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FIRST ORDER DIFFERENTIAL OPERATORS
IN WHITE NOISE ANALYSIS

DONG MYUNG CHUNG AND TAE SU CHUNG

(Communicated by Palle E. T. Jorgensen)

Abstract. Let (E) be the space of test white noise functionals. We first
introduce a family {�γ ; γ ∈ C} of products on (E) including Wiener and
Wick products, and then show that with each product �γ , we can associate
a first order differential operator, called a first order γ-differential operator.
We next show that a first order γ-differential operator is indeed a continuous
derivation under the product �γ . We finally characterize γ∆G +N by means of
rotation-invariance and continuous derivation under the product �γ . Here ∆G

and N are the Gross Laplacian and the number operator on (E), respectively.

1. Introduction

The white noise analysis, initiated by Hida in 1975, has been developed into
an infinite dimensional distribution theory with applications to quantum physics,
infinite dimensional harmonic analysis, stochastic analysis and so on. The mathe-
matical framework of white noise analysis is the Gel’fand triple (E) ⊂ (L2) ⊂ (E)∗

over Gaussian space (E∗, µ), where µ is the standard Gaussian measure associated
with a Gel’fand triple E ⊂ H ⊂ E∗.

Infinite dimensional Laplacians based on white noise analysis, in particular the
Gross Laplacian ∆G and the number operator N , have been considerably studied,
see e.g. [5], [7], [8], [9]. In [8], Obata showed that ∆G and N are rotation-invariant.
In [5], Hida, Kuo and Obata proved that i

2∆G + iN is the infinitesimal generator of
the one-parameter group of adjoint Kuo’s Fourier-Mehler transforms. In [3], Chung
and Ji showed that for each a, b ∈ C, we can obtain explicitly a one-parameter
transformation group with infinitesimal generator a∆G+bN . A main purpose of this
paper is to study characteristic properties of operators of the form γ∆G+N, γ ∈ C.

It is well-known (see [7]) that the Wiener product and the Wick product have
the derivation property on (E). In [10], Obata introduced the concept of first order
differential operators with variable coefficients and then showed that a first order
differential operator with variable coefficients is indeed a continuous derivation
under the Wiener product. In [1], Chung and Chung introduced the concept of
first order Wick differential operators with variable coefficients and then showed
that a first order Wick differential operator with variable coefficients is indeed a
continuous derivation under the Wick product.
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In this paper, motivated by [1] and [10], we first introduce a family {�γ ; γ ∈ C}
of products on (E) including Wiener and Wick products, and then show that with
each product �γ , we can associate a first order differential operator, called a first
order γ-differential operator. We next show that a first order γ-differential operator
is indeed a continuous derivation under the product �γ . We finally characterize
γ∆G + N by means of rotation-invariance and continuous derivation under the
product �γ .

2. Preliminaries

Let T be a topological space with a Borel measure dν(t) ≡ dt, and assume that
H ≡ L2(T, ν; R) is a real separable Hilbert space with norm | · |0. Let A be a
positive self-adjoint operator on H such that ρ ≡ ‖A−1‖OP < 1 and ‖A−1‖HS <∞.
With this A, a Gel’fand triple E ⊂ H ⊂ E∗ is constructed in the standard manner
(see [9]). Recall that E is a countable Hilbert nuclear space induced by a family of
Hilbert norms: |ξ|p = |Apξ|0, ξ ∈ H, p ∈ R.

Let µ be the standard Gaussian measure on E∗, i.e., its characteristic function
is given by e−

1
2 |ξ|20 , ξ ∈ E. Let (L2) be the space of C-valued µ-square integrable

functions on E∗. Then by the Wiener-Itô decomposition theorem, each φ ∈ (L2)
admits a unique expansion

φ(x) =
∞∑

n=0

〈: x⊗n :, fn〉, x ∈ E∗, fn ∈ H⊗̂n
C ,

where : x⊗n : is a Wick ordering of x⊗n (see [6], [7]) andH⊗̂n
C is the n-fold symmetric

tensor product of the complexification of H . In this case, we simply write φ ∼ (fn).
Let (E) be the space of φ ∼ (fn) ∈ (L2) such that fn ∈ E⊗̂n

C for all n, and
‖φ‖2

p ≡
∑∞

n=0 n!|fn|2p < ∞ for all p ≥ 0. Then we have a Gel’fand triple: (E) ⊂
(L2) ⊂ (E)∗, where (E)∗ is the strong dual space of (E). Moreover, it is known
that for each Φ ∈ (E)∗ there exists a unique sequence {Fn}∞n=0 with Fn ∈ (E⊗n

C )∗sym

such that

〈〈Φ, φ〉〉 =
∞∑

n=0

n!〈Fn, fn〉, φ ∼ (fn) ∈ (E),

and ‖Φ‖2
−p ≡ ∑∞

n=0 n!|Fn|2−p < ∞ for some p ≥ 0. In this case we also write
Φ ∼ (Fn). These elements φ ∈ (E) and Φ ∈ (E)∗ are called a test (white noise)
functional and a generalized (white noise) functional, respectively.

