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A ZFC DOWKER SPACE IN ℵω+1: AN APPLICATION
OF PCF THEORY TO TOPOLOGY

MENACHEM KOJMAN AND SAHARON SHELAH

(Communicated by Franklin D. Tall)

Abstract. The existence of a Dowker space of cardinality ℵω+1 and weight
ℵω+1 is proved in ZFC using pcf theory.

1. Introduction

A Dowker space is a normal Hausdorff topological space whose product with the
unit interval is not normal. The problem of existence of such spaces was raised
by C. H. Dowker in 1951. C. H. Dowker characterized Dowker spaces as normal
Hausdorff and not countably paracompact [4].

Exactly two Dowker spaces were constructed in ZFC prior to the construction
of the space below. The existence of a Dowker space in ZFC was first proved by
M. E. Rudin in 1971 [6], and her space was the only known Dowker space in ZFC for
over two decades. Rudin’s space is a subspace of

∏
n≥1(ℵn +1) and has cardinality

ℵℵ0
ω . The problem of finding a Dowker space of smaller cardinality in ZFC was

referred to as the “small Dowker space problem”.
Z. T. Balogh constructed [1] a Dowker space in ZFC whose cardinality is 2ℵ0 .

Another, screenable, Dowker space of size 2ℵ0 was constructed by Balogh recently
[2].

While both Rudin’s and Balogh’s spaces are constructed in ZFC, their respective
cardinalities are not decided in ZFC, as is well known by the independence results
of P. Cohen: both 2ℵ0 and ℵℵ0

ω have no bound in ZFC (and may be equal to each
other).

The problem of which is the first ℵα in which ZFC proves the existence of a
Dowker space remains thus unanswered by Rudin’s and Balogh’s results.

In this paper we prove that there is a Dowker space of cardinality ℵω+1. A
non-exponential bound is thus provided for the cardinality of the smallest ZFC
Dowker space. We do this by exhibiting a Dowker subspace of Rudin’s space of that
cardinality. Our construction avoids the exponent which appears in the cardinality
of Rudin’s space by working with only a fraction of ℵℵ0

ω . It remains open whether
ℵω+1 is the first cardinal at which there is a ZFC Dowker space.
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We shall describe shortly the cardinal arithmetic developments which enable this
result. The next three paragraphs are not necessary for understanding the proofs
in this paper.

In the last decade there has been a considerable advance in the understanding
of the infinite exponents of singular cardinals, in particular the exponent ℵℵ0

ω . This
exponent is the product of two factors: 2ℵ0 × cf〈[ℵω]ℵ0 ,⊆〉. The second factor, the
cofinality of the partial ordering of inclusion over all countable subsets of ℵω, is the
least number of countable subsets of ℵω needed to cover every countable subset of
ℵω; the first factor is the number of subsets of a single countable set. Since ℵℵ0

ω is
the number of countable subsets of ℵω, the equality ℵω = 2ℵ0 × cf〈[ℵω]ℵ0〉 is clear.

While for 2ℵ0 it is consistent with ZFC to equal any cardinal of uncountable
cofinality, the second author’s work on Cardinal Arithmetic provides a ZFC bound
of ℵω4 on the factor cf〈[ℵω]ℵ0 ,⊆〉.

This is done by approximating cf〈[ℵω]ℵ0 ,⊆〉 by an interval of regular cardinals,
whose first element is ℵω+1 and whose last element is cf〈[ℵω]ℵ0 ,⊆〉, and so that
every regular cardinal λ in this interval is the true cofinality of a reduced product∏

Bλ/J<λ of a set Bλ ⊆ {ℵn : n < ω} modulo an ideal J<λ over ω. The theory
of reduced products of small sets of regular cardinals, known now as pcf theory1, is
used to put a bound of ω4 on the length of this interval.

Back to topology now, it turns out that the pcf approximations to ℵℵ0
ω are

concrete enough to “commute” with Rudin’s construction of a Dowker space. Rudin
defines a topology on a subspace of the functions space

∏
n>1(ℵn + 1). What is

gotten by restricting Rudin’s definition to the first approximation of ℵℵ0
ω is a closed

and cofinal Dowker subspace X of the Rudin space XR of cardinality ℵω+1. The
fact that X is Dowker follows, actually, from its closure and cofinality in XR.

