
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 126, Number 9, September 1998, Pages 2557–2568
S 0002-9939(98)04533-X
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Abstract. Let K be a complete ultrametric algebraically closed field of char-
acteristic zero, and let M(K) be the field of meromorphic functions in K. For
all set S in K and for all f ∈M(K) we denote by E(f, S) the subset of K×N∗:⋃

a∈S{(z, q) ∈ K×N∗| z zero of order q of f(z) − a}. After studying unique
range sets for entire functions in K in a previous article, here we consider a
similar problem for meromorphic functions by showing, in particular, that, for
every n ≥ 5, there exist sets S of n elements in K such that, if f, g ∈ M(K)
have the same poles (counting multiplicities), and satisfy E(f, S) = E(g, S),
then f = g. We show how to construct such sets.

Introduction and theorems

Notation. K will denote a complete ultrametric algebraically closed field of char-
acteristic zero, and we denote by K̂ the one dimensional projective space over K:
K̂ = K ∪ {∞}.

Given a field L, L∗ will denote L \ {0}.
We denote by A(K) the ring of entire functions in K and by M(K) the field of

meromorphic functions in all K.
For a subset S of K and f ∈ M(K) we denote by E(f, S) the set in K×N∗:⋃

a∈S

{(z, q) ∈ K×N∗| z zero of order q of f(z)− a}.

Besides, given a subset of K̂ containing {∞}, we denote by E(f, S) the subset of
K×N∗ : E(f, S ∩K) ∪ {(z, q) |z pole of order q of f}.
Definition. Let F be a nonempty subset of M(K). A subset S of K̂ is called a
unique range set (a URS in short) for F if for any f, g ∈ F such that E(f, S) =
E(g, S), one has f = g.

In the same way, a couple of sets S, T in K̂ such that S∩T = ∅ will be called a bi-
URS for F if for any f, g ∈ F such that E(f, S) = E(g, S) and E(f, T ) = E(g, T ),
one has f = g.

Remark 1. If a set S is a URS for A(K) (resp. M(K)), then for every nonconstant
affine (resp. partial rational linear) function h, h(S) also is a URS for A(K) (resp.
for M(K)). In the same way, if a couple of sets (S, T ) is a bi-URS for A(K) (resp.
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M(K)), then for every nonconstant affine (resp. partial rational linear) function
h, the couple (h(S), h(T )) also is a bi-URS for A(K) (resp. M(K)).

In C, Yi Hongxun proved the existence of URS’s for A(K), with n elements, for
any n ≥ 15 [15].

On the other hand, in [1] Adams and Strauss showed that for every couple
(a, b) ∈ K2, if f, g ∈ A(K) satisfy f−1({a}) = g−1({a}) and f−1({b}) = g−1({b}),
then f = g. Actually, here, this shows that for every couple (a, b), ({a}, {b}) is a
bi-URS for entire functions.

Recently, in [17], Ping Li and Chung-Chun Yang showed that in C there exist
bi-URS’s for meromorphic functions of the form (S, {∞}), where S has 15 points,
and they found URS’s for meromorphic functions that only have 19 points. Next,
Mues and Reinders obtained URS’s for meromorphic functions of 13 points [16].
Finally, Frank and Reinders have obtained URS’s for meromorphic functions of
only 11 points [10].

Of course, a URS for entire functions must have at least 3 points, because given
2 points a, b, there does exist an affine function of the form f(x) = cx + d, with
c 6= 0, such that h(a) = b, h(b) = a, and therefore, putting S = {a, b}, it is seen
that for every entire function f , we have E(f, S) = E(h ◦ f, S).

In the same way, a URS for meromorphic functions must have at least 4 points,
because given 3 points a, b, c, there does exists a partial rational linear function h
that permutes the set S = {a, b, c} (in a nontrivial way) and therefore, for every
meromorphic function f , we have E(f, S) = E(h ◦ f, S).

In [4], we characterized the URS’s for polynomials, in any algebraically closed
field L, showing that they are the finite sets which are unpermutable by any affine
function other than the identity. Next, we proved that in p-adic analysis, there
exist URS’s of n elements, for A(K), for any n ≥ 3. Among sets of n = 3 points,
we proved that URS’s for A(K) are just URS’s for K[x]. This characterization of
URS for A(K) has just been generalized for all n ≥ 3 by W. Cherry and C.C. Yang
[6].

Here, using certain lemmas proven in [4], and other specific properties of analytic
elements [1], [9], [14], we will study bi-URS’s for M(K), of the form (S, {w}).

Notation. In the following four theorems, w denotes a point in K̂, and h denotes

the partial rational linear function defined as h(x) =
1
x

+ w if w is in K, and h =
identity if w = ∞.

