ∈ Gξkn = Qξkn.

Case 2. Suppose 〈ξk, ·〉 = 〈ξk, ρ〉 for some ρ ∈ c+\ω.
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Subcase 2(a). Suppose ξk ∈ Sm. Then, since (Ij) holds for j < k and since qm(α)
satisfies (F), it follows that

{β0, β1} ⊂ Tξkm(α) ⊂ Uξkρ = Uξkwξk
(α).

Furthermore, since ξk ∈ Sm∩H = rv∩H , it follows that Uξk∩(A∗×A∗) ∈ u∗2(α) (i.e.,
Uξk∩(Aβi×Aβi) ∈ u2βi(α)) for i = 0, 1. Thus by (4ξk -c) there are α0, α1 ∈ A∗ such
that wξk(βi) = wξk(αi) for i = 0, 1. Let us denote these common values by ρi (i =
0, 1). Since ξk ∈M and 〈wξ〉ξ∈H ∈M , wξk ∈M . Since αi ∈M,ρi = wξk(αi) ∈M .
Thus 〈ξk, ρi〉 ∈ M for i = 0, 1. Furthermore, since 〈ξk, ρ〉 = 〈ξk, wξk(α)〉 ∈ qm(α),
by part (d) of ϕ(α), ξk ∈ tm, so 〈ξk, ρi〉 ∈ M ∩ qm(βi) = ym for i = 0, 1. By part
(b) of ϕ(α), ym ⊂ qm(α), so 〈ξk, ρi〉 ∈ qm(α). Since 〈ξk, ρ〉 ∈ qm(α), this implies
ρ = ρ0 = ρ1; hence βi ∈ Wξkρi = Wξkρ for i = 0, 1.

Subcase 2(b). Suppose ξk /∈ Sm. Then ξk ∈ πqm(α) ∩ H\Sm ⊂ πv(α)\rv, so
Uξk∩(A∗×A∗) ∈ u∗1(α), (i.e. Uξk∩(Aβi×Aβi) ∈ u1βi(α)) for i = 0, 1. Furthermore,
α < βi, and since (Ij ) holds for j < k, and qm(α) satisfies (F), it follows that

{β0, β1} ⊂ Tξkm(α) ⊂ Uξkρ = Uξkwξk
(α).

Thus by (4ξk -b), ωξ(βi) = wξk(α) = ρ holds for i = 0, 1, i.e. {β0, β1} ⊂ Wξkρ =
Qξkρ.

This concludes the proof of Theorem 1.1.

2. Final remarks, open questions

A. As pointed out earlier, QX is not σ-discrete, because a σ-discrete space in
which all points are Gδ-sets has a quasi-Gδ-diagonal. (Indeed, if Y =

⋃
m∈ω Ym is

such a space (with each Ym a discrete subspace), then for each y ∈ Ym, let us pick a
sequence 〈Gymk〉k∈ω of open sets such that {y} =

⋂
k∈ω Gymk and Gymk∩Ym = {y}

for every k ∈ ω. Then 〈Gmk〉m,k∈ω, where Gmk = {Gymk : y ∈ Ym}, is a quasi-
Gδ-diagonal). Moreover, if we only want to make sure that our Q-set space is
not σ-discrete, then the construction of QX can be done on c instead of c+, with
minimal changes.

Theorem 2.1. There is a paracompact perfectly normal Q-set space of cardinality
c.

It is interesting to note that all normal Q-set spaces of cardinality ≤ c have a Gδ-
diagonal (more generally, all cleavable spaces of cardinality ≤ c have a Gδ-diagonal
[AS]); hence to get “QX has no (quasi-)Gδ-diagonal” it was necessary to work on
c+ instead of just c.

B. We can’t hope that a Q-set space constructed in ZFC will have properties
any closer to metrizability then being paracompact; indeed, under V = L, not
only that there are no metrizable Q-set spaces, but there are no Q-set spaces with
character ≤ c ([R], [H], [BJ]).

Under V = L, every Q-set space is σ-left separated [BJ], so a non-σ-left-separated
Q-set space cannot be constructed in ZFC. Of course, under MA + ¬ CH, even the
real line has Q-set subspaces (see Miller’s paper in [KV], e.g.).

C. There are several natural questions which are left open.

Problem 1. Is there a connected normal Q-set space?
For Q-spaces, this is a question of A.V. Arhangel′skǐı [A2], who also points out

that P. deCaux [C] constructed an infinite, regular, connected, σ-closed-discrete
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space. (Note that, of course, a σ-closed discrete space is a Q-space, but not a Q-set
space.)

Problem 2. Is there a strong Q-set space in ZFC, i.e. a space X such that all
finite powers of X are Q-set spaces? Can such a space be normal or paracompact?

(Note that under MA + ¬ CH, the real line has strong Q-set subspaces.)

Problem 3. Is there, in ZFC, a Q-set space of size ω1?
It is interesting to note that the answer is yes both under CH and MA(ω1).

Under CH the space in [B] works, and the space of Theorem 2.1 is an example
which is even paracompact. Under MA(ω1), any subset of cardinality ω1 of the real
line is an example.
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