Hardly any background is needed to state the pcf theorem we are using here.
However, an interested reader can find presentations of pcf theory in either [3], the
second author’s [8] or the first author’s [5]. The pcf theorem used here is covered
in detail in each of those three sources.

2. Notation and pcf

In this section we present a few simple definitions needed to state the pcf theorem
used in proving the existence of an ℵω+1-Dowker space.

Suppose B ⊆ ω is a subset of the natural numbers.

Definition 1. 1.
∏

n∈B ℵn = {f : domf = B ∧ f(n) < ℵn for n ∈ B}.
2.

∏
n∈B(ℵn + 1) = {f : domf = B ∧ f(n) ≤ ℵn for n ∈ B}.

3. For f, g ∈ ∏
n∈B(ℵn + 1) let:

(a) f < g iff ∀n ∈ B [f(n) < g(n)],
(b) f ≤ g iff ∀n ∈ B [f(n) ≤ g(n)],
(c) f ≤∗ g iff {n : f(n) > g(n)} is finite,
(d) f <∗ g iff {n : f(n) ≥ g(n)} is finite,
(e) f =∗ g iff {n : f(n) 6= g(n)} is finite.

4. A sequence 〈fα : α < λ〉 of functions in
∏

n∈B ℵn is increasing in < (≤, <∗,≤∗)
iff α < β < λ ⇒ fα < fβ (fα ≤ fβ, fα <∗ fβ, fα ≤∗ fβ).

5. g ∈ ∏
n∈B(ℵn + 1) is an upper bound of {fα : α < δ} ⊆ ∏

n∈B ℵn if and only
if fα ≤∗ g for all α < δ.

1pcf means possible cofinalities.
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6. g ∈ ∏
n∈B(ℵn + 1) is a least upper bound of {fα : α < δ} ⊆ ∏

n∈B ℵn if and
only if g is an upper bound of {fα : α < δ} ⊆ ∏

n∈B ℵn, and if g′ is an upper
bound of {fα : α < δ}, then g ≤∗ g.

Theorem 1 (Shelah). There is a set B = Bℵω+1 ⊆ ω and a sequence f = 〈fα :
α < ℵω+1〉 of functions in

∏
n∈B ℵn such that:

• f is increasing in <∗,
• f is cofinal: for every f ∈ ∏

n∈B ℵn there is an α < ℵω+1 so that f <∗ fα.

A sequence as in the theorem above will be referred to as an “ℵω+1-scale”.
By Theorem 1 we can find B ⊆ ω and an ℵω+1-scale g = 〈gα : α < ℵω+1〉 in∏

n∈B ℵn. The set B is clearly infinite. Restricting every gα ∈ g to a fixed co-finite
set of coordinates does not matter, so we assume without loss of generality that
0, 1 /∈ B. For notational simplicity we pretend that B = ω − {0, 1}; if this is not
the case, we need to replace ℵn in what follows by the n-th element of B. We sum
up our assumptions in the following:

Claim 2. We can assume without loss of generality that there is an ℵω+1-scale
g = 〈gα : α < ℵω+1〉 in

∏
n>1 ℵn.

Claim 3. There is an ℵω+1-scale f = 〈fα : α < ℵω+1〉 in
∏

n>1 ℵn so that for every
δ < ℵω+1, if cfδ > ℵ0 and a least upper bound of f�δ exists, then fδ is a least upper
bound of f�δ.
Proof. Fix an ℵω+1-scale g = 〈gα : α < ℵω+1〉 in

∏
n>1 ℵn as guaranteed by Claim

2. Define fα by induction on α < ℵω+1 as follows: If α is a successor or limit of
countable cofinality, let fα be gβ for the first β ∈ (α,ℵω+1) for which gβ >∗ fγ for
all γ < α. If cfα > ℵ0, then let gα be a least upper bound to f�δ := 〈fβ : β < α〉,
if such least upper bound exists; else, define fα as in the previous cases.

The sequence f = 〈fα : α < ℵω+1〉 is increasing cofinal in
∏

n>1 ℵn and by its
definition satisfies the required condition.

Claim 4. Suppose 0 < m ≤ k < ω. Let 〈α(ζ) : ζ < ℵm〉 be strictly increasing with
sup{α(ζ) : ζ < ℵm} = δ < ℵω+1. If 〈gζ : ζ < ℵm〉 is a sequence of functions in∏

n>k ℵn which is increasing in <, and gζ =∗ fα(ζ) for every ζ < ℵm, then:

• g := sup{gζ : ζ < ℵm} ∈
∏

n>k ℵn is a least upper bound of f�δ,
• cfg(n) = ℵm for all n > k,
• g =∗ fδ.

