ON THE PROJECTIVITY OF MODULE COALGEBRAS

SIU-HUNG NG

(Communicated by Ken Goodearl)

Abstract

In this paper, we derive some criteria for the projectivity of a module coalgebra over a finite dimensional Hopf algebra. In particular, we show that any Hopf algebra over a field of characteristic zero is faithfully flat over its group-like subHopf algebra. Finally, we prove that if B is a finite dimensional subHopf algebra of a Hopf algebra A, then B is normal in A if and only if $A B^{+}=B^{+} A$. This improves a result by S . Montgomery (1993).

1. Preliminary

Let B be a Hopf algebra over the field k. For any left B-module M, let M^{B} denote the space of invariants of M, that is

$$
M^{B}=\{x \in M \mid b x=\varepsilon(b) x \text { for } b \in B\}
$$

where ε is the counit of B. If B is finite dimensional, B^{B} is just the space of left integrals \int_{B}^{l}. Similarly, we write \int_{B}^{r} for the space of right integrals of B. We let ${ }_{M} I$ denote the left B-submodule which consists of the elements $x \in M$ such that $\int_{B}^{r} x=0$. Similarly, if M is a right B-module, I_{M} denotes the B-submodule which annihilates the left integrals of B.

For any left B-modules M and N, the space $\operatorname{Hom}(M, N)$ of k-linear homomorphisms admits a natural left B-module structure given by

$$
(h \cdot f)(x)=\sum_{(h)} h_{1} f\left(S\left(h_{2}\right) x\right)
$$

for $f \in \operatorname{Hom}(M, N), x \in M, h \in B$, where S is the antipode of B. In particular, if N is the trivial B-module k, the B-module action on $M^{*}=\operatorname{Hom}(M, k)$ is given by

$$
(b \rightharpoondown f)(x)=f(S(b) x)
$$

for $f \in M^{*}, x \in M$ and $b \in B$.
A left (right) B-module C is called a left (right) B-module coalgebra if C is a coalgebra such that the diagonal map $\Delta_{C}: C \longrightarrow C \otimes C$ and the counit $\varepsilon_{C}: C \longrightarrow k$ are left (right) B-module maps, where k is considered as a trivial B-module. We write C^{+}for the coideal $C \cap \operatorname{ker} \varepsilon_{C}$. We will call $D \subseteq C$ a B-submodule coalgebra if D is a subcoalgebra of C and is invariant under the B-action. If $X, Y \subseteq C$, recall [8] that the "wedge" $X \wedge Y$ is defined as

$$
X \wedge Y=\Delta_{C}^{-1}(X \otimes C+C \otimes Y)
$$

[^0]We define $\bigwedge^{1} X=X$ and $\bigwedge^{n+1} X=X \wedge\left(\bigwedge^{n} X\right)$. In particular, if $C_{0} \subseteq X$,

$$
\sum_{n \geq 1} \bigwedge^{n} X=C
$$

where C_{0} is the coradical of C (cf. [4], [8]).
Let C be a B-module coalgebra. M is a called a left (C, B)-Hopf module if M is a left C-comodule and a left B-module such that the comodule structure map $\rho_{M}: M \longrightarrow C \otimes M$ is a left B-module map. If C is also projective as a B-module, we simply call C a projective B-module coalgebra. The category ${ }_{B}^{C} \mathcal{M}$ of all left (C, B)-Hopf modules is an abelian category.

2. Projectivity of module coalgebra

Proposition 1. Let B be a finite dimensional Hopf algebra.
(i) If C is a left B-module coalgebra, then C is a projective B-module if and only if $C_{C} \subseteq \operatorname{ker} \varepsilon_{C}$.
(ii) If C is a right B-module coalgebra, then C is a projective B-module if and only if $I_{C} \subseteq \operatorname{ker} \varepsilon_{C}$.