For ξ ∈ EC an exponential vector ϕξ is defined by ϕξ ∼ ( 1
n!ξ

⊗n). The S-transform
of Φ ∈ (E)∗ is a function on EC defined by

SΦ(ξ) = 〈〈Φ, ϕξ〉〉, ξ ∈ EC.

Let L((E), (E)∗) (resp. L((E), (E))) be the space of all continuous linear oper-
ators from (E) into (E)∗ (resp. (E)). For Ξ ∈ L((E), (E)∗) the symbol of Ξ is a
function on EC × EC defined by

Ξ̂(ξ, η) = 〈〈Ξϕξ , ϕη〉〉, ξ, η ∈ EC.

Theorem 2.1 ([2], [9]). Suppose that a C-valued function F on EC × EC satisfies
the following conditions:

(S1) For any ξ, ξ′, η and η′ in EC, the function (z, w) 7→ F (zξ+ ξ′, wη+ η′) is an
entire function on C× C.
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(S2) There exist p ≥ 0, a > 0 and K > 0 such that

|F (ξ, η)| ≤ Kea(|ξ|2p+|η|2p), ξ, η ∈ EC.

Then there exists a unique Ξ ∈ L((E), (E)∗) such that F is the symbol of Ξ. More-
over, for q > p with 2ae2‖A−2(q−p)‖2

HS < 1, we have

‖Ξφ‖−q ≤ K
(
1− 2ae2‖A−2(q−p)‖2

HS

)−1‖φ‖q, φ ∈ (E).

It is known that there exist continuous linear operators ∆G, N ∈ L((E), (E))
such that ∆̂G(ξ, η) = e〈ξ,η〉〈ξ, ξ〉 and N̂(ξ, η) = e〈ξ,η〉〈ξ, η〉, ξ, η ∈ EC. These are
called the Gross Laplacian and the number operator, respectively.

For α, β ∈ C, the Gα,β-transform acting on (E) is defined by

Gα,βϕξ = eα〈ξ,η〉ϕβξ, ξ ∈ EC.

It is known [3] that Gα,β ∈ L((E), (E)) and {Gα,β ; α, β ∈ C, β 6= 0} forms a two-
parameter transformation group with generators ∆G and N . Moreover, we note
that Gα′,β′Gα,β = Gα+α′β2,ββ′ ,G0,1 = I and G−1

α,β = G−αβ−2,β−1 , β 6= 0.

3. γ-product on white noise functionals

It is known [7], [9] that the Wiener product (pointwise multiplication) is a con-
tinuous binary operation on (E).

For Φ,Ψ ∈ (E)∗, the Wick product Φ�Ψ ∈ (E)∗ is defined by S(Φ�Ψ) = SΦ·SΨ.
It is well-defined, thanks to the characterization theorem for (E)∗ given in [11]. Note
that the Wick product is also a continuous binary operation on (E).

Throughout this paper, let γ be a fixed but arbitrary complex number.

Proposition 3.1. There exists a unique continuous binary operation �γ on (E)
such that

ϕξ �γ ϕη = eγ〈ξ,η〉ϕξ+η, ξ, η ∈ EC.(3.1)

Proof. Let α, β ∈ C with γ = β2 − 2α, β 6= 0. Define a binary operation �γ on (E)
by

φ �γ ψ = G−1
α,β(Gα,βφ · Gα,βψ), φ, ψ ∈ (E).

Then by the continuity of Gα,β and the continuity of the Wiener product, we see
that �γ is continuous. We easily see that (3.1) is verified by a direct computation.
Moreover, since {ϕξ ; ξ ∈ EC} spans a dense linear subspace of (E), �γ is well-
defined for any choice of α, β ∈ C satisfying γ = β2 − 2α, β 6= 0.