Proof. Let g := sup{gζ : ζ < ℵm}. Since 〈gζ : ζ < ℵm〉 is increasing in <,
necessarily cfg(n) = ℵm for all n ≥ k, and since g(n) ≤ ℵn, it follows that g(n) < ℵn

for n > k and therefore g ∈ ∏
n>k ℵn.

Suppose that γ < δ is arbitrary. There exists ζ < ℵm such that γ < α(ζ), hence
fγ <∗ fα(ζ) =∗ gζ ≤ g. Thus g is an upper bound of f�δ.

To show that g is a least upper bound suppose that g′ is an upper bound of
f�δ. Let X := {n > k : g′(n) < g(n)}. For every n ∈ X find ζ(n) < ℵm such
that gζ(n)(n) > g′(n). Such ζ(n) can be found because g = sup{gζ : ζ < ℵm}.
Let ζ∗ := sup{ζ(n) : n > 1}. Since ℵm > ℵ0, ζ∗ < ℵm. Since 〈gζ : ζ < ℵm〉 is
increasing in <, it holds that fζ(∗) ≥ fζ(n)(n) > g′(n) for every n ∈ X . But g′ is
an upper bound of f�δ, so fζ(∗) ≤∗ g′ and X is therefore finite.

By the definition of f we conclude that fδ is a least upper bound of f�δ. Since
both g and fδ are least upper bounds of f�δ, it follows that g =∗ fδ.
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3. The space

Definition 5. Let XR = {h ∈ ∏
n>1(ℵn + 1) : ∃m ∀n [ℵ0 < cfh(n) < ℵm]}.

The space XR is the Rudin space from [6] with the Hausdorff topology defined
by letting, for every f < g in

∏
n>1(ℵn + 1),

(f, g] := {h ∈ XR : f < h ≤ g}(1)

be a basic open set (see [6]).
Recall that a normal Hausdorff space is countably paracompact iff for every de-

creasing sequence 〈Dn : n < ω〉 of closed sets that satisfies
⋂

Dn = ∅ there are open
sets Un ⊇ Dn with

⋂
Un = ∅.

Definition 6. Dn := {h ∈ XR : ∃m ≥ n
[
h(m) = ℵm

]}.
M. E. Rudin defined in [6] the closed subsets Dn ⊆ XR above and proved:

Theorem 2 (Rudin). 1. XR is collectionwise normal.
2. If Un ⊆ XR is open and Dn ⊆ Un for all n > 1, then

⋂
n>1 Un is not empty.

These two facts establish by [4] that XR is Dowker.
Let f = 〈fα : α < ℵω+1〉 be as provided by Claim 3. We use this scale to extract

a closed Dowker subspace of cardinality ℵω+1 from Rudin’s space.

Definition 7. X = {h ∈ XR : ∃α < ℵω+1 [h =∗ fα]}.
Since |{h ∈ XR : h =∗ fα}| = ℵω for every α < ℵω+1, it is obvious that

|X | = ℵω+1.
Since f is totally ordered by <∗, for every h ∈ X there exists a unique α < ℵω+1

such that h =∗ fα. Consequently, the space X is totally quasi-ordered by <∗,
namely the following trichotomy holds:

∀h, k ∈ X
[
h <∗ k ∨ k <∗ h ∨ h =∗ k

]
.(2)

Claim 4 translates to a property of X :

Claim 8. Suppose that 0 < m ≤ k < ω and that 〈hζ : ζ < ℵm〉 is a sequence
of elements of X such that 〈hζ�(k, ω) : ζ < ℵm〉 is increasing in <. Denote g =
sup{hζ : ζ < ℵm}. Then there is some h ∈ X such that h =∗ g.

Proof. For every ζ < ℵm there is a unique α(ζ) < ℵω+1 for which hζ =∗ fα(ζ).
Since 〈hζ : ζ < ℵm〉 is increasing in <∗, the sequence 〈α(ζ) : ζ < ℵm〉 is strictly
increasing. Let δ = sup{α(ζ) : ζ < ℵm}. By Claim 4, cfg(n) = ℵm for all n ∈ (k, ω)
and g =∗ fδ.