Proof. (i) Let us consider the B-module $\operatorname{Hom}(C, B)$ of linear homomorphisms from C to B. As a B-module, $\operatorname{Hom}(C, B)$ is isomorphic to $B \otimes C^{*}$ under the identification

$$
(b \otimes f)(x)=f(x) b
$$

for $f \in C^{*}, x \in C$ and $b \in B$. Let C_{0}^{*} be the trivial B-module with the same underlying space as C^{*}. It is easy to see that $B \otimes C_{0}^{*}$ is isomorphic to $B \otimes C^{*}$ under the B-module isomorphism $\phi: B \otimes C_{0}^{*} \longrightarrow B \otimes C^{*}$ given by

$$
\phi(b \otimes f)=\sum_{(b)} b_{1} \otimes\left(b_{2} \rightharpoondown f\right)
$$

for $b \in B$ and $f \in C^{*}$. Therefore, $\phi\left(\left(B \otimes C_{0}^{*}\right)^{B}\right)=\left(B \otimes C^{*}\right)^{B}=\operatorname{Hom}_{B}(C, B)$. Since $\left(B \otimes C_{0}^{*}\right)^{B}=\int_{B}^{l} \otimes C^{*}$,

$$
\operatorname{Hom}_{B}(C, B)=\sum_{(\Lambda)} \Lambda_{1} \otimes \Lambda_{2} \rightharpoondown C^{*}
$$

where Λ is a non-zero left integral of B. Let $f \in C^{*}$ and $x \in C$.

$$
\begin{aligned}
\varepsilon_{B} \circ \sum_{(\Lambda)}\left(\Lambda_{1} \otimes \Lambda_{2} \rightharpoondown f\right)(x) & =\varepsilon_{B}\left(\Lambda_{1}\right) f\left(S\left(\Lambda_{2}\right) x\right) \\
& =f(S(\Lambda) x)
\end{aligned}
$$

Note that $S(\Lambda)$ is a right non-zero integral of B. Therefore, ${ }_{C} I \subseteq \operatorname{ker} \varepsilon_{C}$ iff there exists $f \in C^{*}$ such that $f(S(\Lambda) x)=\varepsilon_{C}(x)$ for $x \in C$ which is equivalent to $\varepsilon_{B} \circ \sum_{(\Lambda)}\left(\Lambda_{1} \otimes \Lambda_{2} \rightharpoondown f\right)=\varepsilon_{C}$. By virtue of Doi's Theorem ([2], Corollary 1), the proof is completed. (ii) can be proved similarly.

A particular case of a result of Takeuchi ([9], Corollary 3.5) is then an immediate consequence of the above proposition.

Corollary 2. Let $B \subseteq A$ be a Hopf algebras, with B finite dimensional. Then A is a left projective B-module iff A is a right projective B-module.

Proof. If A is not projective as a left B-module, then by Proposition 1 there exists $a \in A$ such that $\int_{B}^{r} a=0$ and $\varepsilon_{A}(a) \neq 0$. Let S be the antipode of A. Then $S(a) S\left(\int_{B}^{r}\right)=0$ and $\varepsilon_{A}(S(a))=\varepsilon_{A}(a) \neq 0$. Since $S\left(\int_{B}^{r}\right)=\int_{B}^{l}, A$ is not a right projective B-module by Proposition 1.

3. Projectivity for Hopf algebras over group-like subalgebras

Let A be a Hopf algebra and B a subHopf algebra of A. Following [9], we use " B-projective" to mean "projective B-module".

Lemma 3. If the antipode of B is bijective, then the following statements are equivalent :
(a) A is left B faithfully flat;
(b) A is right B faithfully flat;
(c) A is left B-projective;
(d) A is right B-projective;
(e) A is a left B-projective generator;
(f) A is a right B-projective generator;
(g) for any simple subcoalgebra C of $A, B C$ is a projective B-module;
(h) if $M \in_{B}^{A} \mathcal{M}$ and $M=B V$ for some simple left A-comodule V, then M is a projective B-module;
(i) for $M \in{ }_{B}^{A} \mathcal{M}, M$ is left B-flat.

