PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 11, November 1998, Pages 3191–3198 S 0002-9939(98)04599-7

ON THE PROJECTIVITY OF MODULE COALGEBRAS

SIU-HUNG NG

(Communicated by Ken Goodearl)

ABSTRACT. In this paper, we derive some criteria for the projectivity of a module coalgebra over a finite dimensional Hopf algebra. In particular, we show that any Hopf algebra over a field of characteristic zero is faithfully flat over its group-like subHopf algebra. Finally, we prove that if B is a finite dimensional subHopf algebra of a Hopf algebra A, then B is normal in A if and only if $AB^+ = B^+A$. This improves a result by S. Montgomery (1993).

1. Preliminary

Let B be a Hopf algebra over the field k. For any left B-module M, let M^B denote the space of invariants of M, that is

$$M^B = \{ x \in M \mid bx = \varepsilon(b)x \text{ for } b \in B \},\$$

where ε is the counit of *B*. If *B* is finite dimensional, B^B is just the space of left integrals \int_B^l . Similarly, we write \int_B^r for the space of right integrals of *B*. We let ${}_MI$ denote the left *B*-submodule which consists of the elements $x \in M$ such that $\int_B^r x = 0$. Similarly, if *M* is a right *B*-module, I_M denotes the *B*-submodule which annihilates the left integrals of *B*.

For any left *B*-modules M and N, the space Hom(M, N) of *k*-linear homomorphisms admits a natural left *B*-module structure given by

$$(h \cdot f)(x) = \sum_{(h)} h_1 f(S(h_2)x)$$

for $f \in \text{Hom}(M, N)$, $x \in M$, $h \in B$, where S is the antipode of B. In particular, if N is the trivial B-module k, the B-module action on $M^* = \text{Hom}(M, k)$ is given by

$$(b \to f)(x) = f(S(b)x)$$

for $f \in M^*$, $x \in M$ and $b \in B$.

A left (right) *B*-module *C* is called a left (right) *B*-module coalgebra if *C* is a coalgebra such that the diagonal map $\Delta_C : C \longrightarrow C \otimes C$ and the counit $\varepsilon_C : C \longrightarrow k$ are left (right) *B*-module maps, where *k* is considered as a trivial *B*-module. We write C^+ for the coideal $C \cap \ker \varepsilon_C$. We will call $D \subseteq C$ a *B*-submodule coalgebra if *D* is a subcoalgebra of *C* and is invariant under the *B*-action. If $X, Y \subseteq C$, recall [8] that the "wedge" $X \wedge Y$ is defined as

$$X \wedge Y = \Delta_C^{-1}(X \otimes C + C \otimes Y).$$

©1998 American Mathematical Society

Received by the editors September 27, 1996 and, in revised form, April 3, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 16W30.

We define $\bigwedge^1 X = X$ and $\bigwedge^{n+1} X = X \land (\bigwedge^n X)$. In particular, if $C_0 \subseteq X$,

$$\sum_{n \ge 1} \bigwedge^n X = C$$

where C_0 is the coradical of C (cf. [4],[8]).

Let C be a B-module coalgebra. M is a called a left (C, B)-Hopf module if M is a left C-comodule and a left B-module such that the comodule structure map $\rho_M : M \longrightarrow C \otimes M$ is a left B-module map. If C is also projective as a B-module, we simply call C a projective B-module coalgebra. The category ${}^C_B\mathcal{M}$ of all left (C, B)-Hopf modules is an abelian category.

2. PROJECTIVITY OF MODULE COALGEBRA

Proposition 1. Let B be a finite dimensional Hopf algebra.

- (i) If C is a left B-module coalgebra, then C is a projective B-module if and only if $_{CI} \subseteq \ker \varepsilon_{C}$.
- (ii) If C is a right B-module coalgebra, then C is a projective B-module if and only if $I_C \subseteq \ker \varepsilon_C$.

