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COMPLETELY CONTRACTIVE REPRESENTATIONS
FOR SOME DOUBLY GENERATED

ANTISYMMETRIC OPERATOR ALGEBRAS
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(Communicated by Palle E. T. Jorgensen)

Abstract. Contractive weak star continuous representations of the Fourier
binest algebra A (of Katavolos and Power) are shown to be completely con-
tractive. The proof depends on the approximation of A by semicrossed product
algebras A(D)×Z+ and on the complete contractivity of contractive represen-
tations of such algebras. The latter result is obtained by two applications of
the Sz.-Nagy–Foias lifting theorem. In the presence of an approximate identity
of compact operators it is shown that an automorphism of a general weakly
closed operator algebra is necessarily continuous for the weak star topology
and leaves invariant the subalgebra of compact operators. This fact and the
main result are used to show that isometric automorphisms of the Fourier
binest algebra are unitarily implemented.

Ando’s celebrated dilation theorem for pairs of commuting contractions implies
that a contractive representation of the bidisc algebra A(D) ⊗ A(D) is completely
contractive. Here A(D) is the usual algebra of functions which are analytic on the
open unit disc and continuous on the closed disc. In this note we point out why some
other doubly generated antisymmetric noncommutative operator algebras have this
property, and we raise some general questions.

The Fourier binest algebra A was introduced recently in Katavolos and Power
[5]. It may be defined directly as the algebra of operators A on L2(R) for which

AL2(t,∞) ⊆ L2(t,∞) and AeitxH2(R) ⊆ eitxH2(R)

for each t, −∞ < t < ∞. Here H2(R) is the Hardy space on the line corresponding
to analytic functions in the upper half plane and L2(t,∞) is the subspace of func-
tions vanishing on (−∞, t]. Clearly A is the intersection of the two nest algebras
corresponding to the Volterra nest Nv, consisting of the subspaces L2(t,∞), and to
the analytic nest Na comprising the subspaces eitxH2(R). Amongst the interesting
properties of A is the fact that it is the closure in the weak operator topology of
the Hilbert-Schmidt pseudo-differential operators Op(a) of the form

(Op(a)f)(x) =
1√
2π

∫ ∞

−∞
a(x, y)e−ixy f̃(y) dy,

Received by the editors December 18, 1995 and, in revised form, February 22, 1996, March 4,
1996, and January 21, 1997.

1991 Mathematics Subject Classification. Primary 46K50.
Partially supported by a NATO Collaborative Research Grant.

c©1998 American Mathematical Society

2355



2356 S. C. POWER

where a(x, y) is bianalytic in the sense that a(x, y) belongs to the Hilbert space
H2(R)⊗H2(R). Here f̃ = F ∗f , where F is the usual Fourier transform unitary on
L2(R).

We recall some terminology. A contractive representation ρ : B → L(H), with H
a separable Hilbert space, is completely contractive if the induced representations
Mn(B) → Mn(L(H)) of the spatially normed algebras Mn(B) are contractive for
each n. Complete contractivity is often demonstrated (as here) by the construction
of a dilation π for ρ, this being a star representation π : C∗(B) → L(K), where
K ⊇ H and ρ(B) = PHπ(B)|H for all B in B.

Theorem 1. Let ρ be a σ-weakly continuous contractive representation of A on
H. Then ρ is completely contractive. Furthermore, there is a σ-weakly continuous
representation π : L(L2(R)) → L(K), with K ⊇ H, such that ρ(A) = PHπ(A)|H for
all A in A.

As in the case of nest algebras [9], as well as tensor products of nest algebras [8],
the proof of the theorem is based upon approximation of A by simpler algebras.
However A contains no finite-rank operators and, furthermore, is antisymmetric in
the sense that A ∩ A∗ = CI. Consequently the semidiscreteness methods of [1],
[8] and [9] are not available. However, we can approximate A by doubly generated
subalgebras An whose generators un, vn satisfy the commutation relations

unvn = ein−2
vnun.

The complete contractivity of contractive representations of the algebras An will be
obtained by two applications of the Sz.-Nagy–Foias lifting theorem, an equivalent
form of Ando’s theorem, together with some elementary intertwining constructions.
The result appears to be one of a range of covariant versions of Ando’s theorem
which, to the author’s knowledge, have not yet been investigated. In this direc-
tion we also give the following more general result for semicrossed products of the
disc algebra, another family of doubly generated antisymmetric noncommutative
operator algebras.

Theorem 2. Let A(D)×α Z+ be the semicrossed product algebra associated with a
biholomorphic automorphism α of D. Then every contractive Hilbert space repre-
sentation of A(D)×α Z+ is completely contractive.