Theorem 1. Let n,m ∈ N be relatively prime and such that n ≥ m + 2 and

m ≥ 5. Let a ∈ K∗ satisfy an 6= nn

mm(n−m)n−m
. Then the polynomial P (u) =

un − aum + 1 admits n distinct zeros z1, ..., zn, and the set S = h({z1, ..., zn}) is
such that (S, {w}) is a bi-URS for M(K).

Theorem 2. Let n,m ∈ N be relatively prime and satisfy n ≥ m + 2 and m ≥ 3.

Let a ∈ K∗ satisfy an 6= nn

mm(n−m)n−m
. Let P (u) = un − aum + 1, and assume

that for every n−m-th root ζ different from 1, of (−1)n−m, P − ζ has no zeros of
order superior or equal to 2. Then P admits n distinct zeros z1, ..., zn, and the set
S = h({z1, ..., zn}) is such that (S, {w}) is a bi-URS for M(K).
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Theorem 3. Let a ∈ K∗ satisfy a5 6= 3125
108 and a5 6= 3125

27 . Then the polynomial
P (u) = u5 − au3 + 1 admits 5 distinct zeros z1, z2, z3, z4, z5, and the set S =
h({z1, z2, z3, z4, z5}) is such that (S, {w}) is a bi-URS for M(K).

Theorem 4. Let a ∈ K∗ satisfy a6 6= 729
16 and a6 6= 729

4 . Then the polynomial
P (u) = u6 − au4 + 1 admits 6 distinct zeros z1, z2, z3, z4, z5, z6, and the set S =
h({z1, z2, z3, z4, z5, z6}) is such that (S, {w}) is a bi-URS for M(K).

Corollary. For every n ≥ 5 and for every w ∈ K̂, there exist bi-URS’s for M(K)
of the form ({z1, ..., zn}, {w}).
Remark 2. Taking into account the results obtained in [4] and [6], one may imagine
that there exist URS’s for M(K) with n points for any n ≥ 4, and a set of n
elements is a URS for M(K) if and only if it is unpermutable by any nonconstant
partial rational linear function other than the identity. In the same way, one can
think that there exist bi-URS’s for M(K) of the form ({z1, z2, z3}, {ω}), and that
a finite set (S, {ω}) is a bi-URS for M(K) if and only if S is unpermutable by any
nonconstant partial rational linear function (different from the identity), admitting
ω as a fixed point.

The proofs

Let a ∈ K, and r > 0. We will denote by C(a, r) the circle {x ∈ K| |x− a| = r},
by d(a, r) the disk {x ∈ K| |x−a| ≤ r}, and by d(a, r−) the disk {x ∈ K| |x−a| < r}.
Inside a circle C(a, r), we call a class of C(a, r) any disk d(b, r−), with b ∈ C(a, r).
Given s > r, we will denote by Γ(a, r, s) the annulus {x ∈ K| r < |x− a| < s}.
Notation. Let L be an algebraically closed field, let L[[X ]] be the ring of power
series with coefficients in L, and let L((X)) be its field of fractions.

Then every f(X) ∈ K((X)) \ {0} is of the form Xq(f)h(X), with q(f) ∈ Z and
h ∈ K[[X ]], satisfying h(0) 6= 0. Then the mapping ψ from K((x)) to Z ∪ {∞}
defined as ψ(f) = q(f) if f ∈ K((x)) \ {0} and ψ(0) = ∞ is known to be a discrete
ultrametric valuation.

Now, let f ∈M(K). Since M(K) is clearly included in K((X)), the restriction
of ψ to M(K) defines a discrete ultrametric valuation. Besides, for each α ∈ K,
we may write f ∈ M(K) in the form g(t) = f(α + t), and consider the valuation
ωα defined as ωα(f) = ψ(g).

Lemma 1 is quite elementary, and easily checked.

Lemma 1. Let L be an algebraically closed field of characteristic 0, let a ∈ L∗ and
let n,m ∈ N satisfy n > m > 1. Let P (u) = un − aum + 1 ∈ K[u], and let λ ∈ L.
If P − λ admits a zero θ of order q ≥ 2, then a and λ must satisfy

(E) an (m)m(n−m)n−m

nn
= (1− λ)n−m.

Further, if λ 6= 0, if P − λ admits a zero θ of order q ≥ 2, and if P − 1
λ

admits a

zero θ′ of order q′ ≥ 2, then λn−m = (−1)n−m.

Definitions. A set D is said to be infraconnected if for every a ∈ D, the mapping
Ia from D to R+ defined by Ia(x) = |x − a| has an image whose closure in R+

is an interval. (In other words, a set D is not infraconnected if and only if there
exist a and b ∈ D and an annulus Γ(a, r1, r2) with 0 < r1 < r2 < |a− b| such that
Γ(a, r1, r2) ∩D = ∅.)
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Given a closed bounded set D, the K-algebra of rational functions h ∈ K(x)
with no pole in D is provided with the norm of uniform convergence on D, denoted
by ‖ . ‖D. The completion of R(D) for this topology is a K-Banach algebra H(D)
whose elements are named the analytic elements in D [7], [9], [14]. Lemma 2 is
immediate.