Proof. (i) Let us consider the *B*-module Hom(C, B) of linear homomorphisms from C to B. As a *B*-module, Hom(C, B) is isomorphic to $B \otimes C^*$ under the identification

$$(b \otimes f)(x) = f(x)b$$

for $f \in C^*$, $x \in C$ and $b \in B$. Let C_0^* be the trivial *B*-module with the same underlying space as C^* . It is easy to see that $B \otimes C_0^*$ is isomorphic to $B \otimes C^*$ under the *B*-module isomorphism $\phi : B \otimes C_0^* \longrightarrow B \otimes C^*$ given by

$$\phi(b\otimes f) = \sum_{(b)} b_1 \otimes (b_2 \multimap f)$$

for $b \in B$ and $f \in C^*$. Therefore, $\phi((B \otimes C_0^*)^B) = (B \otimes C^*)^B = \text{Hom}_B(C, B)$. Since $(B \otimes C_0^*)^B = \int_B^l \otimes C^*$,

$$\operatorname{Hom}_B(C,B) = \sum_{(\Lambda)} \Lambda_1 \otimes \Lambda_2 \to C^*$$

where Λ is a non-zero left integral of B. Let $f \in C^*$ and $x \in C$.

$$\varepsilon_B \circ \sum_{(\Lambda)} (\Lambda_1 \otimes \Lambda_2 \to f)(x) = \varepsilon_B(\Lambda_1) f(S(\Lambda_2)x)$$
$$= f(S(\Lambda)x) \,.$$

Note that $S(\Lambda)$ is a right non-zero integral of B. Therefore, $_{C}I \subseteq \ker \varepsilon_{C}$ iff there exists $f \in C^{*}$ such that $f(S(\Lambda)x) = \varepsilon_{C}(x)$ for $x \in C$ which is equivalent to $\varepsilon_{B} \circ \sum_{(\Lambda)} (\Lambda_{1} \otimes \Lambda_{2} \to f) = \varepsilon_{C}$. By virtue of Doi's Theorem ([2], Corollary 1), the proof is completed. (ii) can be proved similarly.

A particular case of a result of Takeuchi ([9], Corollary 3.5) is then an immediate consequence of the above proposition.

Corollary 2. Let $B \subseteq A$ be a Hopf algebras, with B finite dimensional. Then A is a left projective B-module iff A is a right projective B-module.

Proof. If A is not projective as a left B-module, then by Proposition 1 there exists $a \in A$ such that $\int_B^r a = 0$ and $\varepsilon_A(a) \neq 0$. Let S be the antipode of A. Then $S(a)S(\int_B^r) = 0$ and $\varepsilon_A(S(a)) = \varepsilon_A(a) \neq 0$. Since $S(\int_B^r) = \int_B^l A$ is not a right projective B-module by Proposition 1.

3. PROJECTIVITY FOR HOPF ALGEBRAS OVER GROUP-LIKE SUBALGEBRAS

Let A be a Hopf algebra and B a subHopf algebra of A. Following [9], we use "B-projective" to mean "projective B-module".

Lemma 3. If the antipode of B is bijective, then the following statements are equivalent :

- (a) A is left B faithfully flat;
- (b) A is right B faithfully flat;
- (c) A is left B-projective;
- (d) A is right B-projective;
- (e) A is a left B-projective generator;
- (f) A is a right B-projective generator;
- (g) for any simple subcoalgebra C of A, BC is a projective B-module;
- (h) if $M \in^{A}_{B} \mathcal{M}$ and M = BV for some simple left A-comodule V, then M is a projective B-module;
- (i) for $M \in {}^{A}_{B}\mathcal{M}$, M is left B-flat.

Proof. By [9], Corollary 3.5, (a) to (f) are all equivalent statements. (e) \Rightarrow (g) and (g) \Rightarrow (h) are consequences of [2], Theorem 4.

(h) \Rightarrow (i) Let $M \in_B^A \mathcal{M}$ and \mathcal{S} be the set of all left (A, B)-subcomodules J of M such that J is a flat left B-module. The assumption (h) assures that $\mathcal{S} \neq \emptyset$. Since flatness is preserved under direct limit, by Zorn's Lemma there is a maximal element $J_0 \in \mathcal{S}$. We claim that $J_0 = M$. If not, there exists a simple left A-subcomodule \overline{V} of M/J_0 . Then $B\overline{V}$ is a flat B-module. Let $V \supset J_0$ be the left (A, B)-submodule of M such that $V/J_0 = B\overline{V}$. Then $V/J_0 = B\overline{V}$ and we have the exact sequence in $\frac{A}{B}\mathcal{M}$

$$0 \longrightarrow J_0 \longrightarrow V \longrightarrow B\overline{V} \longrightarrow 0.$$

As flatness is preserved under extension, V is flat and hence $V \in S$. This contradicts the maximality of J_0 . Therefore $J_0 = M$, and hence M is left B flat.

