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THE FUGLEDE-PUTNAM THEOREM
AND A GENERALIZATION OF BARRÍA’S LEMMA
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(Communicated by Palle E. T. Jorgensen)

Abstract. Let A and B be bounded linear operators, and let C be a partial
isometry on a Hilbert space. Suppose that (1) CA = BC, (2) ‖A‖ ≥ ‖B‖, (3)

(C∗C)A = A(C∗C) and (4) C(‖A‖2 − AA∗)1/2 = 0. Then we have CA∗ =
B∗C.

Let H be a complex Hilbert space. An operator means a bounded linear operator
on H. The familiar Fuglede-Putnam theorem is stated as follows:

Theorem A (Fuglede-Putnam [3, Theorem IX.6.7]). If A and B are normal op-
erators on H and C is an operator such that CA = BC, then CA∗ = B∗C.

Several authors have relaxed the normality hypothesis on A and B in Theorem A
in various ways (for example, to hyponormality), still without restrictions on C, and
have reached the same conclusion. However, it appears that few have attempted
to place conditions on the operator C in order to remove the normality hypotheses
on A and B. In this note we wish to generalize the following lemma of Barŕıa from
this point of view.

Lemma B (Barŕıa [1, Lemma 2]). Assume that V ∗
1 V2 = V2V

∗
1 , where V1 and V2

are isometries. Then V1V2 = V2V1.

Now we state our result. The proof is elementary, depending on partially iso-
metric extensions of contractions.

Theorem. Let A and B be bounded linear operators, and let C be a partial isom-
etry. Suppose that

(1) CA = BC,
(2) ‖A‖ ≥ ‖B‖,
(3) (C∗C)A = A(C∗C) and
(4) C(‖A‖2 −AA∗)1/2 = 0.

Then we have CA∗ = B∗C.

Proof. We assume first that A, B and C are partial isometries. Then condition (4)
becomes C∗C ≤ AA∗. In particular, C∗C and AA∗ commute. It follows from [6,
Lemma 2] that CA = BC is a partial isometry. Therefore, B∗B and CC∗ commute
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by [6, Lemma 2] again. Then we have

B∗C = B∗CAA∗ = B∗BCA∗ = B∗BCC∗CA∗

= CC∗B∗BCA∗ = C(BC)∗(BC)A∗

= C(CA)∗(CA)A∗

= CA∗C∗CAA∗ = CC∗CA∗AA∗ = CA∗.

Thus the theorem is true for partial isometries A, B and C.
Now, let A, B and C satisfy the hypotheses of the theorem. Dividing by ‖A‖,

we may assume that ‖A‖ = 1 and ‖B‖ ≤ 1.
We define operator matrices Ã, B̃ and C̃ by

Ã =
[
A (1−AA∗)1/2

0 0

]
, B̃ =

[
B (1−BB∗)1/2

0 0

]
, C̃ =

[
C 0
0 0

]
.

Then Ã, B̃ and C̃ are partial isometries on H⊕H and satisfy

C̃∗C̃ =
[
C∗C 0

0 0

]
≤

[
I 0
0 0

]
= ÃÃ∗,

(C̃∗C̃)Ã =
[
(C∗C)A (C∗C)(1−AA∗)1/2

0 0

]
= Ã(C̃∗C̃),

and

C̃Ã =
[
CA C(1−AA∗)1/2

0 0

]
=

[
BC 0
0 0

]
= B̃C̃.

Therefore, by the first paragraph of the proof, we have C̃Ã∗ = B̃∗C̃. This implies
that CA∗ = B∗C.

Now we present an example which is not covered by the Fuglede-Putnam theorem
or an existing generalization of it.

Example. Let

A =


0 0 a1

0 0 a 0
0 0 a2

0 0 a

0 . . . . . . . . .

 , B =


0 0 a 0

0 0 b1

0 0 a
0 0 b2

0 . . . . . . . . .


and

C =


0 1 0 0

0 0 0
0 1 0

0 0 0

0 . . . . . . . . .

 ,

where {an} and {bn} are bounded sequences of complex numbers such that a =
supn |an| ≥ supn |bn|.

Then B is not M -hyponormal [7], indeed, in general it is not even a dominant [9]
or Y-class operator. (We point out that an operator T is said to be M -hyponormal if
there exists a constant M ≥ 1 such that (T−λ)(T−λ)∗ ≤ M2(T−λ)∗(T−λ) for any
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complex number λ. An operator T is said to be dominant if for any complex number
λ there exists a number Mλ ≥ 1 such that (T − λ)(T − λ)∗ ≤ M2

λ(T − λ)∗(T − λ).
For α > 0 an operator T is said to be in Yα if there exists a number Mα ≥ 1 such

that |T ∗T − TT ∗|α ≤ M2
α(T − λ)∗(T − λ) for any complex number λ. An operator

T is said to be in Y (or to be of Y-class) if T is in Yα for some α ≥ 1.)
Therefore, neither the Fuglede-Putnam theorem nor any existing generalizations

apply. However, since A, B and C satisfy the hypotheses of our theorem, we can
conclude that CA∗ = B∗C.

Remark 1. We cannot merely drop condition (3) in the Theorem. For example, let
U be the unilateral shift. Take A = B = U∗ and C = (U∗)2. Then A, B and C
satisfy (1), (2) and (4), but CA∗ 6= B∗C immediately.

Remark 2. We cannot merely drop condition (2) in the Theorem. For example,
put

A =


0 0 1

0 0 1 0
0 0 1

0 0 1

0 . . . . . . . . .

 , B =


0 1 1

0 0 1 0
0 0 1

0 0 1

0 . . . . . . . . .


and

C =


0 1 0

0 0 0 0
0 1 0

0 0 0

0 . . . . . . . . .

 .

Then A, B and C satisfy (1), (3) and (4), but CA∗ 6= B∗C.

Remark 3. We cannot merely drop condition (4) in the Theorem. For example,
put

A =


0 0 2

0 0 1 0
0 0 1

0 0 1

0 . . . . . . . . .

 , B =



0 0 1
0 0 0 1 0

1 0 0 1
0 0 0 1

0 0 0 1

0 . . . . . . . . .


and

C =


0 1 0 0

0 0 0
0 1 0

0 0 0

0 . . .
. . .

. . .

 .

Then A, B and C satisfy (1), (2) and (3), but CA∗ 6= B∗C.
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