Lemma 2. Let D be a closed bounded set, and let f ∈ M(K) have no pole in D.
Then f belongs to H(D).

We may extract the following lemma from classical results on continuous semi-
norms in K-Banach algebras H(D) [8], [9], [11].

Lemma 3. Let D be a closed bounded infraconnected set of diameter s > 0, let
a ∈ D, let r ∈]0, s], and let F be the filter admitting for base the family of sets D ∩
(Γ(a, l, r) ∪ Γ(a, r, l′)), with ` < r < `′. For every f ∈ H(D), |f(x)| admits a limit,
denoted by Dϕa,r(f), along the filter F , and the mapping Dϕa,r is a multiplicative
semi-norm on H(D) satisfying Dϕa,r(f) ≤ ‖f‖D. Furthermore, if D contains the

disk d(a, r−), then inside d(a, r−), f(x) is equal to a power series
∞∑

j=0

aj(x− a)j,

and satisfies Dϕa,r(f) = sup
j∈N

|aj |rj .

Notation. By Lemma 3 the mapping φr, defined in each K-algebra H(d(0, r)) as
φr(f) =d(0,r) ϕ0,r, is an absolute value on H(d(0, r)) which, in particular, applies
to all A(K), and therefore has continuation φ to the field M(K). For convenience,
for all f ∈M(K) we put |f |(r) = φr(f).

So, by Lemma 3 we have Corollary a:

Corollary a. For every r > 0 and every f ∈M(K), we have

|f |(r) = lim
|x|→r, |x|6=r

|f(x)|.

Lemma 4. For any f ∈M(K) and r > 0, one has |f ′|(r) ≤ 1
r
|f |(r).

Proof. If f belongs to A(K), this equality is classical ([9], Theorem 13.5). So, it is

easily generalized to M(K). Indeed, let h =
f

g
∈M(K). Clearly, we have

|h′|(r) ≤ max(
|f ′|(r)
|g|(r) ,

|f |(r)|g′|(r)
(|g|(r))2 ) ≤ max(

|f |(r)
r|g|(r) ,

|f |(r)|g|(r)
r(|g|(r))2 ) =

|h|(r)
r

.

Lemma 5. Let a ∈ K, let Λ = C(a, r) and let D contain Λ. Any element f ∈
H(D) has finitely many zeros in Λ and factorizes in the form f = Pg with P
the polynomial of the zeros of f in Λ and g an element of H(D) that has no
zero in Λ. Besides f satisfies |f(x)| ≤ Dϕa,r(f) ∀x ∈ C(a, r), and the equality
|f(x)| = Dϕa,r(f) holds in all the classes of C(a, r) that contain no zero of f .

Proof. Indeed, by Theorem 23.7 of [9], f has finitely many zeros in Λ and then
this factorization is given by Theorem 14.5 of [9]. Besides by Theorem 23.6 of [9]
we have |h(x)| = Dϕa,r(h) ∀x ∈ C(a, r), |P (x)| ≤ Dϕa,r(P ) ∀x ∈ C(a, r), and
by Lemma 4.6 of [9] we have |P (x)| = Dϕa,r(P ) for all x in any class of C(a, r)
containing no zeros of P , so the conclusion is clear.
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Corollary b. Let f ∈ M(K), and let (rct)t∈N be the sequence of radii of the circles
containing at least one zero or one pole of f , with rt < rt+1 ∀t ∈ N. For all t ∈ N,
(αj)1≤j≤νt denotes the set of zeros of f inside C(0, rt), and (βj)1≤j≤σt denotes
the set of poles of f inside C(0, rt). Let

D = K \
(⋃

t∈N

( νt⋃
j=1

d(αj , r
−
j )
)⋃( σt⋃

j=1

d(βj , r
−
j )
))
.

Then D is infraconnected and we have |f(x)| = |f |(|x|) ∀x ∈ D.

Proof. Indeed, for every r > 0, f obviously belongs to H(D ∩ d(0, r)).

Lemma 6. Let f, g ∈M(K) and s ∈ N∗ satisfy ωα(f) ≥ sωα(g) for every α ∈ K.
Then there exists h ∈ A(K) such that f = hgs.

Proof. Indeed, since each mapping ωα is a valuation on M(K), it is seen that
f

gs

has no pole, and therefore belongs to A(K).