We can easily check that �0 is the Wick product and �1 is the Wiener product.
Moreover, we note that

φ · ψ = G 1
2 ,1(G− 1

2 ,1φ � G− 1
2 ,1ψ), φ, ψ ∈ (E).

A similar result can be found in [7, §8.4]. From this we obtain

φ �γ ψ = G γ
2 ,1(G− γ

2 ,1φ � G− γ
2 ,1ψ), φ, ψ ∈ (E).(3.2)

Lemma 3.2. For any φ ∈ (E) and ξ, η ∈ EC, we obtain

〈〈φ �γ ϕξ, ϕη〉〉 = e〈ξ,η〉〈〈φ, ϕγξ+η〉〉.
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Proof. For ξ, η, ζ ∈ EC, we observe that

〈〈ϕζ �γ ϕξ, ϕη〉〉 = eγ〈ζ,ξ〉〈〈ϕζ+ξ , ϕη〉〉 = e〈ξ,η〉〈〈ϕζ , ϕγξ+η〉〉.
Since {ϕζ ; ζ ∈ EC} spans a dense subspace of (E), the proof follows.

Proposition 3.3. There exists a unique separately continuous bilinear map B :
(E)∗ × (E) → (E)∗ such that

(i) B(φ, ψ) = φ �γ ψ, φ, ψ ∈ (E).

(ii) 〈〈B(Φ, ϕξ), ϕη〉〉 = e〈ξ,η〉〈〈Φ, ϕγξ+η〉〉, Φ ∈ (E)∗, ξ, η ∈ EC.

Proof. For Φ ∈ (E)∗ define a C-valued function FΦ by

FΦ(ξ, η) = e〈ξ,η〉〈〈Φ, ϕγξ+η〉〉, ξ, η ∈ EC.

Then (z, w) 7→ FΦ(zξ + ξ′, wη + η′) is clearly an entire function on C × C for any
ξ, ξ′, η, η′ ∈ EC. Let p ≥ 0 be such that ‖Φ‖−p <∞. Then we obtain

|FΦ(ξ, η)| ≤ ‖Φ‖−pe
a(|ξ|2p+|η|2p), ξ, η ∈ EC,

where a = max{ 1
2ρ

2p + |γ|2, 1
2ρ

2p +1}. Hence by Theorem 2.1, there exists a unique
operator ΞΦ ∈ L((E), (E)∗) such that

〈〈ΞΦϕξ, ϕη〉〉 = e〈ξ,η〉〈〈Φ, ϕγξ+η〉〉, ξ, η ∈ EC.(3.3)

Theorem 2.1 also says that for any q > p with 2ae2‖A−2(q−p)‖2
HS < 1, we have

‖ΞΦ(φ)‖−q ≤ (1− 2ae2‖A−2(q−p)‖2
HS)

−1‖Φ‖−p‖φ‖q, φ ∈ (E).(3.4)

Define a map B : (E)∗ × (E) → (E)∗ by

B(Φ, φ) = ΞΦ(φ), Φ ∈ (E)∗, φ ∈ (E).

Then for each Φ ∈ (E)∗, B(Φ, ·) = ΞΦ is clearly a continuous linear operator on
(E). And it can be easily shown that for each φ ∈ (E), B(·, φ) is a linear operator
on (E)∗. Moreover by (3.4), B(·, φ) is continuous on (E)∗ for each φ ∈ (E). Hence
the map B is a separately continuous bilinear map of (E)∗ × (E) into (E)∗.

Property (ii) follows from (3.3). By (ii) and Lemma 3.2, we have

〈〈B(φ, ϕξ), ϕη〉〉 = e〈ξ,η〉〈〈φ, ϕγξ+η〉〉 = 〈〈φ �γ ϕξ, ϕη〉〉, φ ∈ (E), ξ, η ∈ EC.

Hence B(φ, ϕξ) = φ �γ ϕξ for ξ ∈ EC. This implies that B satisfies (i).
The uniqueness of B is clear from (i).

In Proposition 3.3, we write B(Φ, φ) = Φ �γ φ = φ �γ Φ for any Φ ∈ (E)∗ and
φ ∈ (E). With this notation we have

〈〈Φ �γ ϕξ, ϕη〉〉 = e〈ξ,η〉〈〈Φ, ϕγξ+η〉〉, ξ, η ∈ EC.(3.5)

4. First order γ-differential operators

We begin with the following lemma.