Proof. By [9], Corollary 3.5, (a) to (f) are all equivalent statements. (e) \Rightarrow (g) and $(\mathrm{g}) \Rightarrow(\mathrm{h})$ are consequences of [2], Theorem 4.
(h) \Rightarrow (i) Let $M \in_{B}^{A} \mathcal{M}$ and \mathcal{S} be the set of all left (A, B)-subcomodules J of M such that J is a flat left B-module. The assumption (h) assures that $\mathcal{S} \neq \emptyset$. Since flatness is preserved under direct limit, by Zorn's Lemma there is a maximal element $J_{0} \in \mathcal{S}$. We claim that $J_{0}=M$. If not, there exists a simple left A subcomodule \bar{V} of M / J_{0}. Then $B \bar{V}$ is a flat B-module. Let $V \supset J_{0}$ be the left (A, B)-submodule of M such that $V / J_{0}=B \bar{V}$. Then $V / J_{0}=B \bar{V}$ and we have the exact sequence in ${ }_{B}^{A} \mathcal{M}$

$$
0 \longrightarrow J_{0} \longrightarrow V \longrightarrow B \bar{V} \longrightarrow 0
$$

As flatness is preserved under extension, V is flat and hence $V \in \mathcal{S}$. This contradicts the maximality of J_{0}. Therefore $J_{0}=M$, and hence M is left B flat.
(i) \Rightarrow (a) Let N be a non-zero right B-module. By applying the functor $N \otimes_{B}$? to the exact sequence of left B-modules :

$$
0 \longrightarrow B \longrightarrow A \longrightarrow A / B \longrightarrow 0
$$

we have the long exact sequence

$$
\cdots \longrightarrow \operatorname{Tor}_{1}(N, A / B) \longrightarrow N \otimes_{B} B \longrightarrow N \otimes_{B} A \longrightarrow N \otimes_{B}(A / B) \longrightarrow 0
$$

By assumption (i), A and A / B are left B-flat since they are left (A, B)-modules. Therefore $\operatorname{Tor}_{1}(N, A / B)=0$, and so $N \otimes_{B} A \neq 0$. Hence A is left B faithfully flat.

Remark. If B is a Hopf subalgebra of A with bijective antipode, then by virtue of the above lemma, the adjectives "left" and "right" can be dropped. For example, we will simply say A is faithfully flat over B instead of A is left (or right) B faithfully flat.

Let $G(A)$ denote the set of all group-like elements of A. Let $G \subseteq G(A)$ be a subgroup of $G(A)$ and $B=k[G]$.

Lemma 4 ([6], Proposition 2). If C is a simple subcoalgebra of A, then
(i) $G_{C}=\{g \in G \mid g C=C\}$ is a finite subgroup of G, and
(ii) $B C=\bigoplus_{g \in S} g C$, where S is a set of left coset representatives of G_{C} in G.

Proposition 5. The following statements are equivalent :
(i) A is $k[G]$-projective;
(ii) for any subgroup H of G, A is projective over $k[H]$;
(iii) for any finite subgroup H of G, A is projective over $k[H]$.

Proof. (i) \Rightarrow (ii) Suppose A is left $k[G]$-projective. Then A is a direct summand of a free $k[G]$-module F. Since $k[G]$ is a free left $k[H]$-module, F is a free left $k[H]$-module. Hence A is left $k[H]$-projective.
(ii) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (i) Assume that A is left $k[H]$-projective for any finite subgroup H of G. Let C be a simple subcoalgebra of A. By Lemma $4, H=G_{C}$ is a finite subgroup of G. Consider the map $\mu: B \otimes_{k[H]} C \longrightarrow B C, \mu: b \otimes c \mapsto b c$. Clearly, μ is left B-linear and surjective. By Lemma 4 (ii), μ is also injective and hence

$$
B \otimes_{k[H]} C \cong B C
$$

as B-modules. By Lemma 3, C is a projective $k[H]$-module. Since the functor $B \otimes_{k[H]}$? preserves projective objects, $B C$ is B-projective. It follows from Lemma 3 that A is B-projective.