Corollary c. Let f, g ∈ M(K) and s ∈ N∗ satisfy ωα(f) ≥ sωα(g) for every
α ∈ K. Then there exists T > 0 such that |f |(r) ≥ T

(|g|(r))s for all r ≥ 1.

Lemma 7. Let D be a nonbounded infraconnected set, let P (u) ∈ K[u] be a non-
constant monic polynomial and let f ∈ M(K) have no pole in D and satisfy

lim
|x|→∞,x∈D

P (f(x)) = 0. Then, there exists a zero θ of P such that lim|x|→∞,x∈D f(x)

= θ.

Proof. Let P (u) =
t∏

j=1

(u− aj)qj , with aj 6= al ∀j 6= l, and let n = deg(P ). For

every ε > 0, it is easily seen that if |P (u)| < εn, then there exists an index l ≤ t
such that |u−αl| < ε. Now, let σ = min

j 6=l
|aj − al|, and let ε ∈]0, σ[. There obviously

exists r > 0 such that |P (f(x))| < ε, ∀x ∈ D \ d(0, r). Let E = D \ d(0, r), and for
every s > r, let Es = E ∩ d(0, s). Then, by our first remark, we have

f(E) ⊂
t⋃

j=1

d(aj , ε).(1)

We notice that E is obviously infraconnected, and so is Es, for every s > r.
Therefore, since f ∈ H(Es), f(Es) is also infraconnected (Theorem 21.12 of [9])
for every s > r. Thus, f(E) is infraconnected as a union of an increasing family of
infraconnected sets ([9], Corollary 2.7). Now, let α ∈ E. By (1) there exists a zero
θ of P such that |f(α)− θ| ≤ ε.

We will show that f(E) ⊂ d(θ, ε). Let β ∈ E, let s = |α − β|, and suppose
|f(α)− f(β)| > ε. There exists another zero ζ of P such that |f(β)− ζ| ≤ ε, hence
we have ζ 6= θ, and therefore |θ − ζ| ≥ σ, hence |f(β) − f(α)| ≥ σ. But then, by
(1), we see that Γ(α, ε, σ) ∩ f(E) = ∅. Hence this contradicts the fact that f(E) is
infraconnected and this ends the proof.
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Lemma 8. Let S = {z1, ..., zn} be a set of order n in K, and let P (u) =
n∏

j=1

(u− zj).

Let f, g ∈ M(K) have the same poles (taking multiplicities into account) and sat-
isfy E(f, S) = E(g, S). Then, there exists a constant λ different from 0, such that
P (f(x)) = λP (g(x)) for all x ∈ K.

Proof. Let Σ = E(f, S), and let h(x) =
P (f(x))
P (g(x))

. Let α be a zero of P (f(x)), and

let q be its order of multiplicity. Let θ = f(α). Then θ obviously lies in S and
therefore (α, q) lies in E(f, S). In the same way, this is also true for g, hence (α, q)
lies in E(g, S). So, both P (f(x)) and P (g(x)) admit each point α ∈ Σ as a zero,
with the same order of multiplicity and they don’t have any other zero. Hence, the
only zeros (resp. poles) of h are the poles of P (g(x)) (resp. of P (f(x))). But since
f , g have the same poles, taking multiplicities into account, it is seen that P (g(x))
and P (f(x)) have the same poles taking multiplicities into account. Finally, h has
neither any zero nor any pole, and therefore is a constant λ obviously different from
zero.

By Corollary 1 in [4], we have Proposition M:

Proposition M. Let α ∈ K, and let P ∈ K[u] satisfy:

i) P (u) = c0 +
n∑

j=m

cju
j, with c0cmcn 6= 0, and m > 1,

ii) P ′ has no multiple zero different from 0.
Let f, g ∈ M(K) satisfy

iii) P (f) = λP (g) for some λ ∈ K \ {0, 1},
iv) ωα(g) > 0.

Then we have ωα(f) = 0, and mωα(g) is equal either to ωα(f − f(α)), or to
2ωα(f − f(α)). Besides, if mωα(g) = 2ωα(f − f(α)), then we have P ′(f(α)) = 0.

Notation. Let log be the real logarithm function of base p > 1. Given f ∈ M(K),
it will be convenient to use the valuation function v(f, µ), defined in R, as v(f, µ) =
− log(|f |(p−µ)). By classical results ([2], [9], [14]), it is well known that this function
is continuous and piecewise linear.

Let f ∈ M(K) satisfy f(0) 6= 0 and f(0) 6= ∞, and let f =
g

l
, with g, l ∈ A(K),

g, l having no common zeros, and satisfying l(0) = 1. In order to respect notations
used in Nevanlinna’s theory [3], for all µ ∈ R we denote by P (µ, f) the number
of poles of f in C(0, p−µ), taking multiplicities into account, and by P (µ, f) the
number of different poles of f in C(0, p−µ). Now, for all λ ∈ R, we put
M(λ, f) = max(−v(f, λ), 0),
N(λ, f) =

∑
µ≥λ

P (µ, f)(µ− λ),

N(λ, f) =
∑
µ≥λ

P (µ, f)(µ− λ),

T (λ, f) = M(λ, f) +N(λ, f).

