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DISCRIMINANTS OF CONVEX CURVES

ARE HOMEOMORPHIC

B. SHAPIRO

(Communicated by Christopher Croke)

Abstract. For a given real generic curve γ : S1 → Pn let Dγ denote the ruled
hypersurface in Pn consisting of all osculating subspaces to γ of codimension 2.
In this note we show that for any two convex real projective curves γ1 : S1 →
Pn and γ2 : S1 → Pn the pairs (Pn,Dγ1 ) and (Pn,Dγ2 ) are homeomorphic.

§0. Preliminaries and results

Definition. A smooth curve γ : S1 → Pn is called nondegenerate or locally convex
if the local multiplicity of its intersection with any hyperplane does not exceed n, i.e.
in local terms γ′(t), ..., γ(n)(t) are linearly independent at every t or its osculating
complete flag is well-defined at every point. A curve γ : S1 → Pn is called convex
if the total multiplicity of its intersection with any hyperplane does not exceed n.

The set Conn of all convex curves in Pn forms 1 connected component of the
space NDn of all nondegenerate curves if n is even and 2 connected components
(since the osculating frame orients P2k+1) if n = 2k+1; see [MSh]. Different results
about convex curves show that they have the most simple properties among all
curves. In this paper we prove one more result of the same nature.

Definition. A curve γ : S1 → Pn is called generic if at every point γ(t), t ∈ S1,
one has a well-defined osculating subspace of codimension 2, i.e. in local terms
γ′(t), ..., γ(n−1)(t) are linearly independent at every t.

Note that any smooth curve γ : S1 → Pn can be made generic by a small smooth
deformation of the map. The space NDn of all nondegenerate curves is enclosed in
the space GENn of all generic curves and consists of several connected components.
(The number of connected components in NDn equals 10 for odd n > 3 and equals
3 for even n > 2; see [MSh].)

Definition. Given a generic γ : S1 → Pn, we define its standard discriminant
Dγ ⊂ Pn to be the hypersurface consisting of all codimension 2 osculating subspaces
to γ.

In many cases (algebraic, analytic etc) the assumption of genericity in the defi-
nition of discriminant can be omitted.

The following proposition answers the question posed by V.Arnold in [Ar2], p.37.

Received by the editors December 17, 1996.
1991 Mathematics Subject Classification. Primary 14H50.
Key words and phrases. Convex curves, discriminants.

c©1998 American Mathematical Society

1923



1924 B. SHAPIRO

Main proposition. a) For any 2 convex curves γ1 : S1 → Pn and γ2 : S1 → Pn

the pairs (Pn, Dγ1) and (Pn, Dγ2) are homeomorphic.
b) For any convex curve γ the complement Pn\Dγ consists of [n2 ]+1 components.

All components are contractible to S1 for n even, and all but one are contractible
to S1 for n odd. The remaining component is a cell.

Now we want to place this result into a more general context of associated
discriminants in the spaces of (in)complete flags.

Notation. Let Fn+1 denote the space of all complete flags in Pn (or, equivalently, in
Rn+1). Given a nondegenerate curve γ : S1 → Pn, one can consider its associated
curve γ̃ : S1 → Fn+1, where γ̃(t) is the complete osculating flag to γ at γ(t). Note
that any associated curve γ̃ : S1 → Fn+1 is tangent to the special distribution
of n-dimensional cones in Fn+1, and any integral curve of this distribution is the
associated curve of some nondegenerate projective curve; see e.g. [Sh1].

Given a complete flag f ∈ Fn+1 and some space G = SLn+1/P of (in)complete
flags, where P is some parabolic subgroup, one gets the Schubert cell decomposition
Schf of G as follows. Each cell of Schf consists of all flags in G subspaces of which
have a given set of dimensions of intersections with the subspaces of f . Let Of

denote the union of all cells in Schf which have codimension at least 2. (Obviously,
codim Of = 2.)

Examples. 1) If G equals Pn then Of is the subspace of f of codimension 2.
2) If G = F3 then Of consists of 2 copies of P1 intersecting at f . The first P1 is

the set of flags on P2 with the same point as that of f , and the second P1 consists
of all flags with the same line as that of f .

Definition. For a given curve c : S1 → Fn+1 and a space G = SLn+1/P of
(in)complete flags we define its G-discriminant GDc to be the union

⋃
t∈S1 Oc(t) ⊂

G. (If c is not a constant map then GDc is a hypersurface in G.)

Note that the standard discriminant Dγ of a nondegenerate curve γ : S1 → Pn

can be considered as the G-discriminant for G = Pn.