Theorem 6. Let A be a Hopf algebra over a field k and G be a subgroup of $G(A)$.
(i) If char $k=0, A$ is faithfully flat over $k[G]$.
(ii) If char $k=p>0, A$ is faithfully flat over $k[G]$ if and only if A is projective over $k[H]$ for any finite p-subgroup of G.

Proof. (i) For any finite subgroup H of $G, k[H]$ is semisimple by Maschke's Theorem. Hence, every left $k[H]$-module is projective and, in particular, A is projective over $k[H]$. By Proposition $5, A$ is faithfully flat over $k[G]$.
(ii) Let H be a finite subgroup of G and N a p-Sylow subgroup of H. Notice that every $k[H]$-module M can be embedded into a free $k[H]$-module F. If M is $k[N]$-projective, then M is also $k[N]$-injective and so M is a summand of F as $k[N]$-module. Therefore, M is a summand of F as $k[H]$-module (cf. [1], 63.7). Hence, the result follows from Proposition 5.

4. The existence of a unique maximal PROJECTIVE MODULE SUBCOALGEBRA

Proposition 7. Let B be a finite dimensional Hopf algebra and C a left B-module coalgebra.
(i) If C_{1} and C_{2} are projective B-submodule coalgebras, then $C_{1} \wedge C_{2}$ and $C_{1}+C_{2}$ are B-projective.
(ii) Let $\left\{C_{i}\right\}_{i \in J}$ be a family of projective B-submodule coalgebras of C. Then $\sum_{i \in J} C_{i}$ is also a projective B-module .

Proof. Since B is a Frobenius algebra, C_{1} is injective as a B-module. Let C_{1}^{\prime} be a B submodule of C such that $C=C_{1} \oplus C_{1}^{\prime}$. Then $C_{1} \otimes C+C \otimes C_{2}=C_{1} \otimes C \oplus C_{1}^{\prime} \otimes C_{2}$ as a B-module. Let $x \in C_{1} \wedge C_{2}$ such that $\int_{B}^{r} x=0$. Then $\Delta(x)=\sum_{i} a_{i} \otimes b_{i}+\sum_{i} c_{i} \otimes d_{i}$ where $\sum_{i} a_{i} \otimes b_{i} \in C_{1} \otimes C$ and $\sum_{i} c_{i} \otimes d_{i} \in C_{1}^{\prime} \otimes C_{2}$. For $\Lambda \in \int_{B}^{r}, \Delta(\Lambda x)=0$. Therefore,

$$
\sum_{i, j} \Lambda_{j} a_{i} \otimes \Lambda_{j}^{\prime} b_{i}+\sum_{i, j} \Lambda_{j} c_{i} \otimes \Lambda_{j}^{\prime} d_{i}=0
$$

where $\Delta(\Lambda)=\sum_{j} \Lambda_{i} \otimes \Lambda_{i}^{\prime}$. Thus,

$$
\begin{align*}
\sum_{i, j} \Lambda_{j} a_{i} \otimes \Lambda_{j}^{\prime} b_{i} & =0 \tag{1}\\
\sum_{i, j} \Lambda_{j} c_{i} \otimes \Lambda_{j}^{\prime} d_{i} & =0 \tag{2}
\end{align*}
$$

Applying $i d \otimes \varepsilon$ to equation (1) and $\varepsilon \otimes i d$ to equation (2), we have

$$
\begin{aligned}
& \Lambda\left(\sum_{i} \varepsilon\left(b_{i}\right) a_{i}\right)=0 \\
& \Lambda\left(\sum_{i} \varepsilon\left(c_{i}\right) d_{i}\right)=0 .
\end{aligned}
$$