It is well-known that contractive representations of the semicrossed product al-
gebras C(X) ×α Z+ are completely contractive. See, for example, McAsey and
Muhly [7]. However, the analytic semicrossed products of Theorem 2, which were
considered recently in [4] in a different context, have a bianalytic character (they
are generated by two isometries) and this requires the subtler techniques of com-
mutant lifting, and additional arguments. There are commutant lifting theorems
associated with the algebras C(X) ×α Z+ (see [6]) which are similar in spirit to
Theorem 2 and its proof, but this context is also different.

Proof of Theorem 1. First we show that a pair of contractions satisfying the rota-
tion commutation relations can be lifted to a joint unitary power dilation. This
is achieved with four successive dilations, starting with two applications of the
Sz.-Nagy–Foias lifting theorem.

Let λ be a unimodular complex number and let U, V be contraction operators
on the Hilbert space H satisfying the commutation relations UV = λV U . Let V1
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be an isometric operator on K ⊇ H which is a (power) dilation of V , so that λV1

is an isometric dilation of λV . By the intertwining form of the Sz.-Nagy–Foias
lifting theorem there is a contractive (power) dilation U1 of U on the space K with
U1V1 = (λV1)U1. The isometric dilation of V ∗1 is unitary, and so we may repeat the
dilation process above for the equation U∗1 (λV1)∗ = V ∗1 U∗1 to obtain for the unitary
dilation V2 of V1, acting on G ⊇ K and a contractive power dilation U2 of U1 with
U2V2 = λV2U2. At this point we could observe that V2 and U2 provide a contractive
representation of C(X) ×λ Z+ and appeal to [7]. However, the argument may be
completed in the following elementary fashion.

Consider now the standard isometric dilation U3 of U2 on the Hilbert space G̃ =
G⊕G⊕ . . . given by U3(g1, g2, . . . ) = (U2g1, D2g1, g2, . . . ) where D2 = (I−U∗2 U2)

1
2 .

Since V2 is a unitary operator, V ∗2 U2V2 = λU2. Let V3 be the block diagonal
operator on G̃ given by

V3(g1, g2, g3, . . . ) = (V2g1, λ̄V2q2, λ̄2V2g3, . . . ).

Note that V ∗2 D2V2 = D2, from which it follows that V ∗3 U3V3 = λU3. Repeat the
same trick, with the isometric (and hence unitary) dilation of U∗3 , for the equation
U∗3 V ∗3 = λV ∗3 U∗3 to obtain, finally, unitary dilations U4, V4 of U, V acting on a
Hilbert space R ⊇ H satisfying the relation U4V4 = λV4U4.

In fact the dilation operators satisfy the stronger property of being a joint power
dilation in the sense that, for n, m ≥ 0,

UnV m = PHUn
4 V m

4 |H
where PH is the canonical projection onto H. Indeed, this is known to be a feature
of the construction of the Sz.-Nagy–Foias lifting theorem, and can be also seen to
hold for the constructions of U3, V3 and U4, V4.

We have now obtained the following special case of Theorem 2. The last part
follows from standard arguments with Arveson’s dilation theorem for completely
contractive maps.

Theorem 3. Let λ ∈ C be unimodular and let Aλ be the non-self-adjoint closed
subalgebra of the rotation C*-algebra C(∂D) ×λ Z generated by the canonical C*-
algebra generators. If ρ : Aλ → L(H) is a contractive representation, then ρ is
completely contractive and there exists a *-dilation π : C(∂D) ×λ Z → L(R) such
that ρ(a) = PHπ(a)|H for all a in Aλ.

Continuing with the proof of Theorem 1, let An be the subalgebra of the Fourier
binest algebra generated by the multiplication operator Mφn , where φn(x) = eix/n,
and the translation operator D1/n with (D1/nf)(x) = f(x−n−1). Then MφnD1/n =
λnD1/nMϕn , where λn = ein−2

, and so An is completely isometrically isomorphic
to the rotation algebra Aλn .

In [5] it was shown that the Hilbert–Schmidt operators of the Fourier binest
algebra were precisely those of the form Op(a) where a ∈ H2(R) ⊗ H2(R). From
this it follows that A is the weak star closed operator algebra generated by the
operators Mα, Dβ for α ≥ 0, β ≥ 0. To see this observe first that

w∗-span{MαDβ : α, β ≥ 0} ⊇ w∗-span{MhDk : h, k ∈ H∞ ∩H2}
= w∗-span{Op(a) : a(x, y) = h(x)k(y), h, k ∈ H2}
= w∗-span{A ∩ C2}.
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Furthermore, A ∩ C2 contains the weak star topology approximate identity (Xn),
where Xn is the Hilbert Schmidt operator

Xn = M ni
x+ni

D ni
y+ni

,

and so any operator Z in A is the weak star limit of the sequence ZXn.
It now follows that A is the weak star closed union of the subalgebrasA1,A2, . . . .