Let h ∈ ∏
n>1(ℵn + 1) be defined by h(n) = ℵn for n ≤ k and h(n) = g(n) for

n > k. Then h ∈ XR and h =∗ fδ. Thus h ∈ X and h =∗ g as required.

Claim 9. X is a closed subspace of XR.

Proof. Suppose t ∈ clX and t ∈ XR. For every h ∈ X let E(h, t) := {n > 1 :
h(n) = t(n)}.

Claim 10. If h ≤ t and h ∈ X , then E(h, t) is either finite or co-finite.
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Proof. Suppose to the contrary that h ≤ t, h ∈ X and |E(h, t)| = |ω−E(h, t)| = ℵ0.
Let, for n > 1,

f(n) =


0 if n ∈ E(h, t),

h(n) if n ∈ (ω − E(h, t)).

Clearly f < t. We argue that X ∩ (f, t] is empty, contrary to t ∈ clX . Indeed,
if k ∈ X and k(n) > h(n) for all n ∈ (w − E(h, t)), then k 6<∗ h ∧ k 6=∗ h
because w − E(h, t) is infinite and so h <∗ k by the trichotomy (2). Since E(h, t)
is infinite and {n > 1 : k(n) ≤ h(n)} is finite, there is an n ∈ E(h, t) such that
k(n) > h(n) = t(n) and therefore k /∈ (f, t].

We need a definition:

Definition 11. W := {w ⊆ ω : ∀f < t ∃h ∈ (f, t]
[
E(h, t) = w

]
}.

By Claim 10 if w ∈ W, then w is finite or w is co-finite.

Claim 12. W 6= ∅.
Proof. Assume that W is empty. This is equivalent, by Claim 10, to assuming that
every finite and every co-finite w ⊆ ω is not in W. For every finite or co-finite
w ⊆ ω fix a function fw < t such that h ∈ (fw, t] ∩X ⇒ E(h, t) 6= w. Let f be the
supremum of fw taken over all finite and co-finite w ⊆ ω. Since there are countably
many fw and cft(n) > ℵ0 for all n > 1 it follows that f < t. If h ≤ t is in X and
w = E(h, t), then h /∈ (fw, t] and hence h /∈ (f, t]. Thus (f, t] ∩X = ∅, contrary to
t ∈ clX .

Let us denote Mm = {n > 1 : cft(n) = ℵm}. Likewise, M<m =
⋃

1<i<m Mi.

Claim 13. If there exists h ∈ X for which E(h, t) is co-finite, then t ∈ X .

Proof. Clear.

Claim 14. There exists some h ∈ X for which E(h, t) is co-finite.

Proof. By Claim 10 it suffices to find h ∈ X with infinite E(h, t). Let m be the
least integer for which Mm is infinite. Such m must exist, since t ∈ XR.

Fix w ∈ W. If w is infinite, then we are done; so assume w is finite. Let
k = max{M<m, maxw}.

For every n ∈ Mm fix an increasing sequence 〈γn
ζ : α < ℵm〉 with supremum

t(n). By induction of ζ < ℵm find a sequence 〈hζ : ζ < ℵm〉 so that:
1. hζ ≤ t is in X and E(hζ , t) = w,
2. ξ < ζ < ℵm ⇒ hξ�(k, ω) < ghζ�(k, ω) < t�(k, ω),
3. hζ(n) ≥ γn

ζ for all n ∈ (k, ω) ∩Mm.
At stage ζ let f = sup{hξ�(k, ω) : ξ < ζ}. Since for every ξ < ζ it follows by

E(hξ, t) = w that hξ�(k, ω) < t�(k, ω), and since cft(n) ≥ ℵm for all n ∈ (k, ω), we
have f < t. By definition of w ∈ W we can find hζ ≤ t in X with E(hζ , t) = w
such that hζ�(k, ω) > f�(k, ω). Without loss of generality we can choose hζ so that
hζ(n) > γn

ζ for all n ≥ k in Mm.
By Claim 8 there is some h ∈ X with h(n) =∗ sup{hζ(n) : ζ < ℵm}. In

particular, h(n) = t(n) for all but finitely many n ≥ k in Mm. Since Mm is infinite,
E(h, t) is infinite, and we are done.
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Claim 15. X is collectionwise normal.