By Proposition 1, $\varepsilon\left(\sum_{i} \varepsilon\left(b_{i}\right) a_{i}\right)=0$ and $\varepsilon\left(\sum_{i} \varepsilon\left(c_{i}\right) d_{i}\right)=0$. Thus, $\varepsilon(x)=0$. Since $C_{1} \wedge C_{2}$ is obviously a B-submodule coalgebra, $C_{1} \wedge C_{2}$ is projective by Proposition 1. Obviously, C_{1}, C_{2} are left $\left(C_{1} \wedge C_{2}, B\right)$-Hopf modules and so is $C_{1}+C_{2}$. By [2](Theorem 4), $C_{1}+C_{2}$ is a projective B-module.
(ii) Let $x \in \sum_{i \in I} C_{i}$ such that $\Lambda x=0$. Then there exist $C_{i_{1}}, \cdots, C_{i_{n}}$ such that $x \in \sum_{k=1}^{n} C_{i_{k}}$. By (i), $\sum_{k=1}^{n} C_{i_{k}}$ is projective and so $\varepsilon(x)=0$ by Proposition 1 . Hence $\sum_{i \in I} C_{i}$ is B-projective by Proposition 1.
Corollary 8. Let B be a finite dimensional Hopf algebra ${ }^{1}$. For any left B-module coalgebra C, there exists a unique maximal projective B-submodule coalgebra $P(C)$. Moreover, $P(C)$ is co-idempotent, i.e. $P(C) \wedge P(C)=P(C)$.

Proof. Let \mathcal{S} be the set of all projective B-submodule coalgebras of C. By Proposition 7, $P(C)=\sum_{D \in \mathcal{S}} D$ is then the largest projective B-submodule coalgebra of $C . P(C) \wedge P(C)=P(C)$ is a direct consequence of Proposition 7 (i) and the maximality of $P(C)$.

Corollary 9. Let B be a finite dimensional Hopf algebra and C a B-module coalgebra. (i) If D is a B-submodule coalgebra of $C, P(D)=P(C) \cap D$. (ii) If C is a direct sum of B-submodule coalgebras $\left\{C_{i}\right\}$, then $P(C)=\bigoplus_{i} P\left(C_{i}\right)$.
Proof. (i) By Corollary $8, P(D) \subseteq P(C)$ and hence $P(D) \subseteq P(C) \cap D$. Conversely, by Theorem 4 of [2], $P(C) \cap D$ is a projective B-module. Then, we have $P(C) \cap D \subseteq$ $P(D)$.
(ii) If $C=\bigoplus_{i} C_{i}$ as B-module coalgebra, it follows by Theorem 3 of [3] that $P(C)=\bigoplus_{i}\left(P(C) \cap C_{i}\right)$. Hence, by (i), $P(C)=\bigoplus_{i} P\left(C_{i}\right)$.

Corollary 10. Let B be a finite dimensional Hopf algebra and C a B-module coalgebra. The following statements are equivalent :

[^1](i) C is a projective B-module,
(ii) $B C_{0}$ is B-projective, where C_{0} is the coradical of C,
(iii) $B D$ is B-projective for any simple subcoalgebra D of C.

Proof. (i) \Rightarrow (iii) is a direct consequence of Theorem 4 in [2].
(iii) \Rightarrow (ii) follows from Proposition 7 (ii).
(ii) \Rightarrow (i) Since $B C_{0}$ is B-projective, by Proposition 7 (i), $\bigwedge^{n} B C_{0}$ is B-projective for any $n \geq 1$. Hence, by Proposition 7 (ii), $\sum_{n \geq 1} \bigwedge^{n} B C_{0}$ is B-projective. The result follows from the fact that $C=\sum_{n \geq 1} \bigwedge^{n} B \bar{C}_{0}$.

5. Normal subHopf algebras

Definition 11. Let A be any Hopf algebra, B a subHopf algebra of A and S the antipode of A.
(1) B is left normal if

$$
a \triangleright b=\sum a_{1} b S\left(a_{2}\right) \in B
$$

for $a \in A$ and $b \in B$.
(2) B is right normal if

$$
b \triangleleft a=\sum S\left(a_{1}\right) b a_{2} \in B
$$

for $a \in A$ and $b \in B$.
(3) B is normal if B is left normal and right normal.