Definition. Two nondegenerate curves γ1 : S1 → Pn and γ2 : S1 → Pn are called
G-equivalent if the pairs (G,GDγ̃1) and (G,GDγ̃2) are homeomorphic. (Recall that
γ̃ denotes the associated curve of γ.)

Remark. The notion of G-equivalence of nondegenerate curves is intrinsically re-
lated with the qualitative theory of linear ODE, since each nondegenerate curve in
Pn can be represented as the projectivization of the fundamental solution of some
linear ODE of order n+ 1; see [Sh2]. The problem of enumeration of G-equivalent
generic curves is apparently a very interesting and difficult question even for n = 2.

The following conjecture is formulated in [Sh2].

Conjecture. Any 2 convex curves γ1 : S1 → Pn and γ2 : S1 → Pn are G-equivalent
for any G = SLn+1/P .

Note that it suffices to prove this conjecture in the case of the space Fn+1 of com-
plete flags, i.e. the case P = B, where B is the Borel subgroup of uppertriangular
matrices.

Remark. After the first version of the paper was written the author discussed the
topic with Vl. Zakalyukin, who later proved the following stronger result (conjected
by the author).
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Proposition. For any pair of convex curves γ1 : S1 → Pn and γ2 : S1 → Pn the
pairs (Pn, Dγ1) and (Pn, Dγ2) are diffeomorphic.

The main idea of his proof is to show the equivalence of the standard generating
functions for the Legendre submanifolds which are lifts of the standard discrimi-
nants in the space of tangent elements PT ∗Pn. Unfortunately this method does not
give the topological part b) of the above main proposition.

Notice that in a sufficiently small neighborhood of any point p of a locally convex
curve γ ⊂ Pn its discriminant Dγ is diffeomorphic to the standard discriminant
Discn, i.e. the set of all monic degree n polynomials in one variable with real
coefficients which have at least one real multiple root; see [Ish]. (In singularity
theory Discn is also called the swallowtail.) Thus, in spite of the fact that Dγ is
highly singular, it has no local moduli. Still the existence of a global diffeomorphism
of different Dγ ’s is quite a nontrivial fact.

The main motivation of this paper was an attempt to formalize the idea that any
2 convex curves are qualitatively equivalent in any natural sense. It is difficult to
overestimate the role of my visit to the Max-Planck Institute during the summer of
1996, where the main bulk of this project was carried out. Stimulating discussions
with M. Shapiro and Vl. Zakalyukin are highly appreciated.

§1. Proofs

Some generalities on convex curves.

Definition. For any t ∈ S1 and 1 ≤ k ≤ n−1 let Lk
t denote the osculating subspace

to γ at γ(t) of dimension k.

1.1. Theorem (criterion of convexity). A curve γ : S1 → Pn is convex if and
only if for any r-tuple of positive integers k1, ..., kr such that

∑
ki = n and any

r-tuple of pairwise different moments t1, ..., tr the intersection Ln−k1
t1 ∩ ... ∩ Ln−kr

tr
is a point.

Proof. In order to save space we refer the interested reader to [Co] and the references
given there.

Definition. Given a nondegenerate curve γ : S1 → Pn, we define its dual γ : S1 →
(Pn)∗ to be the curve consisting of all osculating hyperplanes to γ.

Remark. If γ is convex then γ∗ is also convex, see [Ar1], [Ar2].

Notation. If a point p lies on some osculating hyperplane Hτ to γ, we say that the
order of tangency ]p(γ(τ)) of p at γ(τ) equals to i if p belongs to the osculating
subspaces at γ(τ) of codimension at most i. (For example, for every point p on a
line l tangent to a circle c at c(1) on P2 except for the tangency point c(1) one has
]p(c(1)) = 1. On the other side, ]c(1)(c(1)) = 2.)

Given a nondegenerate γ : S1 → Pn and a point p ∈ Pn, we define the number
of roots ]p(γ) of p to be the sum of the orders of tangency ]p(γ(ti)) taken over all
osculating hyperplanes Hti through p.

(The term ‘number of roots’ comes from the example when γ is a rational normal
curve in Pn. In this case all points in Pn can be interpreted as homogeneous
polynomials in 2 variables of degree n with real coefficients (considered up to a
constant factor), and γ is the family of polynomials of the form (ax1 + bx2)

n, a2 +
b2 6= 0. In this situation ]p(γ) coincides with the total number of real roots of such
a polynomial on P1, counted with multiplicities.)
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Observation. The number of roots ]p(γ) coincides with the total multiplicity (i.e.

sum of local multiplicities) of the intersection of H̃p with γ∗. Here H̃p denotes the
hyperplane in (Pn)∗ corresponding to the point p ∈ Pn.