Lemma 4.1 ([1]). For Φ ∈ (EC⊗ (E))∗ and ξ ∈ EC, there exists a unique 〈Φ, ξ〉 ∈
(E)∗ such that

〈〈〈Φ, ξ〉, φ〉〉 = 〈〈Φ, ξ ⊗ φ〉〉, φ ∈ (E).

Further, 〈·, ·〉 is a continuous bilinear map from (EC ⊗ (E))∗ × EC into (E)∗.
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Proposition 4.2. For Ξ ∈ L((E), (E)∗) and Φ ∈ (EC⊗ (E))∗, the following state-
ments are equivalent:

(i) Ξ(〈: ·⊗n :, ξ⊗n〉) = n〈: ·⊗(n−1) :, ξ⊗(n−1)〉 �γ 〈Φ, ξ〉, n ≥ 0, ξ ∈ EC.

(ii) Ξ(〈·, ξ〉�γn) = n〈·, ξ〉�γ(n−1) �γ 〈Φ, ξ〉, n ≥ 0, ξ ∈ EC.

(iii) Ξϕξ = 〈Φ, ξ〉 �γ ϕξ, ξ ∈ EC.

(iv) Ξ̂(ξ, η) = e〈ξ,η〉〈〈Φ, ξ ⊗ ϕγξ+η〉〉, ξ, η ∈ EC.

Proof. (i)⇒(iii) For any ξ ∈ EC, we have

Ξϕξ = Ξ

( ∞∑
n=0

1
n!
〈: ·⊗n :, ξ⊗n〉

)

=
∞∑

n=1

1
n!
n〈: ·⊗(n−1) :, ξ⊗(n−1)〉 �γ 〈Φ, ξ〉 = ϕξ �γ 〈Φ, ξ〉,

from which the assertion follows.
(ii)⇒(iii) Since Gα,1〈·, ξ〉 = 〈·, ξ〉 for any ξ ∈ EC and α ∈ C, (3.2) implies that

〈·, ξ〉�γn = G γ
2 ,1((G− γ

2 ,1〈·, ξ〉)�n) = G γ
2 ,1(〈·, ξ〉�n) = G γ

2 ,1(〈: ·⊗n :, ξ⊗n〉).
Thus for ξ ∈ EC we obtain

∞∑
n=0

1
n!
〈·, ξ〉�γn = G γ

2 ,1

( ∞∑
n=0

1
n!
〈: ·⊗n :, ξ⊗n〉

)
= G γ

2 ,1ϕξ = e
γ
2 〈ξ,ξ〉ϕξ.

(4.6)

By applying Ξ to both sides of (4.6), we have

e
γ
2 〈ξ,ξ〉Ξϕξ = Ξ

( ∞∑
n=0

1
n!
〈·, ξ〉�γn

)

=
∞∑

n=1

1
n!
n〈·, ξ〉�γ (n−1) �γ 〈Φ, ξ〉

=
∞∑

n=0

1
n!
〈·, ξ〉�γn �γ 〈Φ, ξ〉 = e

γ
2 〈ξ,ξ〉ϕξ �γ 〈Φ, ξ〉.

(iii)⇒(i) Now fix ξ ∈ EC and φ ∈ (E). Then for any t ∈ C we have

〈〈Ξϕtξ , φ〉〉 =
∞∑

n=0

1
n!
〈〈Ξ(〈: ·⊗n :, ξ⊗n〉), φ〉〉 tn.(4.7)

On the other hand, we have

〈〈〈Φ, tξ〉 �γ ϕtξ, φ〉〉 =
∞∑

n=0

1
n!
〈〈〈: ·⊗n :, ξ⊗n〉 �γ 〈Φ, ξ〉, φ〉〉tn+1.(4.8)

By comparing (4.7) with (4.8), we prove the assertion.
(iii)⇒(ii) Fix ξ ∈ EC and φ ∈ (E) again. Then we have

e
γ
2 t2〈ξ,ξ〉〈〈Ξϕtξ , φ〉〉 =

∞∑
n=0

1
n!
〈〈Ξ(〈·, ξ〉�γ n), φ〉〉 tn,
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and

e
γ
2 t2〈ξ,ξ〉〈〈〈Φ, tξ〉 �γ ϕtξ, φ〉〉 =

〈〈
〈Φ, tξ〉 �γ

∞∑
n=0

1
n!
〈·, tξ〉�γn, φ

〉〉

=
∞∑

n=0

1
n!
〈〈〈·, ξ〉�γn �γ 〈Φ, ξ〉, φ〉〉 tn+1.

