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Abstract. Let G be a finite {p, q}-solvable group for different primes p and
q. Let P ∈ Sylp(G) and Q ∈ Sylq(G) be such that PQ = QP . We prove that
every χ ∈ Irr(G) of p′-degree has q′-degree if and only if NG(P ) ⊆ NG(Q)
and CQ′(P ) = 1.

1. Introduction

The main result we present is the equivalence of a local group theoretic condition
about Sylow normalizers of a finite group G and a global condition on the character
degrees of G, namely:

Theorem A. Let G be a finite {p, q}-solvable group for different primes p and q.
Let P ∈ Sylp(G) and Q ∈ Sylq(G) be such that PQ = QP . Then every χ ∈ Irr(G)
of p′-degree has q′-degree if and only if NG(P ) ⊆ NG(Q) and CQ′(P ) = 1.

Theorem A is no longer true if we remove the q-solvability assumption, even
though Hall {p, q}-subgroups exist in this case, and we will provide an example
below. The question does remain open if Theorem A is valid for q-solvable groups.
It is our impression that this is heavily related to the validity of McKay’s conjecture
and similar results.

We note that Theorem A can be applied to prove Ito’s Theorem for q-solvable
groups G that each χ ∈ Irr(G) has q′-degree if and only if G has a normal abelian
Sylow q-subgroup. Just choose a prime p not dividing |G|.

We later will discuss where Therorem A can and cannot be extended to sets of
primes, and apply such information to coprime automorphism groups.

This work was done while the second author was visiting the University of Va-
lencia. He would like to thank the Mathematics Department for its hospitality.

We also would like to thank M. Isaacs for helpful suggestions.

2. Preliminaries

Our techniques are reasonably elementary. We repeatedly use Glauberman’s
Lemma and some easy consequences of the Glauberman-Isaacs correspondence.
Chapter 13 of [Is] is a good reference for this material. We summarize most of what
is needed from this in the next lemma, which we will use often without reference. If
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A acts on G, we let IrrA(G) denote the set of those χ ∈ Irr(G) that are A-invariant.
We let Irrp′(G) denote the set of those χ ∈ Irr(G) of p′-degree, and similarly define
Irrπ′(G) for a set π of primes.

Lemma 1. Let G = KH and H∩K = L, where L, K / G and (|G/K|, |K/L|) = 1.
Set C/L = CK/L(H).

(a) If θ ∈ Irr(K) is H-invariant, then θL has an H-invariant irreducible con-
stituent, and C transitively permutes the H-invariant irreducible constituents of
θL.

(b) If φ ∈ Irr(L) is H-invariant, then φK has an H-invariant irreducible con-
tituent.

(c) If L = 1, there is a bijection ∗ : IrrH(K) → Irr(C) such that χ∗ is a con-
stituent of χC .

(d) If L = 1 and B ⊆ H, then IrrB(K) = IrrH(K) if and only if CK(B) = C.

Proof. Part (a) follows from Glauberman’s Lemma (Lemma (13.8) and Corollary
(13.9) of [Is]). Part (c) is a weak form of the Glauberman-Isaacs correspondence (see
discussion following Theorem (13.25) of [Is]), while part (b) is Theorem (13.31) of
[Is]. Finally, part (d) follows from part (c) and Glauberman’s lemma (specifically
Corollary (13.10) of [Is]) and a detailed proof of (d) is given in Lemma (2.2) of
[Na].

We now give Theorem A in the special case G = PQ. We will give it later in
Lemma 4, for when G has a normal {p, q}-complement.

Lemma 2. Suppose that G = PQ with P ∈ Sylp(G) and Q ∈ Sylq(G) for distinct
primes p and q. Then every irreducible character of G with p′-degree has q′-degree
if and only if Q / G and CQ′(P ) = 1.

Proof. The hypothesis about character degrees implies that p divides the degree
of every non-linear irreducible character of G, in which case Thompson’s Theorem
(Theorem (12.2) of [Is]) shows that G has a normal p-complement. Thus, for either
direction, we have that Q is normal in G, so that Q′ is also normal in G and G/Q
is a p-group. Note that if χ ∈ Irrp′(G), then χ restricts irreducibly to Q. Also,
each P -invariant irreducible character of Q lies under some irreducible character of
G of p′-degree (see Corollary 6.28 of [Is]). With use of Lemma 1(c), we have that
CQ′(P ) = 1 iff 1Q′ is the only P -invariant irreducible character of Q′.