1.2. Corollary. A curve γ is convex if and only if for any p ∈ Pn one has ]p(γ) ≤
n.

Projection. Given a convex curve γ : S1 → Pn and its osculating hyperplane Hτ

at the point γ(τ), let us denote by γτ : S1 → Hτ the curve obtained by projection
of γ onto Hτ along the pencil of tangent lines to γ, i.e. for any t ∈ S1 one has
γτ (t) = Hτ ∩ lt, where lt is the tangent line to γ at γ(t).

1.3. Lemma. For any τ ∈ S1 the curve γτ is a convex curve in Hτ . Osculating
hyperplanes to γτ and its discriminant Dγτ are obtained by intersection of the
osculating hyperplanes and Dγ with Hτ .

Proof. The argument splits into 2 principal parts. First we show that γτ is non-
degenerate, i.e. (γτ )′(t), ..., (γτ )(n−1)(t) are linearly independent at any t ∈ S1.
Then we prove that γτ is convex, i.e. its total multiplicity of intersection with any
hyperplane in Hτ does not exceed n− 1. Observe that γ has only one intersection
point with Hτ , namely γ(τ). Assume first that t 6= τ . In this case one can choose
a system of affine coordinates x1, ..., xn in Pn such that Hτ coincides with the hy-
perplane {xn = 0}; γ(t) is the point with coordinates (0, ..., 0, 1) and the tangent
line lt to γ at γ(t) is the xn-axis. In these coordinates the curve γτ has the form

γτ (t) = γ(t)− γn(t)

γ′n(t)
γ′(t),

where γn is the last coordinate of γ. (Under our assumptions γ′n(t) 6= 0.) Therefore

(γτ )(i)(t) = (−1)i
γn(t)

γ′n(t)
γ(i)(t) + ...,

where ... denotes terms containing derivatives of γ of order lower than i. By the

above assumptions γn(t)
γ′n(t) 6= 0, and since γ′(t), ..., γ(n)(t), are linearly independent

one gets that the derivatives (γτ )(i)(t), i = 1, ..., n− 1, are linearly independent as
well.

The alternative geometric argument is as follows. Since the point γ(t) does not
lie on Hτ , one has that the osculating complete flag f(t) to γ at γ(t) is transversal
to Hτ and the same holds for all t′ close to t. Therefore the complete flags obtained
by intersection of f(t′) with Hτ are well defined. But in their turn these flags
coincide with the osculating flags to γτ , which are therefore well-defined in some
neighborhood of t.

It remains to show that γτ is nondegenerate at t = τ . This follows from the
local calculation given below. In this case we can choose a system of coordinates
such that in the neighborhood of τ (we assume τ = 0) the curve γ has the form

x1 = t+ ..., x2 = t2 + ..., ..., xn = tn + ... .
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The osculating hyperplane H0 at τ = 0 is given by {xn = 0}. The projected curve
γ0(t) is given by

γ0(t) = γ(t)− γn(t)

γ′n(t)
γ′ = (t + ..., t2 + ..., ..., tn + ...)

− tn + ...

ntn−1 + ...
(1 + ..., 2t+ ..., ..., nt(n−1) + ...)

=
1

n
((n− 1)t+ ..., (n− 2)t2 + ..., ..., t(n−1) + ..., 0),

which shows that γ0 is nondegenerate at t = 0.
Now we show that γτ is convex. By Corollary 1.2. one has to prove that for any

p ∈ Hτ the number of roots ]p(γ
τ ) is less than or equal to n− 1. This follows from

the equality

]p(γ
τ ) + 1 = ]p(γ),

which together with convexity of γ gives the required result. Indeed, assume that
some p ∈ Hτ lies in the intersection Lk1

t1 (γ)∩Lk2
t2 (γ)∩...∩Lkr

tr (γ), where t1 = τ . Since

each subspace Lki
ti for i 6= 1 is transversal to Hτ (see the criterion of convexity), one

has that p lies in the intersection Lk1
t1 (γτ )∩Lk2−1

t2 (γτ )∩ ...∩Lkr−1
tr (γτ ). Therefore,

by definition of the number of roots, one gets the above equality.

For any k-tuple of moments (t1, ..., tk), ti ∈ S1, let Ht1 ∩ ... ∩ Htk denote the
intersection of the osculating hyperplanes Hti , i = 1, ..., k. In what follows we use
the following convention. If some of the moments tj1 , tj2 , ..., tjr coincide we define
the intersection Htj1

∩ Htj2
∩ ... ∩ Htjr as the osculating subspace to γ at γ(tj1)

of codimension r. Under this convention one has that Ht1 ∩ ... ∩ Htk always has
codimension k; see 1.1.

