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THERE IS A PARACOMPACT Q-SET SPACE IN ZFC
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ABSTRACT. We construct a paracompact space QX such that every subset of
QX is an Fy-set, yet QX is not o-discrete. We will construct our space not
to have a Gs-diagonal, which answers questions of A.V. Arhangel’skil and D.
Shakhmatov on cleavable spaces.

INTRODUCTION

In this paper we will construct a hereditarily paracompact, perfectly normal Q-
set space QX without a quasi-Gs-diagonal. QX answers questions on Q-set spaces,
and on cleavable spaces of A.V. Arhangel’skii.

A topological space X is a Q-set space [B] if every subset of X is a Gs-set and X
is not o-discrete. H. Junnila [J] (and Bregman-Shapirovskii-Sostak) asked whether
there were any Q-set spaces in ZFC. This problem was answered affirmatively for
regular Q-set spaces, and the question was raised whether there are (perfectly)
normal Q-set spaces [B]. In this paper we shall combine the technique of the
regular examples with a new inductive method to show not only that the answer is
yes, but that one can also construct paracompact examples.

A.V. Arhangel’skii and D.B. Shakhmatov [AS], [A1] raised the question whether
every cleavable space has a Gs-diagonal. Arhangel’skii [A2] also asked whether
spaces cleavable over the rationals had to be o-discrete or had to possess Gg-
diagonals. Since normal Q-set spaces are cleavable and also cleavable over the
rationals [A2], and our space QX will be constructed not to have a Gs-diagonal, it
settles all of the above questions in the negative. (It should be pointed out here,
that a Q-space is defined in [A2] to be a space whose every subset is an F,-set.
Thus, Q-set spaces are precisely the non-o-discrete Q-spaces).

QX will have cardinality ¢, which is necesssary only to make it not have a
Gs-diagonal. If we only want to construct a paracompact Q-set space, then it can
be done on ¢ (Theorem 2.1).

Terminology and notation. We use the standard terminology and notation
of set-theoretic topology (see [KV]). 7 will always denote first projection, i.e.
wA = {a : thereis a bwith (a,b) € A}. A sequence of (G,,)mew of families of
open subsets of a space X is said to be a quasi-Gs-diagonal, if for every x €

X, ({st(z,Gm): mewand x € JGn} = {z}.
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1. THE SPACE QX

Theorem 1.1. There is a (hereditarily) paracompact, perfectly normal Q-set space
QX without a quasi-Gs-diagonal.

Proof. The underlying set of QX is ¢, the first cardinal bigger than the continum c.
The topology of QX will be inductively defined in A = 2¢" steps. For the purposes
of making every subset of QX a Gs-set, let (Yz)¢<x be a one-to-one listing of all
subsets of ¢T. Also, let (Ug)e<x be a list of all subsets of ¢ x ¢ such that Uy = ¢
and each subset is listed A times. This second list will, in particular, mention codes
for all future open covers of QX . If such an open cover first occurs at step &, then
we’ll add a clopen partition refining that cover to the topology of QX. To carry
out the program above we shall define, by induction of £ < A,

(a) a function g¢: ¢t — w+1;

(b) anumber h(§) € {0,1};

(¢) a function we : ¢t — ¢M\w if h(¢) = 1.

We will set

(@) Gen ={a < ct :ge(a) >n} for every n € w;

() H={6<A:h(¢) = 1};

() Wep={a<ct:we(a)=p}forevery { € H and p withw <p<ct. O

A subbase for the topology 7o of QX will be
B={Gen:E<\ newtU{We,:£€ H and p € ¢ \w}.

Adding the Gg,’s will make every subset of X a Gg-set. {We, : p € ¢T\w} will
be a clopen partition refinement of the open cover coded by rows w < p < ¢t of
UsCch xctiféeH.