Moreover, for all a ∈ K, we put Θ(a, f) = 1− lim sup
λ→−∞

N(λ, 1
f−a )

T (λ, f)
.

Lemma 9 is easily seen:
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Lemma 9. Let f =
g

l
∈M(K), with l(0) = 1. Then

T (λ, f) = −min(v(l, λ), v(g, λ)).

Let a ∈ K be different from 0, and let fa be the entire function whose zeros are of
order one, and are all different zeros of f − a, satisfying fa(0) = 1. Then we have

N(λ,
1

f − a
) = −v(fa, λ).

By Theorem I.9 of [3], we have :

Proposition N. Let f ∈ M(K) satisfy f(0) 6= 0 and f(0) 6= ∞. The set W of the
a ∈ K such that Θ(a, f) 6= 0 is countable, and satisfies
(N )

∑
a∈W

Θ(a, f) ≤ 2.

Now, thanks to Lemma 9, we will translate (N ) into terms of valuation. We put
again f =

g

l
, with g, l ∈ A(K), and l(0) = 1.

Let a ∈ K be different from 0, and let fa be the entire function whose zeros are
of order one, and are all the different zeros of f −a, satisfying fa(0) = 1. Therefore
we obtain:

(R) Θ(a, f) = 1− lim sup
λ→−∞

(
v(fa, λ)

min(v(l, λ), v(g, λ))

)
.

Lemma 10. Let q ∈ N∗, let α ∈ K and let f ∈ M(K) be such that f(0) 6= 0 and
f(0) 6= α, and such that every zero of f −α has order superior or equal to q. Then,

we have Θ(α, f) ≥ 1− 1
q
.

Proof. Let f =
g

l
, with g, l ∈ A(K), g, l having no common zeros, and l(0) = 1.

Let u = fα. Clearly g − αl is of the form uqh, with h ∈ A(K). Hence we have
qv(u, λ) = v(g − αl, λ)− v(h, λ). But of course,

v(g − αl, λ) ≥ min(v(g, λ), v(l, λ) + v(α)),

so we obtain: v(u, λ) ≥ 1
q

min(v(g, λ), v(l, λ) + v(α)) − v(h, λ). By hypothesis,

clearly, f is not a constant. Hence we can find ρ ∈ R+ such that min(v(g, ρ), v(l, ρ))
< 0, and then we have min(v(g, λ), v(l, λ)) < 0 ∀ λ < ρ. We put τ = −v(h, ρ), and
take λ > ρ. Then, as v(h, λ) ≤ v(h, ρ) we obtain

v(u, λ) ≥ 1
q

min(v(g, λ), v(l, λ) + v(α)) + τ,

and therefore
v(u, λ)

min(v(g, λ), v(l, λ))
≤ min(v(g, λ), v(l, λ) + v(α)) + τ

qmin(v(g, λ), v(l, λ))
.

Clearly, neither v(α) nor τ have any incidence on the superior limit when λ tends
to −∞. So, finally, we see that

lim sup
λ→−∞

v(u, λ)
min(v(g, λ), v(l, λ))

≤ 1
q
,

and then by (R), the conclusion is clear.
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Notation. Given q ∈ N∗, we denote by Gq the group of q-th roots of 1, and given
q, s ∈ N, we put Gq,s = (Gq ∪ Gs) \ (Gq ∩ Gs) (i.e.: the symmetric difference of
Gq and Gs).

Lemma 11. Let a ∈ K∗, and let n,m ∈ N with n > m. Let f, g ∈ M(K) be
nonconstant and satisfy f(x)n − af(x)m = g(x)n − ag(x)m for all x ∈ K. Let t be

the cardinal of Gn,m. If t(1− 1
n−m

) > 2, then we have f = g.

Proof. Let ζi (0 ≤ i ≤ m− 1) be the m-th roots of 1, and let ξj (0 ≤ j ≤ n− 1) be

the n-th roots of 1. Suppose that f is not equal to g. Let h =
f

g
. We can check

that gn−m =
a(hm − 1)
hn − 1

. Without loss of generality, by a change of origin, we may

obviously assume that h(0) /∈ {0, ζ0, ..., ζm−1, ξ0, ..., ξn−1}. If h is a constant, one
checks that so is gn−m, and therefore so is g. Thus, without loss of generality, we
may also assume that h is not a constant. Then, we have

gn−m =

a

m−1∏
i=0

(h− ζi)

n−1∏
j=0

(h− ξj)

.

