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ABSTRACT. In this paper we give a constructive characterisation of ultraweakly
continuous linear functionals on the space of bounded linear operators on a
separable Hilbert space.

Let H be a separable complex Hilbert space, with orthonormal basis (e,)3 ,

and B(H) the set of bounded linear operators on H. The weak operator norm
associated with the orthonormal basis (e, ) is defined on B(H) by

T, = > 27975 (Tej ex).
k=1

Weak operator norms associated with different orthonormal bases of H give rise to
equivalent metrics on the unit ball

Bi(H)={TeB(H): Ve H (|Tz| <|zlD}-

Moreover, By (H) is totally bounded with respect to the weak operator norm, but the
completeness of By (H) with respect to that norm is an essentially nonconstructive
property; see [2].

In this paper we discuss, within Bishop’s constructive mathematics [1], the char-
acterisation of those linear functionals on B(H) that are uniformly continuous on
B1(H) with respect to some, and therefore each, weak operator norm. Classically,
these are precisely the linear functionals on B(H) that are continuous with respect
to the ultraweak operator topology [10]; for this reason, we shall refer to them as
ultraweakly continuous linear functionals on B(H). Since B;(H) is weak op-
erator totally bounded, an ultraweakly continuous linear functional f on B(H) is
normable, in the sense that its norm,

£l = sup{[f(2) : 2 € H, [z <1},

exists ([1], Ch. 4, (4.3)).

The classical characterisation of ultraweakly continuous linear functionals on
B (H) is usually proved using the Riesz Representation Theorem and the Hahn-
Banach Theorem (see [7]); unfortunately, in order to apply each of these theorems
constructively we need additional hypotheses about the computability of certain
suprema and infima that cannot be verified in the present case. Another approach,
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taken by Kadison and Ringrose ([11], Section 7.1), is set in the more general con-
text of von Neumann algebra theory and requires the theory of comparison of
projections; as presently developed, the latter theory depends on nonconstructive
applications of Zorn’s lemma. A third proof, which is similar in spirit to ours, is
found in [12] and uses a nonconstructive version of the spectral decomposition of a
compact selfadjoint operator (cf. [4]).

Thus there are significant obstacles to be overcome in obtaining the desired con-
structive characterisation. In order to show how these obstacles can be surmounted,
we assume familiarity with, or access to, Chapters 4 and 7 of [1]. In addition, we
will need the following background definitions and facts, the proofs of which are
found in either [3] or standard references such as [13], [10], and [11].

Let A(H) be the set of elements of B(H) that have adjoints'. An element A of
A(H) is positive if it is selfadjoint and (Az,z) > 0 for each x € H; we then write
A>0.If Ae A(H), then A*A > 0; the positive square root of A*A is written |A|.
An element U of A(H) is a partial isometry if there exists a projection P, called
the initial projection of U, such that [|[UPz| = ||z|| and U(I — P)x = 0 for each
x € H. U is a partial isometry if and only if U* exists and U*U is a projection,
in which case U*U is the initial projection of U, and U™ is a partial isometry with
initial projection UU*.

Let A € A(H). We say that A is a Hilbert-Schmidt operator if Y- | | Aen|?
converges, in which case the sum of this series is independent of the orthonormal
basis (e,) and we write

1A, = (O [l Aeal*)?.
n=1

If A is a Hilbert-Schmidt operator, then so is A*; if also B € A(H), and ¢ > 0 is
a bound for B, then AB and BA are Hilbert-Schmidt operators, [|AB||, < c¢||4],,
and || BAJl, < c || Al

We say that A € A(H) is of trace class if

oo

1Al =D (| Alen, en)

n=1

2
converges. In that case, ||All, =>°7, H|A|1/2 enH , SO |A|1/2 is a Hilbert-Schmidt
operator and the trace class norm || A||; is independent of the orthonormal basis
(en); moreover, A is a compact operator. The set of trace class operators on H is
a Banach space with respect to the trace class norm.
If A is of trace class, then the trace of A,

Tr (A) = Z (Aey,en)

exists and is independent of the orthonormal basis (ey,). If also B € A(H), then
AB and BA are of trace class, and Tr(AB) = Tr(BA).