In order to make sure that QX does not have a quasi-Gs-diagonal we will need
the concept of a control pair. We will say that (A4, wu) is a control pair if

(C-1) A€ [cT]«;

(C-2) u = (ug, u1, uz), and ug, uy, us are functions with domain A;

(C-3) for every a € A, ug(a) € [P(A) X w]<¥, u1(a) € [P(Ax A)]<¥ and uz(a) €

[P(A x A)\ug ()] =%
(C4) ifa, o € A and a # o/, then Tug(a)Nmug(a’) = ¢ and ui(a@)Nuy () = .
(Note that mug(a) = {B C A there is an n € w with (B, n) € ug(a)}).
Roughly speaking, (A, u) will code a countable approximation to a neighborhood
assignment in QX. Let (Ag, ug)g<c+ list all control pairs, mentioning each c¢*
times.

The last ingredient we need is the notion of an initially £-open set. A subset
E C c¢* will be called initially &-open, if E is an open subset in the topology
generated by

Be ={X}U{Gy:n<& newtU{W,,:n<¢& h(n)=1and p € cT\w}.

For every £ < X and p € ¢™\w, let Ug, = {7y < ¢ : (7,p) € Ue}.
We are going to construct ge, h(§) and we (if h(€) = 1) in such a way that the
following hypotheses are satisfied:

(1¢) for every B < ct, ge(B) =w iff B € Yg;
(2) ifa < B < cmand (Yen Ag,n) € ugs(a), then ge(8) > n;
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(3¢) h(§) = 1 if and only if (Ugy)pecct\w is a cover of ¢t consisting of initially
&-open sets and there is no ¢’ < ¢ such that Ug = Ug and (Uerp) pect\w 18 a
cover by initially £’-open sets;
4¢) if B(E) =1, then
(a) for every 3 < ct, B € Utwe (8);
(b) ifa< B <ch, Ugﬂ(Aﬁ xAg) € uip() and B € Ugy, (o), then we(8) = we(a);
(¢)ifa<p< c+ Ue N (A x Ap) € uzp(a) and 8 € Ugy,(a), then there is an
o’ € Ag such that we(8) = we ().
Let us now pass to the construction. Suppose that £ < A and that we are done
for n < &.
We are going to define g¢(3) € w+ 1 by induction on 3 < ¢t. Suppose we are
done for every a < 3. We split the definition into two cases.

(

Case 1. Suppose that there is no o < § and n € w with (Yz N Ag, n) € uog(a).
Then let g¢(8) =w if B € Ye, and g¢(6) =01if § ¢ Yr.

Case 2. Suppose now that there is an o < [ such that (Ye N Ag, n) € uog(e)
for some n € w. By (C-4), there is only one such «a; furthermore, since ugg(«) is
a finite set, there are only finitely many such n € w. Set g¢(8) = max{n € w :

(Ye N Ag,n) € upg(a)}, if 5 ¢ Ye, and g¢(f) = w, if B € Ye.

With these definitions, (1¢) and (2¢) are clearly satisfied.

Note that (3¢) permits exactly one of 0 or 1 to be h(§) and define h(§) according
to (35)

If h(§) = 0, then leave we undefined.

Suppose now that h(€) = 1. We are going to define w¢(3) by induction on
B < c¢T. Suppose that we are done for every o < 3. We consider three cases.

Case 1. Suppose that there is an a < 8 such that Ue N (Ag x Ag) € uig(a) and
B € Uewe(a)- Note that by (C-4) there is only one such o and that o € Ag. Set

we(B) = we(a).

Case 2. Suppose that Case 1 does not hold, but there is an o < 3 such that
Ue N (Ag X Ag) € uzg(a) and 8 € Ugy, (o). Note that every such a belongs to Ag.
Fix one such « and set we(3) = we(a) for that a.

Case 3. Suppose that neither Case 1 nor Case 2 holds. Then pick any p € ¢T\w
with 3 € Ug, (since (Ugp)pect\w is a cover of ¢, there is at least one such p) and

set we(8) = p.