By comparing the above two equations, the assertion is proved.
(iii)⇔(iv) is clear from the fact that

〈〈〈Φ, ξ〉 �γ ϕξ, ϕη〉〉 = e〈ξ,η〉〈〈Φ, ξ ⊗ ϕγξ+η〉〉, ξ, η ∈ EC.

Theorem 4.3. For Φ ∈ (EC ⊗ (E))∗, there is a unique operator Ξ ∈ L((E), (E)∗)
such that one of conditions (i)–(iv) in Proposition 4.2 holds.

Proof. This follows immediately from the fact that the function

F (ξ, η) = e〈ξ,η〉〈〈Φ, ξ ⊗ ϕγξ+η〉〉, ξ, η ∈ EC,

satisfies (S1) and (S2) in Theorem 2.1.

Definition 4.4. The operator Ξ given as in Theorem 4.3 is called a first order
γ-differential operator with coefficient Φ ∈ (EC ⊗ (E))∗.

This operator Ξ has the following integral expression:

Ξ =
∫

T

Φ(t) �γ ∂t dt.

The proof of the next theorem can be done by a simple modification of the proof
of Theorem 3.4 given in [1].

Theorem 4.5. Let Ξ ∈ L((E), (E)∗) be a first order γ-differential operator with
coefficient Φ ∈ (EC ⊗ (E))∗. Then Ξ ∈ L((E), (E)) if and only if Φ ∈ E∗

C ⊗ (E).

Example 4.6. (1) For any y ∈ EC, Dy ∈ L((E), (E)) is a first order γ-differential
operator with coefficient y ⊗ 1 ∈ E∗

C ⊗ (E).
(2) Let Φ0 ∈ (EC ⊗ (E))∗ be given by the formal formula

Φ0(t, x) = x(t), t ∈ T, x ∈ E∗.

That is, 〈〈Φ0, ξ ⊗ φ〉〉 = 〈ξ, f1〉 for any ξ ∈ EC and φ ∼ (fn) ∈ (E). Then γ∆G +N
is a first order γ-differential operator with coefficient Φ0.

Definition 4.7. Let Ξ ∈ L((E), (E)∗). Then Ξ is said to be a γ-derivation if the
following holds:

Ξ(φ �γ ψ) = (Ξφ) �γ ψ + φ �γ (Ξψ), φ, ψ ∈ (E).

By using the fact that the set of exponential vectors spans a dense subspace of
(E), we obtain the following proposition:

Proposition 4.8. Let Ξ ∈ L((E), (E)∗). Then Ξ is a γ-derivation if and only if
for any ξ, η, ζ ∈ EC, we have

eγ〈ξ,η〉Ξ̂(ξ + η, ζ) = e〈η,ζ〉Ξ̂(ξ, γη + ζ) + e〈ξ,ζ〉Ξ̂(η, γξ + ζ).(4.9)

Theorem 4.9. Let Ξ ∈ L((E), (E)∗). Then Ξ is a γ-derivation if and only if Ξ is
a first order γ-differential operator with some coefficient Φ ∈ (EC ⊗ (E))∗.
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Proof. Let Ξ ∈ L((E), (E)∗) be a first order γ-differential operator with coefficient
Φ ∈ (EC⊗(E))∗. Then it can be shown that Ξ̂(ξ, η) = e〈ξ,η〉〈〈Φ, ξ⊗ϕγξ+η〉〉 satisfies
(4.9), and hence Ξ is a γ-derivation.

Now assume that Ξ ∈ L((E), (E)∗) is a γ-derivation. Since ξ 7→ 〈·, ξ〉 is contin-
uous and linear, we see that ξ 7→ Ξ(〈·, ξ〉) is a continuous linear map from EC into
(E)∗. Hence there exists a unique Φ ∈ (EC ⊗ (E))∗ such that

〈Φ, ξ〉 = Ξ(〈·, ξ〉), ξ ∈ EC.

Since Ξ is a γ-derivation, we have for any n ≥ 0

Ξ(〈·, ξ〉�γn) = n〈·, ξ〉�γ (n−1) �γ Ξ(〈·, ξ〉) = n〈·, ξ〉�γ (n−1) �γ 〈Φ, ξ〉, ξ ∈ EC.

Hence by Proposition 4.2 and Theorem 4.3, Ξ is a first order γ-differential operator
with coefficient Φ ∈ (EC ⊗ (E))∗.