Proof. Clear from Claim 9 and Theorem 2.

We show next that X is not countably paracompact. Let DX
n = {f ∈ X :

∃m ≥ n [f(m) = ℵm]} for n > 1. It is straightforward that DX
n is closed and that⋂

n DX
n = ∅.

Claim 16. If Un ⊆ X is open, and DX
n ⊆ Un for all n > 1, then

⋂
Un is not empty.

The truth of the matter is that this follows trivially from the analogous property
in XR and the closedness of X : Suppose that DX

n ⊆ Un ⊆ XR and Un is open
for all n. The definition of Dn above is absolute between X and XR, so Vn :=
Un∪(XR−X) is open and contains Dn. Rudin’s proof in [6] shows that if Dn ⊆ Vn

and Vn is open for all n, then there is some f ∈ ∏
n>1 ℵn such that h ∈ ⋂

n Vn for
all h > f in XR. Since for every such f there is an h ∈ X with h > f , we see that⋂

Un ∩X is not empty.
For the sake of completeness, though (but not less, for the reader’s amusement)

we shall prove this property directly for X using elementary submodels.

Proof of Claim 16. Suppose that Un ⊇ DX
n is open for n > 1. We need to prove

that
⋂

n Un is not empty.
We shall prove that there is some f ∈ ∏

n>1 ℵn such that every h > f in X
belongs to this intersection.

It suffices to show that for each n > 1 there is some fn ∈ ∏
n>1 ℵn such that

∀h ∈ X
[
h > fn ⇒ h ∈ Un

]
, because then f = sup{fn : 1 < n < ω} is as required.

Suppose to the contrary that m > 1 is fixed and for every function f ∈ ∏
n>1 ℵn

there is some function hf > f in X−Um. Since hf /∈ Dm, it follows that hf (n) < ℵn

for all n ≥ m.
For a given f , let gf = sup{hf ′ : f ′ ∈ ∏

n>1 ℵn ∧ (m, ω) ⊆ E(f ′, f)}. Since
this supremum is taken over ℵm many functions hf ′ , it follows from the above that
gf(n) < ℵn for all n > m. Also, clearly gf (i) = ℵi for 1 < i ≤ m.

Let 〈Mζ : ζ ≤ ω1〉 be an elementary chain of submodels of H(θ) for large enough
regular θ so that:

• f , X and the functions f 7→ hf and f 7→ gf belong to M0,
• Mζ has cardinality ℵ1 and 〈Mξ : ξ < ζ〉 ∈ Mζ+1 for all ζ < ω1.
For every ζ let χζ(n) := sup(Mζ ∩ ℵn) for all n > 1. Since |Mζ | = ℵ1, it follows

that χζ(n) < ℵn for all n and hence χζ ∈
∏

n>1 ℵn.
Since χξ ∈ Mζ for ξ < ζ < ω1, by elementarity also hχξ

and gχξ
belong to Mζ

and consequently hχξ
, gχξ

< χζ .
Therefore, if ξ < ζ < ω1, then χξ < hχξ

< χζ < hχζ
< χω1 . Thus 〈hχζ

: ζ < ω1〉
is a sequence in X , increasing in < with supremum χω1 . By Claim 8, χω1 ∈ X .

Let χ′ be so that χ′(n) = χω1(n) for all n > m and χ′(i) = ℵi for 1 < i ≤ m. So
χ′ ∈ DX

m ⊆ Um and therefore (f, χ′] ⊆ Un for some f < χ′, as Um is open.
Find some ζ < ω1 such that f�(m, ω) < χζ�(m, ω). Let f ′ = f�(m + 1) ∪

χζ�(m, ω). By the definition of gχζ
we see that f ′ < hf ′ ≤ gχζ

≤ χ′ and, of course,
hf ′ /∈ Um. This contradicts hf ′ ∈ (f, χ′] ⊆ Um.

The space X defined in 7 is normal and not countably paracompact by Claim
15 and Claim 16 respectively, and is therefore Dowker by [4]. Since |X | = ℵω+1 we
have proved:
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Theorem 3. There is a ZFC Dowker space of cardinality ℵω+1.

It is straightforward to verify that the space X constructed above has weight
ℵω+1 and character ℵω.

Problem 17. Is ℵω+1 the first cardinal in which one can prove the existence of a
Dowker space in ZFC?
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