(i) \Rightarrow (a) Let N be a non-zero right B-module. By applying the functor $N \otimes_B ?$ to the exact sequence of left B-modules :

$$0 \longrightarrow B \longrightarrow A \longrightarrow A/B \longrightarrow 0$$

we have the long exact sequence

$$\cdots \longrightarrow \operatorname{Tor}_1(N, A/B) \longrightarrow N \otimes_B B \longrightarrow N \otimes_B A \longrightarrow N \otimes_B (A/B) \longrightarrow 0.$$

By assumption (i), A and A/B are left B-flat since they are left (A, B)-modules. Therefore $\text{Tor}_1(N, A/B) = 0$, and so $N \otimes_B A \neq 0$. Hence A is left B faithfully flat.

Remark. If B is a Hopf subalgebra of A with bijective antipode, then by virtue of the above lemma, the adjectives "left" and "right" can be dropped. For example, we will simply say A is faithfully flat over B instead of A is left (or right) B faithfully flat.

Let G(A) denote the set of all group-like elements of A. Let $G \subseteq G(A)$ be a subgroup of G(A) and B = k[G].

Lemma 4 ([6], Proposition 2). If C is a simple subcoalgebra of A, then

- (i) $G_C = \{g \in G \mid gC = C\}$ is a finite subgroup of G, and
- (ii) $BC = \bigoplus_{a \in S} gC$, where S is a set of left coset representatives of G_C in G.

Proposition 5. The following statements are equivalent :

- (i) A is k[G]-projective;
- (ii) for any subgroup H of G, A is projective over k[H];
- (iii) for any finite subgroup H of G, A is projective over k[H].

Proof. (i) \Rightarrow (ii) Suppose A is left k[G]-projective. Then A is a direct summand of a free k[G]-module F. Since k[G] is a free left k[H]-module, F is a free left k[H]-module. Hence A is left k[H]-projective.

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i) Assume that A is left k[H]-projective for any finite subgroup H of G. Let C be a simple subcoalgebra of A. By Lemma 4, $H = G_C$ is a finite subgroup of G. Consider the map $\mu : B \otimes_{k[H]} C \longrightarrow BC$, $\mu : b \otimes c \mapsto bc$. Clearly, μ is left B-linear and surjective. By Lemma 4 (ii), μ is also injective and hence

$$B \otimes_{k[H]} C \cong BC$$

as *B*-modules. By Lemma 3, *C* is a projective k[H]-module. Since the functor $B \otimes_{k[H]}$? preserves projective objects, *BC* is *B*-projective. It follows from Lemma 3 that *A* is *B*-projective.

Theorem 6. Let A be a Hopf algebra over a field k and G be a subgroup of G(A).

- (i) If char k = 0, A is faithfully flat over k[G].
- (ii) If char k = p > 0, A is faithfully flat over k[G] if and only if A is projective over k[H] for any finite p-subgroup of G.

Proof. (i) For any finite subgroup H of G, k[H] is semisimple by Maschke's Theorem. Hence, every left k[H]-module is projective and, in particular, A is projective over k[H]. By Proposition 5, A is faithfully flat over k[G].

(ii) Let H be a finite subgroup of G and N a p-Sylow subgroup of H. Notice that every k[H]-module M can be embedded into a free k[H]-module F. If M is k[N]-projective, then M is also k[N]-injective and so M is a summand of F as k[N]-module. Therefore, M is a summand of F as k[H]-module (cf. [1], 63.7). Hence, the result follows from Proposition 5.

4. The existence of a unique maximal projective module subcoalgebra

Proposition 7. Let B be a finite dimensional Hopf algebra and C a left B-module coalgebra.

- (i) If C_1 and C_2 are projective B-submodule coalgebras, then $C_1 \wedge C_2$ and $C_1 + C_2$ are B-projective.
- (ii) Let {C_i}_{i∈J} be a family of projective B-submodule coalgebras of C. Then ∑_{i∈J}C_i is also a projective B-module.

Proof. Since B is a Frobenius algebra, C_1 is injective as a B-module. Let C'_1 be a B-submodule of C such that $C = C_1 \oplus C'_1$. Then $C_1 \otimes C + C \otimes C_2 = C_1 \otimes C \oplus C'_1 \otimes C_2$ as a B-module. Let $x \in C_1 \wedge C_2$ such that $\int_B^r x = 0$. Then $\Delta(x) = \sum_i a_i \otimes b_i + \sum_i c_i \otimes d_i$ where $\sum_i a_i \otimes b_i \in C_1 \otimes C$ and $\sum_i c_i \otimes d_i \in C'_1 \otimes C_2$. For $\Lambda \in \int_B^r$, $\Delta(\Lambda x) = 0$. Therefore,