Now, suppose that CQ′(P ) = 1 and let χ ∈ Irr(G) of p′-degree. Then θ = χQ ∈
Irr(Q) is P -invariant. By Lemma 1(a), there exists a P -invariant φ ∈ Irr(Q′) under
θ. Then φ = 1Q′ , and we deduce that θ is linear. Hence, q does not divide χ(1).

Assume now that every irreducible character of G of p′-degree has q′-degree.
If ξ ∈ IrrP (Q), we have that ξ extends to a p′-degree character of ξ̂ of G. By
hypothesis, q does not divide ξ̂(1) = ξ(1) and thus we deduce that ξ is linear, as
desired.

If π is a set of prime numbers, recall that property Dπ for a group G is that a Hall
π-subgroup H exists and that every π-subgroup of G is conjugate to a subgroup of
H .

Proposition 3. Assume that G satisfies Dπ and let H be a Hall π-subgroup. If P
is a Sylow p-subgroup of H, then NH(P ) is a Hall π-subgroup of NG(P ).



CHARACTER DEGREES OF π-SEPARABLE GROUPS 2601

Proof. Let q ∈ π and Q be a Sylow q-subgroup of NH(P ). Choose Q ⊆ Q1 ∈
Sylq(NG(P )) so that for some g ∈ G, we have (QP )g ⊆ (Q1P )g ⊆ H . Since P g is H-
conjugate to P , it is no loss to assume that g ∈ NG(P ). Then, Qg ⊆ Qg

1 ⊆ NH(P )
and so Q = Q1, proving the proposition.

Lemma 4. Suppose that G has a normal {p, q}-complement K, where p and q
are distinct primes. Let P ∈ Sylp(G) and Q ∈ Sylq(G) be such that PQ = QP .
Then every irreducible character of G with p′-degree has q′-degree if and only if
NG(P ) ⊆ NG(Q) and CQ′(P ) = 1.

Proof. Write H = PQ. Observe that if G satisfies the hypotheses on character
degrees, so does H = PQ ∼= G/K. Hence, to prove either direction, we may
assume by Lemma 2 (and our hypothesis) that P normalizes Q and CQ′(P ) = 1
or, equivalently, that every β ∈ Irr(H) of p′-degree has q′-degree.

Observe, by Proposition 3, that NG(P ) = NH(P )CK(P ) ⊆ HCK(P ) and
NG(Q) = HCK(Q). Thus NG(P ) ⊆ NG(Q) if and only if CK(P ) ⊆ CK(Q) if
and only if CK(P ) = CK(H) if and only if every P -invariant irreducible char-
acter of K is H-invariant, by Lemma 1(d). Hence, it suffices to show that each
χ ∈ Irrp′(G) has q′-degree if and only if every P -invariant irreducible character of
K is H-invariant.

Suppose first that every P -invariant irreducible character of K is H-invariant.
Let χ ∈ Irr(G) with p′-degree, and let θ ∈ Irr(K) be under χ. By the Clifford corre-
spondence, we have that the inertia group in G of θ has p′-index. Hence, replacing
θ by some G-conjugate, we may assume that θ is P -invariant. By hypothesis, we
have that θ is H-invariant, and thus there exists θ̂ ∈ Irr(G) such that θ̂K = θ by
Corollary (6.28) of [Is]. By Gallagher’s Theorem (Corollary (6.17) of [Is]), we have
that χ = βθ̂, for some β ∈ Irr(G/K). Now, β has p′-degree (because β(1) divides
χ(1)) and thus, by the first paragraph of the proof, we have that β has q′-degree.
Hence, χ has q′-degree, as desired.