It is easy to check that (4¢) is satisfied in all of the cases above.
To finish our construction, let 7 denote the topology generated by

B=|JB:={Gen:{<AnewtU{We,:p€ch\w, &< \and h(¢) =1}
E<A

as a subbase.

Let QX = (¢, 7). The rest of the proof consists of checking that this space
possesses the desired properties.

I. To check that every subset of QX is a Gs-set, let Y C ¢T. Then there is a
§ < Asuch that Y = Ye. By (1¢), Y = Ye =), Gen, i.e. Y is a Gs-set.

Note that since complements of singletons are Gs-sets (and thus, open sets),
every singleton set is closed, i.e. X is a Tj-space.
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II. In order to show that QX is ultraparacompact it is enough to prove that
every open cover of QX has a refinement which is a partition of ¢t into pairwise
disjoint clopen sets. So let U be an arbitrary open cover of QX and let (U,) pcct\w
be a list of U U {¢}. Let U = U, .\, Up % {p}. Since on the list (Ug)e<x of all

subsets of ¢t x ¢t, U is listed A times, and because c¢f(A) = ¢f(2¢7) > ¢+, there
is a first £ < A such that Uz = U and U, is initially {-open for every p € ¢t\w.
For this £, (Uep)pect\w = (Up)pect\w and h(§) = 1. Therefore we : ¢t — ct\w is
defined and (W) pect\w is a refinement of (U,),cc+\o to a partition of QX into
clopen subsets.

ITII. Perfect normality of X follows from I and II.

IV. The rest of the proof consists of showing that QX does not have a quasi-
(Gs-diagonal. From this it automatically follows that QX is not o-discrete, because
a o-discrete space in which every point is a Gs-set has a quasi-Gs-diagonal.

First, for every (£, -) € A x wU H x (¢M\w), let Qe. = Gey, if (§,) = (&,n) for
some n € w, and let Q¢. = We, if (§) = (£, p) for some p € ¢™\w. Further, let us
note that (U¢)¢cq is a one-to-one list.

Now, let us consider an arbitrary sequence (G, )me. of families of open subsets
of QX. We are going to show that (G,,)me. does not form a quasi-Gs-diagonal in
QX. For this purpose we can assume without loss of generality that each G,, is a
non-empty family of non-empty sets and that G = J,,, ., Gm covers QX.

For each m € w let g : JGm — [A x wU H x (¢\p)]<¥ code a refinement of
Gm by basic open sets, i.e. for every a € |J Gy, there is a G € G, such that

@ € Qm(a) = [V {Q¢ : (&) € gm(@)} € G.

By extending g, (), if necessary, we can assume without loss of generality that for
every m € w and a € |J G,
(F) if (€, p) € gm(a) N (H x (¢t\w)), then there is a tgy, () C ¢m(a) such that
(F-a) (n, -) € tem(a) implies n < &;
(F-b) a € Tem(a) = {Qy. : (0,7) € tem(a)} C Ugp.

This can be done because if (£, p) € gm ()N (H x (¢T\w)), then Ug,, is an initially
&-open set containing . Also, note that t¢,,(a) does not depend on p, because &
and « determine p through the condition o € We,,.

In order to prove that (G, )mew. is not a quasi-Ggs-diagonal it is enough to find
two distinct elements By, 1 of ¢ such that {m e w: B €Y Gnt={mew: 3 €
U Gm}, and if we denote this subset of w by N, then

(x)  for every m € N there is an « € U Gm such that {Bo, 51} C Qm(a).

In order to find such By and B, let M be a countable elementary submodel of

H((2C+)+) such that (Ye)e<x, (Ue)een, (ge)e<r, (we)eer (Im)mew and (gm)mew
are all elements of M. Let A* = M NcT and let {(A*,u*) be a control pair such
that if v : ¢ — [A x wU H x (¢"\w)]<¥ is an infinite partial function in M and
{mv(a) : @ € dom(v)} forms a A-system with root r,, then there is an o € A* such
that

up(a) = {{Ye N A%, n) : ({,n) € v(a) and £ & 7, };
(D) uy(a) ={Us N (A" x A) : £ € (mv(a)\ry) N H};
us(a) ={UsN (A" x A"): £ er,NH}.
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To see that such a control pair (A* u*) exists, let (vk)re, list all functions above.

