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ON REDUCTIVE GROUP ACTIONS AND FIXED POINTS
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Abstract. Among analytic actions of reductive groups on projective varieties,
we characterize the algebraic ones by the existence of fixed points for one-
parameter subgroups. This applies to the problem of lifting the action of a
compact Lie group on a projective manifold to a line bundle.

Let G be a connected reductive algebraic group over C, let X be a non-singular
complex projective variety, and let m : G × X → X be an analytic map giving a
group action of G on X . If m is algebraic, then every one-parameter subgroup of
G will obviously have a fixed point on X (by the valuative criterion of properness,
for example). The purpose of this note is to give a simple proof of the following
converse, which seems not to have been pointed out in the literature:

Theorem. Suppose every one-parameter subgroup of G has a fixed point on X.
Then m is algebraic.

It is obvious that the hypothesis of the theorem holds if: G itself has a fixed
point; a Borel subgroup has a fixed point; or a maximal torus has a fixed point.

One can easily formulate a corollary of the following sort, whose proof is imme-
diate:

Corollary 1. If, for some x ∈ X and a maximal torus T ⊂ G, the orbit map
T → X, t 7→ t · x is algebraic, then the G-action is algebraic.

Corollary 2. Let a compact connected Lie group K act on the projective manifold
X as a group of analytic transformations, and let L be an analytic (and therefore
algebraic) line bundle on X. If each S1 ⊂ K has a fixed point, then some power of
L is linearizable; that is, there is a K-action on some L⊗n which covers the action
on X.

Results of this sort abound in the literature on geometric quantization [6]. The
existence of a fixed point for the S1-action is equivalent to the existence of a moment
map, which we actually use in the proof. However, in geometric quantization, the
lifting is constructed in an elaborate manner using a connection whose curvature is
equal to the Kaehler form. This therefore restricts the lifting only to specific line
bundles. Also, the assumptions in the usual construction include the existence of
a moment map for the whole group. Of course, the primary interest in that case
being that of quantization, one is motivated to just consider such line bundles and
to use the connection to construct certain Lie algebra homomorphisms.
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On the other hand, this paper arose from an effort to understand why a lifting
exists at all, and to clearly state that the more basic fact of the mere existence of
a lifting holds for any line bundle, under the usual conditions, and for rather basic
reasons (from the algebraic geometric viewpoint).

Proof of Corollary 2. The K-action extends to an analytic action of the reductive
complexification KC . Also, we can arrange it so that given a maximal (compact)
torus T in K together with a decomposition T = (S1)n, the complexification of
each factor together form a maximal algebraic torus TC = (C∗)n of KC . Each
factor C∗ has the same fixed points as the corresponding factor S1 in T , since the
complex span of the vector field generated by S1 gives the infinitesimal action of
its complexification. Thus, each of these C∗-actions is algebraic, and hence, the
action of TC is algebraic (by an argument to be presented below in the proof of the
Theorem). Borel’s fixed point theorem then implies that TC has a fixed point. As
noted above, this implies that the KC-action is algebraic. Therefore, the induced
action on the Picard variety of X is trivial. Now use [8], Proposition 1.5.

An example where the hypothesis fails to hold is provided by the action of C∗

on the elliptic curve C∗/qZ (for some q ∈ C∗ of infinite order) by translations. One
notes that as z → 0 in C∗, z · x winds around the elliptic curve infinitely many
times, for any point x. The action is genuinely analytic, because the quotient map
C∗ → C∗/qZ is analytic.

Consider C∗ acting analytically on an analytic space X . The isotropy groups for
this action are closed analytic subgroups of C∗; that is, they are either all of C∗,
finite, or of the form (finite)×qZ for some q of infinite order. The orbits are either
a fixed point, ' C∗, or an elliptic curve, correspondingly. However,

Lemma. Suppose C∗ acts analytically on a projective manifold X and has at least
one fixed point. Then for each x ∈ X, the orbit map

C∗ → X, z 7→ z · x
extends to a map P 1 → X.

Proof. Equip X with a Kaehler metric invariant under the action of S1 ⊂ C∗, and
let ω be the associated Kaehler form. Denote by J the complex structure on X so
that ω(·, J ·) is the Kaehler metric.