5. Characterization of the operator γ∆G +N

We shall adopt the notion of rotation-invariance of operators given in [9, §5.4].
Let O(E;H) is the space of rotations on E, that is, O(E;H) is the set of linear
homeomorphism from E onto itself such that |gξ|0 = |ξ|0, ξ ∈ E.

Recall from [9, §5.4] that Ξ ∈ L((E), (E)∗) is rotation-invariant if and only if

Ξ̂(ξ, η) = Ξ̂(gξ, gη), ξ, η ∈ EC, g ∈ O(E;H),

and that F ∈ (E⊗n
C )∗ is rotation-invariant if and only if

〈F, ξ1 ⊗ · · · ⊗ ξn〉 = 〈F, gξ1 ⊗ · · · ⊗ gξn〉, ξ1, · · · , ξn ∈ EC, g ∈ O(E;H).

We note that ∆G and N are rotation-invariant.

Theorem 5.1. Let Ξ ∈ L((E), (E)). Then the following are equivalent:
(i) Ξ is a constant multiple of γ∆G +N .

(ii) Ξ is a first order γ-differential operator with coefficient kΦ0 for some k ∈ C,
where Φ0 is given as in Example 4.6, (2).

(iii) Ξ is a rotation-invariant γ-derivation.

In order to prove Theorem 5.1, we need the following lemma, which can be
proved by Theorem 5.5.4 in [9].

Lemma 5.2. Let F be a non-zero rotation-invariant element in E∗
C ⊗ E⊗̂n

C . Then
n must be 1, and F = kτ for some constant k ∈ C. Here τ ∈ E∗

C ⊗ EC is given by
〈τ, ξ ⊗ η〉 = 〈ξ, η〉, ξ, η ∈ EC.

Proof of Theorem 5.1. In view of Example 4.6 (2) and Definition 4.4, (i) is equiv-
alent to (ii). The proof of (i)⇒(iii) is clear from Proposition 4.8. To complete the
proof, we need to prove that (iii)⇒(ii).

Let Ξ ∈ L((E), (E)) be a rotation-invariant γ-derivation. Then by Theorems
4.9 and 4.5, there exists a Φ ∈ E∗

C ⊗ (E) such that Ξ is a first order γ-differential
operator with coefficient Φ. The rotation-invariance of Ξ implies

〈〈Φ, ξ ⊗ ϕγξ+η〉〉 = 〈〈Φ, gξ ⊗ ϕg(γξ+η)〉〉, ξ, η ∈ EC, g ∈ O(E;H),

or equivalently

〈〈Φ, ξ ⊗ ϕη〉〉 = 〈〈Φ, gξ ⊗ ϕgη〉〉, ξ, η ∈ EC, g ∈ O(E;H).



2376 DONG MYUNG CHUNG AND TAE SU CHUNG

In view of Proposition 6.3.1 in [9], there exists a unique sequence {Fn}, Fn ∈ E∗
C ⊗

E⊗̂n
C , such that

〈〈Φ, ξ ⊗ ϕη〉〉 =
∞∑

n=0

〈Fn, ξ ⊗ η⊗n〉, ξ, η ∈ EC.(5.10)

From this we have, for any ξ, η ∈ EC and g ∈ O(E;H),
∞∑

n=0

〈Fn, ξ ⊗ η⊗n〉tn =
∞∑

n=0

〈Fn, g
⊗(n+1)(ξ ⊗ η⊗n)〉tn, t ∈ C.

Hence for any n ≥ 0 we have

〈Fn, ξ ⊗ η⊗n〉 = 〈Fn, g
⊗(n+1)(ξ ⊗ η⊗n)〉, ξ, η ∈ EC, g ∈ O(E;H).

Since Fn ∈ E∗
C ⊗ E⊗̂n

C , Fn is rotation-invariant. But by Lemma 5.2, Fn = 0 for
n 6= 1 and F1 = kτ for some constant k ∈ C. Hence in view of Example 4.6 (2) and
(5.10), we have Φ = kΦ0.

Remark. (1) It is noteworthy that 1
γ (γ∆G +N) converges to ∆G (a second order

differential operator) in L((E), (E)) as γ →∞ (see [2]).
(2) For each γ ∈ C, the operator γ∆G +N corresponds a one-parameter trans-

formation group on E∗ (see [3]).
(3) Theorem 5.1 for the cases γ = 1 and γ = 0 is found in the recent paper [4].
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