Suppose now that every χ ∈ Irr(G) of p′-degree has q′-degree. We wish to show
that every θ ∈ IrrP (K) is H-invariant. If T = IG(θ), then we have that θ extends
to T . Let η ∈ Irr(T ) be an extension. By the Clifford correspondence, we have
that ηG ∈ Irr(G). Now, since P ⊆ T and η has p′-degree, it follows that ηG has
p′-degree. Hence, ηG has q′-degree, and it follows that T = G, as desired.

McKay conjectured that |Irr2′(G)| = |Irr2′(NG(P ))| whenever G is simple and P
is a Sylow 2-subgroup of G. Isaacs sugested this for all primes and at least solvable
groups, and proved this for groups of odd order in [Is 1]. This was extended to
solvable G in [Wo 1], then to p-solvable in [OW], and to sets of primes and even
Brauer characters in [Wo 2] (under appropriate separability conditions). We use the
McKay “conjecture” frequently in the proof of Theorem A, which is also Theorem
6. What we need from these results appears just below.

If L / G and φ ∈ Irr(L), we set

Irrπ′(G |φ) = Irrπ′(G) ∩ Irr(G |φ) .

Theorem 5. Suppose that L / G and that G/L is a π-separable group. Assume
that H/L is a Hall π-subgroup of G/L and φ ∈ Irr(L) is H-invariant. Then

| Irrπ′(G |φ)| = | Irrπ′(N |φ)|,
where N/L = NG/L(H/L).
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Proof. When π is a singleton {p}, this is proven as Theorem (15.10) of [MW] using
the methods of [OW]. The same argument works just as well for an arbitrary set
of primes. It is proven in its full generality in [Wo 2].

3. Main results

This is Theorem A of the Introduction.

Theorem 6. Suppose that G is π-separable, where π = {p, q} for distinct primes
p and q, and let PQ = QP with P ∈ Sylp(G) and Q ∈ Sylq(G). Then Irrp′(G) ⊆
Irrq′(G) if and only if NG(P ) ⊆ NG(Q) and CQ′(P ) = 1.

Proof. We argue by induction on |G|. Let M / G such that G/M is a π′-group.
First, we claim that NG(P ) ⊆ NG(Q) if and only if NM (P ) is contained in

NM (Q). To see this, assume that NM (P ) is contained in NM (Q). Let U = NG(Q).
Since P and Q are contained in M , the Frattini argument yields that G = MU
and G = MNG(P ). Also, because P ⊆ M ∩U by hypothesis, again by the Frattini
argument we have that U = (U ∩M)NU (P ). Thus, G = MNU (P ). Then

|G : NU (P )| = |M : M ∩NU (P )| = |M : NM (P )| = |G : NG(P )| .
So, NG(P ) = NU (P ) ⊆ NG(Q), as claimed.

Because G/M is a π′-group, we have that Irrp′(G) ⊆ Irrq′(G) if and only if
Irrp′(M) ⊆ Irrq′(M). Of course, PQ ⊆ M . If M < G, we employ induction and
the last paragraph to conclude that Irrp′(G) ⊆ Irrq′(G) iff NM (P ) ⊆ NM (Q) and
CQ′(P ) = 1 iff NG(P ) ⊆ NG(Q) and CQ′(P ) = 1. Thus we may assume that
Oπ′

(G) = G.
We now let K = Oπ(G) < G and L = Oπ′

(K). By Lemma 4, we may assume
that 1 < L < K. We let H/L = LPQ/L, a Hall π-subgroup of G/L, and note
that KH = G and K ∩ H = L. We set C/L = CK/L(H) = NK/L(H/L). Letting
N/L = NG/L(H/L), we have that HC = N and N ∩ K = C. Note that N < G,
because Oπ′

(G) = G.
We claim that we may assume that NG(P ) ⊆ N . If we assume the hypothesis

that NG(P ) ⊆ NG(Q), then NG(P ) ⊆ NG(LPQ) = NG(H) = N . To complete
the claim, we may assume that Irrp′(G) ⊆ Irrq′(G). Now we can apply Lemma 4
to G/L to conclude that NG/L(LP/L) ⊆ NG/L(LQ/L). Because NG/L(LP/L) =
LNG(P )/L, it follows that LNG(P ) normalizes (LP/L)(LQ/L) = H/L. Then
LNG(P ) ⊆ N , establishing the claim.