It is well known that if B is a normal subHopf algebra of A, then $A B^{+}=B^{+} A$ (cf. [4], 3.4.2). However, the converse is open. If A is left or right faithfully flat over B, the converse is known to be true (cf. [4], 3.4.3 and [9], 4.4). In this section, we will show that the converse statement holds if B is finite dimensional which enhances the result in [4], 3.4.4.

Lemma 12. Let B be a finite dimensional Hopf algebra and C a left B-module coalgebra. Let $\eta_{C}: C \longrightarrow C /\left(B^{+} C\right)$ be the canonical B-module coalgebra homomorphism. Then, $\eta_{C}\left({ }_{C} I\right)$ is a subcoalgebra of $C /\left(B^{+} C\right)$. In particular, if B is a subHopf algebra of a Hopf algebra A, then $\eta_{A}\left({ }_{A} I\right)$ is a right A-submodule coalgebra of $\eta_{A}(A)$.
Proof. To simplify, we write \bar{C} for $C /\left(B^{+} C\right)$. Clearly, \bar{C} is a left B-module coalgebra and C admits a natural left and right \bar{C}-comodule structure. Let Λ be a nonzero element in \int_{B}^{r}. Consider the map $f_{C}: \bar{C} \longrightarrow C$ defined by

$$
f_{C}\left(\eta_{C}(x)\right)=\Lambda x
$$

for $x \in C$ (see [7], p3348). Clearly, the map is well-defined and is a left and right \bar{C}-comodule map. Therefore, ker f_{C} is a subcoalgebra of \bar{C}. Notice that ker $f_{C}=\eta_{C}\left({ }_{C} I\right)$ and hence the result follows. If B is a subHopf algebra of A, then η_{A} is a right A-module map. Since ${ }_{A} I$ is a right A-submodule of $A, \eta_{A}\left({ }_{A} I\right)$ is a right A-submodule of $\eta_{A}(A)$.

Corollary 13. Let B be a finite dimensional Hopf algebra and C a left B-module coalgebra. If C is a projective B-module, ${ }_{C} I=B^{+} C$.
Proof. Clearly, $B^{+} C \subseteq C_{C}$. It suffices to show that ${ }_{C} I \subseteq B^{+} C$. By Proposition $1,{ }_{C} I \subseteq \operatorname{ker} \varepsilon_{C}$. Therefore, $\eta_{C}\left({ }_{C} I\right) \subseteq \operatorname{ker} \varepsilon_{\bar{C}}$. By Lemma $12 \eta_{C}\left({ }_{C} I\right)$ is also a subcoalgebra of \bar{C}. Therefore, $\eta_{C}\left({ }_{C} I\right)=0$ and so ${ }_{C} I \subseteq B^{+} C$.

Lemma 14. Let A be a Hopf algebra and B a finite dimensional subHopf algebra of A. If A is not a left projective B-module, then

$$
{ }_{A} I I_{A}+A B^{+} A=A
$$

Proof. By Lemma $12,{ }_{A} I /\left(B^{+} A\right)$ is a right A-submodule coalgebra of $A /\left(B^{+} A\right)$. Note that $A B^{+} A$ is a Hopf ideal of A. Thus $A B^{+} A /\left(B^{+} A\right)$ is also a coideal of $A / B^{+} A$. Therefore, $\bar{A} \bar{I}=\left({ }_{A} I+A B^{+} A\right) / A B^{+} A$ is a right A-submodule coalgebra of $A / A B^{+} A$. In particular, $A \bar{I}$ is a right ideal of $A / A B^{+} A$. Since A is not a projective B-module, ${ }_{A} I \nsubseteq A^{+}$by Proposition 1. Hence ${ }_{A} I \nsubseteq A B^{+} A$, and so ${ }_{A} \bar{I}$ is a non-zero right ideal as well as coideal of $A / A B^{+} A$. Therefore, ${ }_{A} \bar{I}=A / A B^{+} A$ (see [8], p. 108, Exercise 5). Thus, we have

$$
{ }_{A} I+A B^{+} A=A
$$

By Corollary 2, A is not a projective right B-module. By virtue of Proposition 1 (ii), we similarly obtain

$$
I_{A}+A B^{+} A=A
$$

Hence, we have ${ }_{A} I I_{A}+A B^{+} A=A$.
Theorem 15. Let A be a Hopf algebra and B a finite dimensional subHopf algebra of A. If $A B^{+} \subseteq B^{+} A$ or $B^{+} A \subseteq A B^{+}$, then A is a free left (right) B-module.