Let G′m = Gn,m ∩ Gm, and let G′n = Gn,m ∩ Gn. Let ζ ∈ G′m. Since ζ does not
belong to Gn, each zero of h− ζ is a zero of gn−m, and therefore is a zero of order
at least n−m of h− ζ. In the same way, for each ξ ∈ G′n, as ζ does not belong to
Gm, every zero of h− ξ is a pole of gn−m, and therefore is a zero of order at least
n−m of h− ξ. As a consequence, by Lemma 10 we have

Θ(ν, h) ≥ 1− 1
n−m

for every ν ∈ Gn,m.(2)

Applying (2) to each element of Gn,m, we obtain:∑
ν∈Gn,m

Θ(ν, h) ≥ t
(
1− 1

n−m

)
,

and then, by Proposition N we have t
(
1− 1

n−m

)
≤ 2. This ends the proof.

Corollary d. Let a ∈ K∗, and let n,m ∈ N be relatively prime, with n ≥ m + 2
and m ≥ 3. Let f, g ∈ M(K) be nonconstant and satisfy f(x)n − af(x)m =
g(x)n − ag(x)m for all x ∈ K. Then we have f = g.

Remark. In [5], we stated (t − 1)(1 − 1
n−m

) > 2 instead of t(1 − 1
n−m

) > 2,

considering that one of the values {ζ0, ..., ζm−1, ξ0, ..., ξn−1} might be omitted by
h. In fact, Proposition N does apply to all values, even to a value omitted by the
function we consider. So, we don’t have to do this restriction.

Lemma 12. Let a ∈ K∗ and let n,m ∈ N satisfy n > m > 2. Let λ ∈ K \ {0, 1}.
Let P (u) = un − aum + 1 ∈ K[u]. Let f, g ∈ M(K) satisfy P (f(x)) = λP (g(x))
and P ′(f(α)) 6= 0 for each zero α of g. Then, there exists a constant A > 0 such
that |f |(r) ≥ Ar(|g|(r))2 ∀r ≥ 1.
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Proof. First, we notice that f and g have the same poles, with the same order of
multiplicity, respectively. Hence, we have E(f,∞) = E(g,∞). By Proposition M,
for every zero α of g, we have ωα(f ′) + 1 = mωα(g) ≥ 3ωα(g), hence ωα(f ′) ≥
2ωα(g). Next, as E(f,∞) = E(g,∞), it is seen that for every pole β of g, we have
ωβ(f ′) ≥ 2ωβ(g). So, the inequality ωα(f ′) ≥ 2ωα(g) holds for every α ∈ K. As a
consequence, by Corollary c there exists A > 0 such that |f ′|(r) ≥ A|g|(r)2 for all
r ≥ 1, and therefore by Lemma 4 we have |f |(r) ≥ Ar(|g|(r))2 .
Proposition P. Let a ∈ K∗, let n,m ∈ N satisfy n > m ≥ 3 and let P (u) =
un − aum + 1 ∈ K[u]. Besides, when m = 3 or m = 4, we assume that for every
n−m-th root ζ of (−1)n−m different from 1, P − ζ only admits zeros of order 1.

Let λ ∈ K \{0, 1} and let P (u) = un−aum +1 ∈ K[u]. Let f, g ∈ M(K) satisfy

P (f(x)) = λP (g(x)).(3)

Then λ = 1.

Proof. Let (sq)q∈N be the sequence of the radii of the circles containing at least one
zero or one pole of g or f (with sq < sq+1). For each q ∈ N, let {α1, ..., ανq} be
the set of the zeros of f and g inside C(0, sq), and let {β1, ..., βσq} be the set of the
poles of f and g inside C(0, sq). We put

D = K \
(⋃

q∈N

( νq⋃
j=1

d(αj , s
−
j )
)⋃( σq⋃

j=1

d(βj , s
−
j )
))
.

Then D is an infraconnected set, and therefore by Corollary b we have

|f(x)| = |f |(|x|) ∀x ∈ D,(4)

|g(x)| = |g|(|x|) ∀x ∈ D.(5)

We suppose λ 6= 1. Then f and g have no common zero. In the same way, there
exist no sequences (y`)`∈N in D such that lim

`→∞
f(y`) = lim

`→∞
g(y`) = 0. But by (4)

we know that for every r ∈ |K∗|, in the circle C(0, r) the equality |f(x)| = |f |(r)
holds in all the classes of C(0, r), except in finitely many. As a consequence, in each
circle C(0, r), with r ∈ |K∗| (since C(0, r) admits infinitely many classes), there
does exist x ∈ C(0, r) such that |f(x)| = |f |(r) and |g(x)| = |g|(r). Thus, it is
seen that we can’t have lim

r→∞ |f |(r) = lim
r→∞ |g|(r) = 0. Hence there exists a constant

M > 0 and an increasing sequence (r`)`∈N such that r0 ≥ 1 and lim
`→∞

r` = +∞,

satisfying at least one of the following two conditions:

|f |(r`) ≥ max(|g|(r`),M) ∀` ∈ N,(6)

|g|(r`) ≥ max(|f |(r`),M) ∀` ∈ N.(7)