We also observe that C/L = CK/L(P ). One containment is trivial, as C/L
centralizes H/L. For the other, note that CK/L(P ) ⊆ NG/L(LP/L) ∩ K/L =
(LNG(P )/L) ∩K/L ⊆ N/L ∩K/L = C/L.

Let φ ∈ Irr(L) be H-invariant. In particular, φ is LP -invariant. Set

J/L = NG/L(LP/L) = LNG(P )/L ,

so that J ⊆ N by the previous paragraphs. Since G/L is p-solvable and π-solvable,
we apply Theorem 5 for the prime p and the set π to conclude that

|Irrp′(G |φ)| = |Irrp′(J |φ)| = |Irrp′(N |φ)|
and also

|Irrπ′(G |φ)| = |Irrπ′(N |φ)| .
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Trivially, Irrp′(G |φ) ⊆ Irrq′(G |φ) iff Irrp′(G |φ) ⊆ Irrπ′(G |φ). Thus

Irrp′(G |φ) ⊆ Irrq′(G |φ) iff Irrp′(N |φ) ⊆ Irrq′(N |φ) .

First suppose that NG(P ) ⊆ NG(Q) and CQ′(P ) = 1. Note that PQ ⊆ N and
that NN(P ) ⊆ NN (Q). Because N < G, the inductive hypothesis implies that
Irrp′(N) ⊆ Irrq′(N). Let χ ∈ Irrp′(G) and choose β ∈ Irrp′(N) a constituent of χN

(otherwise, p would divide χN(1) = χ(1)). Then (qp, β(1)) = 1. As H/L is the
normal Hall π-subgroup of N/L, every irreducible constituent of βL is H-invariant
and the last paragraph shows that (q, χ(1)) = 1. Thus Irrp′(G) ⊆ Irrq′(G).

Finally, assume that Irrp′(G) ⊆ Irrq′ (G). Let α ∈ Irrp′(N). Choose an LP -
invariant irreducible constituent δ of αL. Because δ is P -invariant and J ⊆ N ,
Theorem 5 yields that

|Irrp′(G | δ)| = |Irrp′(J | δ)| = |Irrp′(N | δ)| > 0,

and we choose µ ∈ Irrp′(G | δ). By assumption, µ(1) is q′ and thus µK ∈ Irr(K | δ).
Then K/L transitively permutes the irreducible constituents of µL. Because µ(1) is
π′ (or by Lemma 1(a)), observe that µL has an H-invariant irreducible constituent
γ, which of course is P -invariant. Because C/L = CK/L(H) = CK/L(P ), applying
Lemma 1(a) twice shows that δ is C-conjugate to γ and hence H-invariant. By
the next to last paragraph, Irrp′(N | δ) ⊆ Irrq′(N | δ) and so α(1) is q′. Hence,
Irrp′(N) ⊆ Irrq′(N). We apply induction to conclude that NN (P ) ⊆ NN(Q) and
CQ′(P ) = 1. Since NG(P ) ⊆ N , we have that NG(P ) ⊆ NG(Q), as desired.

We next discuss some related questions, including corollaries and extensions.
An obvious corollary is that if G is {p, q}-separable and satisfies the character
theoretic conditions in the above theorem, so does every subgroup containing a Hall
{p, q}-subgroup. The following is an immediate generalization of Ito’s Theorem for
q-solvable groups (just take (p, |G|) = 1).

Corollary 7. Suppose that G is π-separable, where π = {p, q} for distinct primes
p and q, and that H = PQ = QP with P ∈ Sylp(G) and Q ∈ Sylq(G). Then H
is abelian and NG(P ) = NG(Q) if and only if whenever p or q divides χ(1) with
χ ∈ Irr(G), then pq divides χ(1).

It is perhaps interesting to notice that, as a consequence of Corollary 7, the
condition PQ = QP is abelian with NG(P ) = NG(Q) can be determined from the
character degrees of G.