Proof. By the Nichols-Zoeller Theorem [5], it suffices to consider the case when A is infinite dimensional. By Schneider's Theorem ([7], Theorem 2.4), it suffices to show that A is a left projective B-module. Suppose A is not a projective left B-module. By Lemma 14, we have

$$
{ }_{A} I I_{A}+A B^{+} A=A
$$

If $A B^{+} \subseteq B^{+} A$, then $A B^{+} A=B^{+} A$. Thus, ${ }_{A} I I_{A}+B^{+} A=A$ and so $\int_{B}^{r} A=0$, contradiction! Similarly, if $B^{+} A \subseteq A B^{+}$, then ${ }_{A} I I_{A}+A B^{+}=A$ and hence $A \int_{B}^{l}=0$, contradiction! Therefore, A is a projective B-module.

Corollary 16. Let A be a Hopf algebra and B a finite dimensional subHopf algebra

 of A. Then(i) B is left normal iff $A B^{+} \subseteq B^{+} A$;
(ii) B is right normal iff $B^{+} A \subseteq A B^{+}$;
(iii) B is normal iff $B^{+} A=A B^{+}$.
(iv) If the antipode of A is bijective, B is left normal iff B is right normal.

Proof. (i) If B is left normal, it is obvious that $A B^{+} \subseteq B^{+} A$ (see [9], 1.4). Conversely, assume $A B^{+} \subseteq B^{+} A$. By Theorem $15, A$ is a free right B-module and hence faithfully flat. By Theorem 4.4 of [9], B is left normal. Similarly, we can prove (ii).
(iii) An immediate consequence of (i) and (ii).
(iv) A direct consequence of Theorem 15 and Corollary 4.5 of [9].

Acknowledgment

I would like to express my appreciation to Professors E. Taft and C. Weibel for their helpful suggestions and encouragement while writing this paper. I also wish to thank the referee for his or her valuable comments.

References

[1] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Interscience, New York, 1962). MR 90g:16001
[2] Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11 (1983), 243-255. MR 84a:16014
[3] I. Kaplansky, Bialgebras, Chicago Press, 1975. MR 55:8087
[4] S. Montgomery, Hopf algebras and their actions on rings, CBMS Lecture Notes, vol. 82, Amer. Math. Soc., Providence, RI, 1993. MR 94i:16019
[5] W. D. Nichols and M. B. Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), 381-385. MR 90c:16008
[6] D. E. Radford, Freeness (projectivity) criteria for Hopf algebras over Hopf subalgebras, J. Pure Appl. Algebra 11 (1977) 15-28. MR 57:16344
[7] H.-J. Schneider, Some remarks on exact sequences of quantum groups. Comm. Algebra 21 (1993), 3337-3357. MR 94e:17026
[8] M. Sweedler, Hopf algebras, Benjamin, New York, 1969. MR 40:5705
[9] M. Takeuchi, Quotient spaces for Hopf algebras. Comm. Algebra 22 (1994), 2503-2523. MR 95h:16055

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903 Current address: Department of Mathematics, University of California at Santa Cruz, Santa Cruz, California 95064

E-mail address: shng@math.ucsc.edu

[^0]: Received by the editors September 27, 1996 and, in revised form, April 3, 1997.
 1991 Mathematics Subject Classification. Primary 16W30.

[^1]: ${ }^{1}$ After this paper was written, the author was able to eliminate the finite dimension hypothesis on B using different techniques.