Henceforth, we will assume that (6) is satisfied.
First, we suppose m ≥ 5. We will prove

ωβ(g′) ≥ 2ωβ(f) whenever β ∈ K.(8)

By (3) we notice that f and g have the same poles, taking multiplicities into account.
Hence, for every pole β of f , we have ωβ(g′) = ωβ(f)− 1 ≥ 2ωβ(f), and of course,
for every β ∈ K such that ωβ(f) = 0 we have ωβ(g′) ≥ 2ωβ(f) = 0.
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Now, let α ∈ K be a zero of f . By Proposition M we have 2(ωα(g′) + 1) ≥
mωα(f) ≥ 5ωα(f). If ωα(f) ≥ 2, we see that

5
2
ωα(f)−1 ≥ 2ωα(f), hence ωα(g′) ≥

2ωα(f). And if ωα(g) = 1, we have ωα(g′) ≥ 3
2
, hence ωα(g′) ≥ 2, which finishes

proving (8).
Then, by Corollary c, there exists a constant B such that |g′|(r) ≥ B

(|f |(r))2 ∀r
≥ 1. So, by Lemma 4, we obtain

|g|(r`) ≥ r`B
(|f |(r`))2, whenever ` ∈ N.(9)

But since |f |(r`) ≥ M for every ` ∈ N, (9) shows that lim
`→∞

|g|(r`) = +∞. Hence

by (6) we have

lim
`→∞

|f |(r`) = +∞,(10)

and therefore (9) shows that |g|(r`) > |f |(r`) as soon as r`B(|f |(r`))2 > |f |(r`). So,
(6) is contradicted, and then this contradiction shows that λ = 1.

Now, we suppose 3 ≤ m ≤ 4. For every t ∈ K we denote by Qt the polynomial
P (u) − t. First, we suppose that neither Qλ nor Q 1

λ
admits any zero of order

superior or equal to 2. By Lemma 12, there exists a constant A ∈]0,+∞[ such that
|f |(r) ≥ Ar|g|(r)2 for every r ≥ 1. But in the same way, considering the equality

P (g) =
1
λ
P (f), we have a constant B ∈]0,+∞[ such that |g|(r) ≥ Br|f |(r)2 for

every r ≥ 1. So, we notice that relation (9) is satisfied again. Besides, we obtain
ABr2|fg|(r) ≤ 1 ∀r ≥ 1. In particular, we have ABr2` |fg|(r`) ≤ 1 ∀` ∈ N. But
by (6) and (9), it is seen that both |f |(r`) and |g|(r`) tend to +∞ when ` tends to
+∞, and this contradicts ABr2|fg|(r`) ≤ 1.

Now, we suppose that both Qλ and Q 1
λ

admit a zero of order superior or equal
to 2. Hence, by Lemma 1 we have λn−m = (−1)n−m, but this situation has been
excluded by hypothesis when 3 ≤ m ≤ 4.

Finally, we suppose that at least one of the two polynomials Qλ, Q 1
λ

does not
admit any zero of order superior or equal to 2. Without loss of generality, we
may obviously assume that Qλ does not admit any zero of order t ≥ 2. Then, by
Proposition M, for every zero α of g, we have ωα(f ′)+1 = mωα(g) ≥ 3ωα(g), hence
ωα(f ′) ≥ 2ωα(g). Next, as E(f,∞) = E(g,∞), it is seen that for every pole β of
g, we have ωβ(f ′) ≥ 2ωβ(g). So, the inequality ωα(f ′) ≥ 2ωα(g) holds for every
α ∈ K. As a consequence, by Lemma 6 there exists h ∈ A(K) (h not identically
zero), such that

f ′ = hg2.(11)

And there exists a constant B > 0 such that

|f ′|(r) ≥ B|g|(r)2 ∀r ≥ 1.(12)

We will deduce

lim
|x|→+∞, x∈D

g(x) = 0.(13)

Indeed, suppose that (13) is not true. So, we don’t have lim
r→+∞, x∈D

|g|(r) = 0, and

therefore, by (4) there obviously exist δ > 0 and a sequence (ρ`)`∈N in |K| such
that ρ0 ≥ 1, |g|(ρ`) ≥ δ for all ` ∈ N, and lim