Now, the argument used in [3] to show that BA is of trace class for all B € A(H)
does not actually need B to have an adjoint, but it does require that BA have an
adjoint. It follows that BA is of trace class for all B € B(H) : for, as A is compact,

IThe proposition every bounded operator on 12 has an adjoint is essentially nonconstructive;
see Brouwerian Example 3 of [9].
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so is BA, which is therefore uniformly approximable by finite-rank operators and
hence has an adjoint. The linear functional f4 defined on B(H) by

fa(B) = Tr(BA)

is uniformly continuous on B; (H) with respect to the weak operator norm. As
Bi(H) is weak operator totally bounded, fa is normable; in fact, || fal| = || 4], .

If A and B are Hilbert-Schmidt operators, then AB and BA are of trace class,
and Tr(AB) = Tr(BA).

Our first result was proved in [3] (Theorem 1.1).

Proposition 1. Approximate polar decomposition: If A € A(H) and € > 0,
then there exists a partial isometry U such that € is a bound for both A—U |A| and
|A| —U*A. O

For more on the constructive theory of polar decompositions and related matters,
see [6].

Lemma 1. Let A be an operator of trace class, and let € > 0. Then there exists a
partial isometry Usuch that ||[A —U |A||; <e.

Proof. Choose a positive integer N such that

Al ( > [z,

n=N+1

1/2
2
) <e/4.

By Proposition 1, there exists a partial isometry U such that ¢/2N is a bound for
A — U |A|. Likewise, given t > 0, we can find a partial isometry V such that ¢ is a
bound for

(A= UJA])| =V (A-UIA]).

For ¢ > p we then have

S (A~ UAD]enren)
n=p+1

Y ((A=UJAN| = V(A= U|A]) en,en)

n=p+1
q q
+ Z (V*Aep, en) — Z (V*U | Al en, en)
n=p+1 n=p+1
q q
< ta-p)+ Y, (IVAlenen)+ Y. ((VU|A]|en, en)
n=p+1 n=p+1
12 o 12 |2 1z
< ta-p+ 1Al 3 (flare)
n=p+1

2) 1/2

q
Sl Y (e
n=p+1
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the last step following from (1.4) of [3]. Since ¢t > 0 is arbitrary, it follows from the
completeness of C that

s - 12
2
3 <|(A—U|A|)|en,en>g2||A|}/2( > [arze. ) <e/2.
n=N+1 n=N+1
Hence
N 0o
IA-UIAll, = Y {A-UlADlenea) + Y ((A=UlA]len,en)
n=1 n=N+1
9 9
< — 4
< Noo+ts
= e O

We denote by Hso the direct sum @22, H of a sequence of copies of the Hilbert
space H. Taken with the usual scalar product, H, is a Hilbert space.

The following theorem provides our constructive characterisation of ultraweakly
continuous linear functionals.

Theorem. The following are equivalent conditions on a linear functional f on
B(H).
(i) f is ultraweakly continuous.
(ii) There exists an operator A € B(H) of trace class such that f(T) = Tr(TA)
for each T € B(H).
(iii) There exist sequences (zn) and (yn) in Hoo such that f(T) =Y 0" (T, yn)
for each T € B(H).

Proof. For all j and k let S, be the trace class operator defined by Sjrx = (z, €;) ex,
and let P; be the projection of H on span{ey,...,e;}. Then for each T € B(H),

n

P,TP, = Y (Tej,ex) Sjn.
g, k=1

For each n let A,, be the trace class operator defined by

n

An = Z f(Skj)Sjk.

j k=1
Then for each T € B(H), f(P,TP,) = fa,(T) and therefore
(1) [f(T) = fa, (D) < (T T = Po))| + [f (T = Pa) TH,)l.