The representation ρ is completely contractive on this union. Thus, by weak star
continuity and weak star density, ρ is completely contractive on A. This latter
verification is elementary.

Proof of Theorem 2. Let z be the generator of A(D) and u ∈ A(D) ×α Z+ the
canonical unitary, so that zu = uα(z), and let ρ : A(D) ×α Z → L(Hρ) be a
contractive representation with T = ρ(z), U = ρ(u). Let T1 be the unitary dilation
of the contraction T on H ⊇ Hρ, so that α(T1) is the unitary dilation of α(T ). By
the Sz.-Nagy–Foias lifting theorem (applied twice) there is a dilation U1 of U on H
such that T1U1 = U1α(T1) and the associated representation σ : A(D)×αZ → L(H)
is a dilation of the representation ρ. Since T1 is unitary, the representation σ extends
to a representation σ̃ : C(∂D) ×α Z+ → L(H) with σ̃(u) a contraction. By [7] σ̃ is
completely contractive, and so ρ is completely contractive.

Remarks. Note that since H∞ is singly generated as a weakly closed operator al-
gebra, it follows from the density assertions above that the Fourier binest algebra
is doubly generated. Indeed, it is the weakly closed operator algebra generated by
the pair {Mf , Dg}, where f and g are generators of H∞.

By the main result of Paulsen and Power in [8], a contractive weak star con-
tinuous representation of the tensor product of two commuting nest algebras is
completely contractive. Such a tensor product can be viewed as the intersection
of two nest algebras, and so, in view of Theorem 1 above, it is natural to ask
the following general question. What hypotheses ensure that the intersection of
two nest algebras has the property that (weak star) contractive representations are
completely contractive? Certainly some assumptions are needed, as the following
finite-dimensional example shows.

Let A ⊆ M6 be the algebra of matrices of the form

A =
[

D1 B
0 D2

]
,

where D1, D2 are diagonal matrices in M3(C) and B ∈ M3(C). It is straightforward
to express A as the intersection of two nest algebras. Nevertheless, it is shown
in Davidson, Paulsen and Power [1] that not all contractive representations are
completely contractive.

Automorphisms of the Fourier binest algebra

In [5] we obtained a detailed characterisation of the unitary automorphisms of
the Fourier binest algebra A. (In fact this group is a Lie group generated by shift
automorphisms, Fourier shift automorphisms and dilation automorphisms.) We
now point out how Theorem 1 above can be used in showing that the unitary
automorphisms are precisely the isometric automorphisms of A. By Theorem 4
below, which may be of independent interest, it is enough to show that the weak
star continuous isometric automorphisms are unitarily implemented.
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By Theorem 1 an isometric weak star continuous automorphism α : A → A
is completely contractive and so induces a completely positive bijection α̃ : A +
A∗ → A + A∗. By the universal properties of C∗-envelopes this bijection has a
unique extension to a C∗-algebra automorphism of the C∗-envelope. However, the
C∗-envelope is a quotient of C∗(A) (see [3]), and C∗(A) is equal to the algebra
L(L2(R)), and so it follows that the C∗-envelope must be L(L2(R)) itself. Thus
the extension and the original automorphism are unitarily implemented.

Theorem 4. Let A be a weakly closed operator algebra containing a bounded se-
quence of compact operators which converges to the identity in the strong operator
topology. If α is a continuous automorphism of A, then α maps compact operators
to compact operators and is continuous in the weak star topology.

Proof. Let {Kn} be the given sequence of compact operators and let K be an
arbitrary compact operator in A. The set K(ball(A))K is precompact, since K is
compact, and so, by the continuity of α and the open mapping theorem, the set
α(K)(ball(α(A)))α(K) is also precompact. Thus the sequence α(K)(I −Kn)α(K)
has a norm-convergent subsequence. The limit is necessarily zero, since I − Kn

tends to zero weakly, and so α(K)2 is a compact operator.
Now, if T is a compact operator in A, then TK2

n − T → 0 in norm, and so
α(T )α(Kn)2 − α(T ) → 0 in norm. Thus α(T ) is compact. Since α preserves the
compact subalgebra, we can now argue as in [2]. Suppose that {Tγ} is a bounded
net in A which converges to T in the weak star topology. Then KnTγKn → KnTKn

in norm for each n. Thus α(Kn)α(Tγ)α(Kn) → α(Kn)α(T )α(Kn) in norm for each
n. Therefore Tγ → T in the weak operator topology, and hence weak star, by the
boundedness of {Tγ}. Thus α is weak star continuous on the unit ball of A and
hence, by the Krein-Smulyan theorem, is weak star continuous.
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