By induction on k € w, define a sequence (ay)re, of distinct elements of A* =
¢ N M in such a way that 7vg(ax) — ry, (K € w) are pairwise disjoint. Then define
ui(ag) (j =0,1,2) as in (D), writing oy and vy, in place of & and v, and set u(a) =
f for « € A*\{ay : k € w}. Then (A*, u*), where u*(a) = (ui(a), uj(a), ui(a)),
is a control pair as desired. (Properties (C-3) and (c-4) of a control pair follow
from (D), because M is an elementary submodel and the lists (Ye)eanr, (Ug)een
are one-to-one.)

Now, let Bo, 51 > sup A* be such that

(1) (A", u*) = (Apiug,) fori=0, 1
(i) {mew:6oeUn}={mecw: e Jgn}=N;
(iii) for every m € N
(iii-a) gm(Bo) N M = ¢m(B81) N M (denote this set by y,);
(iii-b) {€ € M N H : (€, we(50)) € g (o)} = {6 € M A H 5 (€, we(81)) € gm(B1)}
(denote this set by t,,). Note that (iii-a) and (iii-b) together imply
(ifi-¢) 7qm(Bo) N M = 7@ (1) N M. Denote this set by Sy,.

Note that vy, tm, Sm € M.

To see that [y, 51 satisfy (*), fix m € N. Let ¢(«) be the conjunction of the
following statements:

(a) a € JGm;

(b) Ym C gm(a);

(c) for every (£,m) € Sy X w, (£,n) € gm(a) iff (£,n) € ym;
(d) for every & € S, N H, (§, we () € gm () iff € € .

Note that all the parameters of ¢(a) are from M, and that ¢(8p) (as well as
©(61)) holds. Therefore, by standard reflection, ¢(«) is true for infinitely many
a € M, in fact,

t: there is an infinite function v such that dom(v) C ¢, p(a) and v(a) = g ()
hold for every a € dom(v), and (mv(c))aedom(v) forms an infinite A-system with
root r, = Sip,.

Since all parameters of ¢ are from M we can choose a v € M as above. Let
a € A* be such that (D) holds. We are going to show that {8, 81} C @Qm(a). To
see this, let &y < & < -+ < &1 enumerate ¢, (a). By induction on £ =0, ..., t—1
we are going to prove

(Ik) if <£k7 > € qm(a)u then {60751} - ng .
Let 0 < k <t¢—1 and suppose that (I;) holds for j < k. In order to prove (I), let
(&> ) € gm (@) = v(a).

We are going to split our argument into two cases and consider two subcases in
each case.

Case 1. Suppose (&g, ) = (&, n) for some n € w.

Subcase 1(a). Suppose & € Sy,. Then, since (¢) of ¢(«) holds and (&, n) € ¢m (),
it follows that (£, n) € gm(B;) for i = 0,1. Thus {By, 1} C Qeun(= Geyn).

Subcase 1(b). Suppose & ¢ Sy, = ry. Then, for ¢ = 0,1, it follows that a < §;
and (Ye, N A*,n) € uf(a) (ie., (Ye, N Ag;,n) € upg, (). By (2¢,) it follows that
gep (61) > n, ie. /@’L S G{;Cn = kan-

Case 2. Suppose (£, ) = (&, p) for some p € cT\w.
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Subcase 2(a). Suppose & € Sy,. Then, since (I;) holds for j < k and since g, (c)
satisfies (F), it follows that

{ﬁoa 51} - Tékm(a) CUgp = UEkwgk(a)'