1.4. Corollary. The projection γt1,...,tk of γ onto any intersection of osculating
hyperplanes Ht1 ∩ ... ∩Htk by a pencil of k-dimensional osculating subspaces to γ
is a convex curve. For any point p ∈ Ht1 ∩ ... ∩Htk one has

]p(γ
t1,...,tk) + k = ]p(γ).

Proof. Apply the above lemma several times.

Elliptic hull of γ and root filtration of Pn.

Definition. For a convex γ : S1 → Pn we define its elliptic hull Ellγ to be the set
of all p ∈ Pn with {

]p(γ) = 0, if n is even,

]p(γ) = 1, if n is odd.

1.5. Lemma. a) If n is even then Ellγ is a nonempty convex set in some affine
chart of Pn (compare [ShS]).

b) If n is odd then Ellγ is a disjoint union of
⋃

τ∈S1 Ellγτ and, therefore, is
fibered over γ with a contractible fiber.

Proof. a) Note that if γ : S1 → P2k is convex then γ lies in some affine chart in P2k.
Indeed, take some osculating hyperplane Hτ . The curve γ is tangent to Hτ only at
γ(τ) with the multiplicity 2k. Locally γ lies on one side w.r.t. Hτ . Therefore, one
can make a small shift of Hτ in order to get rid of the intersection points with γ
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near γ(τ). But no new intersection can appear for a sufficiently small shift, since
the only intersection point of γ and Hτ is γ(τ).

Assume now that R2k ⊂ P2k is the affine chart containing γ. We claim that Ellγ
coincides with the intersection

⋂
τ∈S1 Halfτ . Here Halfτ is the open halfspace

in R2k containing γ and bounded by the osculating hyperplane Hτ . First of all,⋂
τ∈S1 Halfτ is nonempty since it is an open convex set containing the interior

of the convex hull of γ in R2k. Then
⋂

τ∈S1 Halfτ is contained in Ellγ . Indeed,
every hyperplane through a point p ∈

⋂
τ∈S1 Halfτ is transversal to any osculating

hyperplane Hτ , since p /∈ Hτ . On the other side, Ellγ ⊆
⋂

τ∈S1 Halfτ . Indeed, for

every p /∈ Halfτ , τ ∈ S1, there exists a hyperplane Lp through p not intersecting
γ at all. Take the affine chart Pn \Lp containing γ and some pencil Lp of ‘parallel’
hyperplanes through p. Since γ is a closed curve in Pn \ Lp, one gets that some
hyperplane in Lp does not intersect γ. Therefore, there exists a hyperplane in Lp

tangent to γ at some γ(tp). But this exactly means that the osculating hyperplane
Htp contains p.

b) Take a 1-parameter family of osculating hyperplanes. According to the proof
of lemma 1.3, for any τ ∈ S1 the curve γτ is convex in Hτ and one has ]p(γ

τ )+1 =
]p(γ). Therefore the elliptic domain Ellγτ of every curve γτ belongs to Ellγ , i.e.⋃

τ∈S1 Ellγτ ⊂ Ellγ . (Note that the union
⋃

τ∈S1 Ellγτ is disjoint.) Conversely, by
definition, for odd n every point p in Ellγ has exactly one tangent hyperplane to γ,
and thus p belongs exactly to one osculating Hτ . By the equality ]p(γ

τ )+1 = ]p(γ),
the point p lies in the elliptic hull of γτ . Moreover, by the first part of this proof,
Ellγτ is a convex domain in Hτ and, therefore, is contractible, which gives the
necessary result.

Definition. By the root filtration of Pn w.r.t. a convex curve γ : S1 → Pn,

P0(γ) ⊂ ... ⊂ P[n2 ](γ) = Pn,

we mean the filtration where each Pi(γ) consists of all p ∈ Pn for which the number
of roots ]p(γ) is greater than or equal to n− 2i.

Let T j = (S1)j denote the j-dimensional torus and let T j/Sj be its quotient
modulo the natural action of the symmetric group Sj by permutation of copies of
S1.

1.6. Lemma. a) For any n and 0 ≤ i ≤ [n2 ] the set Pi(γ) \ Pi−1(γ) is naturally

fibered over T n−2i/Sn−2i with a contractible fiber. (For n = 2k and i = k the set
Pk(γ) \ Pk−1(γ) is contractible; see 1.5.a.)

b) This fibration is trivial.