Now assume that f is ultraweakly continuous. Given € > 0, choose § > 0 such
that if T,7" € By (H) and ||T — T"||,, < 6, then [f(T) — f(17")] < /2. Then choose
N so that

N
T, < > 2777 (Tej en)| +6
k=1
for all T € Bi(H). For such T and all n > N we have [|T(I — P,)|[,, < ¢ and
[(I = Po)TF,, <6, so |f(T)— fa,(T)] < e by (1); whence [|f — fa,| < e
(Note that the linear functional f— f4, , being ultraweakly continuous, is normable.)
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Since ¢ is arbitrary, we conclude that ||f — fa,|| — 0 as n — oo. It follows from
the relation

Am — Anlly = 1fa,, — fa I <N = fa I+ 11 — fa,l

that (A,) is a Cauchy sequence with respect to the trace class norm. Since the set
of all trace class operators is complete with respect to that norm, there exists a
trace class operator A such that |4 — A,|; — 0 as n — co. Then

If = fall < W = fa,l +11fa = fa,ll
= Nf = faull+ 1A= Anlly
— 0 asn — oo
whence f = f4. This completes the proof that (i) = (ii).
Now suppose that (ii) obtains, and for each n let y, = |A|1/2 en. Since A is of

trace class, |A|1/2 is a Hilbert-Schmidt operator, so 3.7 |[yn||> converges. We
prove that for each € > 0 there exists a partial isometry U such that

(T e A (H)).

2) F(D) =S (TUya,ya)| < e

Using Lemma 1, construct a partial isometry U such that ||A — U |A]||; < e. For
each T € Ay (H), |A|1/2 T |A|1/2 is a trace class operator. Moreover,

Te (TU |A))

Tr (TU A2 |A|1/2)

- T (|A|1/2 TU|A|1/2)

_ i<|A|1/2TU|A|1/2en,en>

_ Z<TU|A|1/2en,|A|1/2en>

n=1

oo

n=1

Since A — U |A| is of trace class, it follows from (1.4) of [3] that

Z TUYn, Yn)
n=1

Tr(T(A—-U|A]))

oo

S (T(A - U A enen)

n=1
[A—=UI[All;
< €.

IN

IN

This completes the proof of (2).
Now construct a sequence (Ug)%2; of partial isometries such that for each k,

(3) Z TUyn,yn)| < L (T € Ay (H)).
n=1
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Then for all j and k we have

FU7) = 3 (U7 Vst < 4
n=1
and
;) - i (U; Uy, yn)| < 3
n=1
so that
i (U; U; = Ur) ynyyn)| < 2+ %
n=1
Interchanging the roles of j and k, we have
i Vymynl| < L+ 1

Hence

ST = U yal® =
n=1

WK

<(U; - UI:) (Uj - Uy) ymyn>

n=1
oo o0
n=1 n=1
2,2
< TR
Writing T, = (Uryn)pei, we now see that (Z3);2, is a Cauchy sequence, and

therefore converges to a limit (x,)%2,, in the Hilbert space H. It follows from
(3) that

= lim Z TUkyn, yn) = > (TTn, Yn)

k—oo
n=1

for all T'in A; (H), and therefore for all T in A(H). Finally, as A(H) is ||-||,,-dense
in B(H), we see that (ii) = (iii).
The proof that (iii) = (i) is trivial. O

A famous theorem of Gleason [8], underpinning the mathematical foundations
of quantum mechanics, says that if f is defined only on the set of projections in
B(H), and if f is countably additive, in the sense that

f (Zm) =) f(p

whenever (P,) is a sequence of pairwise orthogonal projections, then there exists
a positive operator A of trace class such that f(P) = Tr(PA) for each projection
P. In that case, f clearly extends to an ultraweakly continuous linear functional
on B(H) such that f(T) = Tr(TA) for each T € B(H). A constructive proof of
Gleason’s Theorem is given in [5].
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