Furthermore, since & € S,,NH = r,NH, it follows that Ug, N(A*x A*) € u}(a) (i-e.,
Ue, N(Ag, x Ag,) € uag,(a)) for i = 0,1. Thus by (4¢,-c) there are o, oy € A* such
that we, (8;) = we, (a;) for i = 0,1. Let us denote these common values by p; (i =
0,1). Since & € M and (we)eem € M, we, € M. Since a; € M, p; = we, (a;) € M.
Thus (£k, pi) € M for i = 0,1. Furthermore, since (&x, p) = (€k, we, (@) € gm(a),
by part (d) of p(«a), & € tm, so &k, pi) € M N qm(Bi) = ym for i = 0,1. By part
(b) of w(&), Ym C gm (), s0 (€k,pi) € qm(a). Since (&, p) € gm(), this implies
p = po = p1; hence 3; € We, p, = W, , for i = 0, 1.

Subcase 2(b). Suppose & ¢ S;. Then & € mwgm(a) N H\S, C mv(a)\ry,, so
Ue, N(A* x A*) € ui(a), (ie. Ug, N(Ap, X Ap,) € u1g,(e)) for i = 0, 1. Furthermore,
a < f3;, and since (I; ) holds for j < k, and g, () satisfies (F), it follows that

{Bo, B1} C Teyom () C Ugyp = Ufkwfk(a)'

Thus by (4¢,-b), we(Bi) = we, () = p holds for i = 0,1, i.e. {Bo, 1} C We,p =
Qékﬂ'

This concludes the proof of Theorem 1.1.

2. FINAL REMARKS, OPEN QUESTIONS

A. As pointed out earlier, QX is not o-discrete, because a o-discrete space in
which all points are Gs-sets has a quasi-Gs-diagonal. (Indeed, if Y = J,, ., Ym is
such a space (with each Y;,, a discrete subspace), then for each y € Y, let us pick a
sequence (Gymk)rew of open sets such that {y} = (), c,, Gymr and Gy NY, = {y}
for every k € w. Then (Gmk)m kew, Where G = {Gymi © y € Yo}, is a quasi-
Gs-diagonal). Moreover, if we only want to make sure that our Q-set space is
not o-discrete, then the construction of QX can be done on ¢ instead of ¢, with
minimal changes.

Theorem 2.1. There is a paracompact perfectly normal Q-set space of cardinality
c.

It is interesting to note that all normal Q-set spaces of cardinality < ¢ have a G-
diagonal (more generally, all cleavable spaces of cardinality < ¢ have a Gs-diagonal
[AS]); hence to get “QX has no (quasi-)Gs-diagonal” it was necessary to work on
¢t instead of just c.

B. We can’t hope that a Q-set space constructed in ZFC will have properties
any closer to metrizability then being paracompact; indeed, under V' = L, not
only that there are no metrizable QQ-set spaces, but there are no Q-set spaces with
character < ¢ ([R], [H], [BJ]).

Under V' = L, every Q-set space is o-left separated [BJ], so a non-o-left-separated
Q-set space cannot be constructed in ZFC. Of course, under MA + — CH, even the
real line has Q-set subspaces (see Miller’s paper in [KV], e.g.).

C. There are several natural questions which are left open.

Problem 1. Is there a connected normal Q-set space?
For Q-spaces, this is a question of A.V. Arhangel’skii [A2], who also points out
that P. deCaux [C] constructed an infinite, regular, connected, o-closed-discrete



THERE IS A PARACOMPACT Q-SET SPACE IN ZFC 1833

space. (Note that, of course, a o-closed discrete space is a Q-space, but not a Q-set
space.)

Problem 2. Is there a strong Q-set space in ZFC, i.e. a space X such that all
finite powers of X are Q-set spaces? Can such a space be normal or paracompact?
(Note that under MA 4+ — CH, the real line has strong Q-set subspaces.)

Problem 3. Is there, in ZFC, a Q-set space of size w7

It is interesting to note that the answer is yes both under CH and MA (w1).
Under CH the space in [B] works, and the space of Theorem 2.1 is an example
which is even paracompact. Under MA (w; ), any subset of cardinality wy of the real
line is an example.
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