According to [4], the S1-action has a moment map: if V is the vector field on
X generated by d/dθ ∈ LieS1, there exists a smooth function f on X such that
df = ω(V, ·). In fact, it is a Morse-Bott function [1]. But then, for any vector
field W , df(W ) = ω(V, W ) = ω(JV, JW ) so that JV = grad f . Thus, the flows of
JV must converge. It is easily checked, using the fact that the action is analytic,
that JV is the vector field generated by rd/dr ∈ LieC∗. This implies that for any
x ∈ X , 0 · x := limr→0 r · x and ∞ · x := limr→∞ r · x (r ∈ R∗>0 ⊂ C∗) exist, and
are stationary points for grad f . But then JV and hence V vanish at these points.
Therefore, 0 ·x and ∞·x are fixed points for the C∗-action and limz→0 z ·x = 0 ·x,
limz→∞ z · x = ∞ · x (z ∈ C∗).

This allows us to construct a continuous extension P 1 → X which is then auto-
matically analytic (and hence, algebraic).

The lemma implies, in particular, that the Zariski closure of each non-trivial
orbit is an embedded P 1. This is a crucial point in the
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Proof of the Theorem. For any compact complex manifold X , Aut(X), the group of
holomorphic automorphisms of X , has the structure of a complex Lie group ([2]) and
an action m : G×X → X determines an analytic homomorphism m̃ : G → Aut(X)
such that m factors as

G×X
m̃×1→ Aut(X)×X → X,

the second arrow being the canonical action. Since G is connected, we actually have
m̃ : G → Aut(X)0, the connected component of the identity in Aut(X). When X
is projective, Aut(X)0 has the structure of a connected algebraic group acting
algebraically on X ([5]). By Chevalley’s theorem ([9]), Aut(X)0 fits into an exact
sequence of algebraic groups

0 → H → Aut(X)0
π→ A → 0

where H is linear and A is an abelian variety.
Now, for a one-parameter subgroup C∗ ⊂ G, consider the Zariski closure m̃(C∗)

of its image in Aut(X)0. It is a connected algebraic subgroup ([7], p. 173) and so is
of pure dimension. Suppose it is of dimension ≥ 2. Then its generic orbit would be
of dimension ≥ 2. (The easiest way to see this is to note that the action generates
at least two algebraic vector fields which are generically linearly independent.)
However, since Aut(X)0 ×X → X is algebraic,

m̃(C∗) · x ⊂ m̃(C∗) · x ' P 1,

unless x is a fixed point. Therefore, we must have dim m̃(C∗) ≤ 1. So m̃(C∗) is
either trivial, ' C∗,' C, or an elliptic curve. But the last case is impossible by the
non-existence of elliptic curve orbits on X . In the remaining cases, π(m̃(C∗)) = 0
since the projection π is an algebraic map. Thus π ◦ m̃(C∗) = 0 for every one-
parameter subgroup of G. But then, since the one-parameter subgroups generate
a Zariski-dense subset (that is, the set of semi-simple elements) of G, we get π ◦
m̃(G) = 0. That is, we actually have a map m̃ : G → H which induces the G-action.
However, an analytic map from a reductive group to a linear algebraic group is
automatically algebraic. By taking a faithful algebraic representation, it suffices
to check this for linear representations. Algebraicity of analytic representations is
well known for semi-simple groups ([3], 2.5) and tori (by complete reducibility).
This implies the statement for groups of the form (semi-simple)×(torus) since a
representation r : G′ ×G′′ → GLn factors as

G′ ×G′′ r′×r′′−→ GLn ×GLn → GLn,

where r′ := r|G′ × 0, r′′ := r|0 × G′′ and the last map is multiplication in GLn.
The case of (semi-simple)×(torus)/(finite), i.e. reductive groups, is then immediate,
since an analytic representation of such a group is a quotient map coming from an
algebraic representation of a finite cover.

The referee has suggested the possibility of a more algebraic proof along the
following lines:

The key point in the proof is to show that the image of the map from G to the
automorphism group of X lies in the linear part. For this, it suffices, as pointed
out above, to show it for the C∗ subgroups. Now, since the image (if non-trivial)
must be either C∗ or an elliptic curve, it suffices to show that the image has a
non-trivial linear representation. But a fixed-point p of the action would give rise
to a non-trivial representation on some finite-order jet space of the functions at p.
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