Proof. a) Every point p ∈ Pi(γ) \Pi−1(γ) can be described as follows. There exists
a unique (n−2i)-tuple of osculating hyperplanes Ht1 , ..., Htn−2i to γ (with probably
coinciding moments t1, ..., tn−2i, in which case we use the same convention as above)
such that p belongs to the intersection Ht1 ∩Ht2 ∩ ...∩Htn−2i and, moreover, lies in
the elliptic hull of the curve γt1,...,tn−2i. (Here γt1,...,tn−2i is the projection of γ onto
Ht1 ∩Ht2 ∩ ... ∩Htn−2i by the pencil of osculating subspaces of dimension n− 2i.)
Indeed, we have that ]p(γ

t1,...,tn−2i)+2i = ]p(γ); see 1.2. Therefore p must lie in the
elliptic hull of γt1,...,tn−2i. On the other hand, any intersection Ht1∩Ht2∩...∩Htn−2i

has codimension n − 2i (see 1.1) and any curve γt1,...,tn−2i is convex. Therefore,
applying 1.5, we get the necessary result.
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b) The fibration of elliptic components Ellγt1,...,tn−2i of the curves γt1,...,tn−2i

over the set of moments (t1, ..., tn−2i) ∈ T n−2i/Sn−2i depends continuously on
γ ∈ Conn. Since Conn consists of 1 connected component (up to orientation for
odd n) it suffices to show that the fibration sending Ellγt1,...,tn−2i to (t1, ..., tn−2i)
is trivial for some γ ∈ Conn.

The simplest example showing triviality is the case when γ is a rational normal
curve. Indeed, in this case the space under consideration is the fibration of the space
Πn(i) all homogeneous forms of degree n in 2 variables (up to a scalar multiple)
which have exactly n − 2i real zeros (counted with multiplicities) over the space
T n−2i/Sn−2i of their real zeros. But Πn(i) has the obvious structure of the product
of the space of degree n−2i polynomials with all real zeros (considered up to a scalar
multiple) and the space of degree 2i polynomials with no real zeros (considered up
to a scalar multiple). This shows that the fibration Πn(i) → T n−2i/Sn−2i is
trivial.

Proof of the main proposition. a) We will construct the homeomorphism of
pairs (Pn, Dγ1) and (Pn, Dγ2) in [n2 ] + 1 steps. On the ith step, i = 0, ..., [n2 ], we
obtain the partial homeomorphism hi of the terms Pi(γ1) and Pi(γ2) of the above
filtration.

The initial step. We construct the homeomorphism h0 : P0(γ1) → P0(γ2). In-
deed, each of P0(γ1) and P0(γ2) is homeomorphic to T n/Sn as follows. Every ele-
ment in T n/Sn is a pair (t1, ..., tr) ∈ (T r\Diag)/Sr, r ≤ n, and (k1, ..., kr),

∑
ki =

n. We map such a pair (t1, ..., tr), (k1, ..., kr) onto the intersection point Ln−k1
t1 (γj)∩

... ∩ Ln−kr
tr (γj), j = 1, 2. This identification provides the homeomorphism h0 :

P0(γ1) → P0(γ2) by 1.1.
The typical step. Each point in Pi(γj) \ Pi−1(γj) lies in the elliptic hull of the

unique curve γt1,...,tn−2i ⊂ Ht1 ∩ ...∩Htn−2i , i.e. the set of (not necessarily pairwise

different) moments (t1, ..., tn−2i) ∈ T n−2i/Sn−2i is uniquely defined. For each
individual intersection Ht1 ∩ ...∩Htn−2i the homeomorphism hi−1 is already defined

on the complement to the elliptic hulls of the curves γ
t1,...,tn−2i

1 and γ
t1,...,tn−2i

2 .
Since the elliptic hulls are convex domains and the fibrations of the elliptic hulls
over T n−2i/Sn−2i are trivial, we can extend hi−1 fiberwise to hi by identifying the

points of the elliptic hull of γ
t1,...,tn−2i

1 with points of the elliptic hull of γ
t1,...,tn−2i

2

for all tuples (t1, ..., tn−2i) ∈ T n−2i/Sn−2i

b) The corresponding component Compi of Pn \ Dγ contained in Pi \ Pi−1

is fibered over (T n−2i \ Diag)/Sn−2i with the contractible fiber. Since in fact
(T n−2i \Diag)/Sn−2i is contractible to S1 for any n−2i > 0, one gets that Compi
is contractible to S1 for all n and i ≤ [n2 ], except for Ellγ for even n, which is
contractible to a point.

Remark. For convex algebraic curves the above homeomorphism (constructed
rather explicitly) can be made (piecewise) real algebraic. This leads to the interest-
ing problem of studying properties of the complexification of this homeomorphism
in the case when the initial convex curves are not projectively equivalent.
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