If p, q and r are distinct primes, there is a cyclic group PQ of order pq that acts
faithfully and irreducibly on an elementary abelian r-group R. Every non-linear
irreducible character of the (solvable) semi-direct product G has degree pq. So every
χ ∈ Irr(G) whose degree is coprime to pr has q′-degree. But NG(PR) = PR is not
contained in QP = NG(Q). This tells us that, at least in one direction, Theorem 6
and even Lemma 1 cannot be generalized by replacing p by a set of primes. What
fails, of course, is the appropriate generalization of Thompson’s Theorem (Corollary
(12.2) of [Is]), as demonstrated by the same example. But quite a bit does remain
valid if p and/or q are replaced by sets of primes. We state this in the next corollary,
whose proof, which we omit, can be obtained by mimicking the above proofs.

Corollary 8. Suppose that G is π-separable and ρ-separable for disjoint sets of
primes π and ρ, and let H = PQ = QP with P a Hall π-subgroup and Q a Hall
ρ-subgroup of G. Then:
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(a) If NG(P ) ⊆ NG(Q) and CQ′(P ) = 1, then every χ ∈ Irr(G) of π′-degree has
ρ′-degree.

(b) The converse of (a) holds if G has a normal π-complement or if |π| ≤ 1.

We now apply the above Corollary to give another proof of a result of Beltrán
and Navarro, i.e., Theorem D of [BN] about coprime actions, which in turn removed
the solvability hypothesis of Theorem A in [Na].

Corollary 9. Suppose that A acts coprimely on a ρ-separable group G, and choose
an A-invariant Hall ρ-subgroup K of G. Then every A-invariant irreducible char-
acter has ρ′-degree if and only if CG(A) ≤ NG(K) and CK′(A) = 1.

Proof. Such a K exists by Glauberman’s Lemma (Lemma (13.8) of [Is]). Let π be
the set of prime divisors of A, so that π and ρ are disjoint. We now apply Corollary 8
to GA, which has a normal π-complement G. Now CG(A) ≤ NG(K) and CK′(A) =
1 iff NGA(A) ≤ NGA(K) and CK′(A) = 1 iff every χ ∈ Irr(GA) of π′-degree has
ρ′-degree iff every θ ∈ IrrA(G) has ρ′-degree, because every χ ∈ Irr(GA) of π′-
degree must restrict irreducibly to an A-invariant irreducible character of G and
every A-invariant irreducible character of G extends to GA.

We do note that p-solvable groups and q-solvable groups do have a unique con-
jugacy class of Hall π-subgroups for π = {p, q}. We do not know whether Theorem
A extends to q-solvable groups; however, the next example exhibits a p-nilpotent
group G in which each χ ∈ Irrp′(G) has q′-degree. But while P ≤ NG(Q) for Sylow
p and Sylow q-subgroups P and Q, we do not have NG(P ) ⊆ NG(Q). So at least
one direction of Theorem 5 is not true for p-solvable groups. We thank A. Turull
for some discussion about PSL(2, 35).

Example 10. Let K =PSL(2, 35). Then K is simple of order 22 ·35 ·112 ·61 and the
degrees of its irreducible characters are 1, 242 = 2 · 112, 243 = 35, 244 = 4 · 61, and
122. Now K has an automorphism 〈a〉 of order 5 that fixes none of the characters
of degree 242. In addition, CK(a) is isomorphic to A4. If we let G be the semi-
direct product K〈a〉, then every χ ∈ Irr5′(G) has degree not divisible by 11, but the
Sylow theorems show that 4 does not divide the order of the normalizer of a Sylow
11-subgroup. So if P is the Sylow 5-subgroup 〈a〉 and Q ∈ Syl11(G) is P -invariant,
we do not have that NG(P ) ⊆ NG(Q).

Regarding the converse direction, the Atlas shows there are simple groups G
where every irreducible character of p′-degree also has q′-degree, but have no Hall
{p, q}-subgroups (e.g. M11 with p = 5 and q = 3) or which have two conjugacy
classes of Hall {p, q}-subgroups (e.g. PSL(2, 11) with p = 2 and q = 3). In this
latter case, NG(P ) is never contained in NG(Q) when PQ = QP . A generalization
of Theorem A in this direction would apparently require some condition on existence
and conjugacy of Hall {p, q}-subgroups.
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