`→+∞
ρ` = +∞. Now, by (4) and (5), we
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can find a sequence (x`)`∈N in D such that |x`| = ρ`, and |f(x`)| = |f |(ρ`) for all
` ∈ N. Hence , by Lemma 4 and by (12) we have

|f(x`)| = |f |(ρ`) ≥ ρ`|f ′|(ρ`) ≥ Bρ`(|g|(ρ`))2 ≥ Bρ`|g(x`)|2 ∀` ∈ N.(14)

But since |g|(ρ`) ≥ δ ∀` ∈ N, clearly we have lim
`→+∞

|f(x`)| = +∞, and therefore by

(14) we have lim
`→∞

g(x`)
f(x`)

= 0. As a consequence, it is seen that

lim
`→+∞

(
λP (g(x`))− P (f(x`))

f(x`)n

)
= −1.

But this clearly contradicts the equality P (f) = λP (g), and finishes showing (13).
Now, by deriving the basic relation, we have f ′(x)P ′(f(x)) = λg′(x)P ′(g(x)), hence
by (11) we obtain h(x)g(x)2P ′(f(x)) = λg′(x)g(x)2(ng(x)n−3 − amg(x)m−3), and
finally

h(x)P ′(f(x)) = λg′(x)(ng(x)n−3 − amg(x)m−3).(15)

We notice that for every r > 0, as D ∩ d(0, r) only has finitely many holes, g′ does
belong to H(D ∩ d(0, r)) ([9], Corollary 19.2). Let g =

g1
g2

, with g1, g2 ∈ A(K),

g1, g2 having no common zero. Clearly, by Lemma 5, in C(0, r) ∩ D we have
|g2(x)| = |g2|(r), and of course, |g′1(x)g2(x) − g1(x)g′2(x)| ≤ |g′1g2 − g1g

′
2|(r), so

|g′(x)| ≤ |g′|(r). Then by Corollary b and Lemma 4, we obtain |g′(x)| ≤ |g′|(r) ≤
|g|(r)
r

≤ |g|(r) ∀x ∈ C(0, r) ∩ D, for every r ≥ 1. Then by (13), we have

lim
|x|→+∞, x∈D

g′(x) = 0, hence by (15), we obtain lim
|x|→+∞, x∈D

h(x)P ′(f(x)) = 0.

In particular, we have lim
r→+∞ |h|(r)|P

′(f)|(r) = 0. But as h ∈ A(K), we obtain

lim
r→+∞ |P

′(f)|(r) = 0, hence lim
|x|→+∞, x∈D

P ′(f(x)) = 0. Now, by (13) we have

lim
|x|→+∞,x∈D

P (f(x)) − λ = 0. As a consequence, by Lemma 7 there does exist a zero

θ of P−λ such that lim
|x|→+∞,x∈D

f(x) = θ. Thus, we have lim|x|→+∞, x∈D P (f(x)) =

λ = P (θ), while lim
|x|→+∞, x∈D

P ′(f(x)) = 0, hence P ′(θ) = 0, and therefore θ is a

zero of Qλ of order q ≥ 2, which just contradicts the hypothesis. This ends the
proof.

Proofs of the theorems. We notice that the condition an (m)m(n−m)n−m

nn
6= 1 is

satisfied in each theorem. Hence, by Lemma 1, P has no zero of order greater
than 1. First, we assume w = ∞. Then, by hypothesis, f and g have the same
poles, taking multiplicities into account. So, by Lemma 8, there exists a constant
λ different from 0 such that P (f(x)) = λP (g(x)) for all x ∈ K.

Now, we can check that Proposition P clearly applies to the hypotheses of both
Theorem 1 and Theorem 2, and shows that λ = 1. Next, suppose we are in the
hypothesis of Theorem 3 or Theorem 4. By Lemma 1, we can easily check that
P + 1 does not admit any zero of order q ≥ 2, hence the hypotheses of Proposition
P are satisfied again. Thus, in all cases, we have λ = 1. Now we can show that
f = g thanks to Lemma 11 and Corollary d. Indeed, in Theorems 1,2,3 as m, n
are relatively prime, we check that n ≥ m + 2, and that m ≥ 3, and then we may
apply Corollary d. In Theorem 4, as K has characteristic zero, we check that the
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cardinal t of Gn,m is 6, hence we have t(1 − 1
n−m

) ≥ 5
2
, and then the conclusion

is given by Lemma 11.
Finally, we can easily generalize when w ∈ K. Indeed let l = h−1, and let

S′ = l(S). So, we have l(x) =
1

x− w
and S′ is the set of zeros of P . Then we may

apply to (S′, {∞}) our theorems already proven when w = ∞, and then (S′, {∞})
is a bi-URS for M(K). But, as S = h(S′), and w = h(∞), by Remark 1 (at the
beginning of the article), (S, {w}) also is a bi-URS for M(K).
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