$$\sum_{i,j} \Lambda_j a_i \otimes \Lambda'_j b_i + \sum_{i,j} \Lambda_j c_i \otimes \Lambda'_j d_i = 0,$$

where $\Delta(\Lambda) = \sum_{j} \Lambda_i \otimes \Lambda'_i$. Thus,

(1)
$$\sum_{i,j} \Lambda_j a_i \otimes \Lambda'_j b_i = 0,$$

(2)
$$\sum_{i,j} \Lambda_j c_i \otimes \Lambda'_j d_i = 0.$$

Applying $id \otimes \varepsilon$ to equation (1) and $\varepsilon \otimes id$ to equation (2), we have

$$\begin{split} \Lambda(\sum_i \varepsilon(b_i)a_i) &= 0, \\ \Lambda(\sum \varepsilon(c_i)d_i) &= 0. \end{split}$$

By Proposition 1, $\varepsilon(\sum_i \varepsilon(b_i)a_i) = 0$ and $\varepsilon(\sum_i \varepsilon(c_i)d_i) = 0$. Thus, $\varepsilon(x) = 0$. Since $C_1 \wedge C_2$ is obviously a *B*-submodule coalgebra, $C_1 \wedge C_2$ is projective by Proposition 1. Obviously, C_1 , C_2 are left $(C_1 \wedge C_2, B)$ -Hopf modules and so is $C_1 + C_2$. By [2](Theorem 4), $C_1 + C_2$ is a projective *B*-module.

(ii) Let $x \in \sum_{i \in I} C_i$ such that $\Lambda x = 0$. Then there exist C_{i_1}, \dots, C_{i_n} such that $x \in \sum_{k=1}^n C_{i_k}$. By (i), $\sum_{k=1}^n C_{i_k}$ is projective and so $\varepsilon(x) = 0$ by Proposition 1. Hence $\sum_{i \in I} C_i$ is *B*-projective by Proposition 1.

Corollary 8. Let B be a finite dimensional Hopf algebra ¹. For any left B-module coalgebra C, there exists a unique maximal projective B-submodule coalgebra P(C). Moreover, P(C) is co-idempotent, i.e. $P(C) \wedge P(C) = P(C)$.

Proof. Let S be the set of all projective B-submodule coalgebras of C. By Proposition 7, $P(C) = \sum_{D \in S} D$ is then the largest projective B-submodule coalgebra of C. $P(C) \wedge P(C) = P(C)$ is a direct consequence of Proposition 7 (i) and the maximality of P(C).

Corollary 9. Let B be a finite dimensional Hopf algebra and C a B-module coalgebra. (i) If D is a B-submodule coalgebra of C, $P(D) = P(C) \cap D$. (ii) If C is a direct sum of B-submodule coalgebras $\{C_i\}$, then $P(C) = \bigoplus_i P(C_i)$.

Proof. (i) By Corollary 8, $P(D) \subseteq P(C)$ and hence $P(D) \subseteq P(C) \cap D$. Conversely, by Theorem 4 of [2], $P(C) \cap D$ is a projective *B*-module. Then, we have $P(C) \cap D \subseteq P(D)$.

(ii) If $C = \bigoplus_i C_i$ as *B*-module coalgebra, it follows by Theorem 3 of [3] that $P(C) = \bigoplus_i (P(C) \cap C_i)$. Hence, by (i), $P(C) = \bigoplus_i P(C_i)$.

Corollary 10. Let B be a finite dimensional Hopf algebra and C a B-module coalgebra. The following statements are equivalent :

¹After this paper was written, the author was able to eliminate the finite dimension hypothesis on B using different techniques.

- (i) C is a projective B-module,
- (ii) BC_0 is B-projective, where C_0 is the coradical of C,
- (iii) BD is B-projective for any simple subcoalgebra D of C.

Proof. (i) \Rightarrow (iii) is a direct consequence of Theorem 4 in [2].

(iii) \Rightarrow (ii) follows from Proposition 7 (ii).

(ii) \Rightarrow (i) Since BC_0 is *B*-projective, by Proposition 7 (i), $\bigwedge^n BC_0$ is *B*-projective for any $n \ge 1$. Hence, by Proposition 7 (ii), $\sum_{n\ge 1} \bigwedge^n BC_0$ is *B*-projective. The result follows from the fact that $C = \sum_{n\ge 1} \bigwedge^n BC_0$.

5. Normal subhopf algebras

Definition 11. Let A be any Hopf algebra, B a subHopf algebra of A and S the antipode of A.

(1) B is left normal if

$$a \triangleright b = \sum a_1 b S(a_2) \in B$$

for $a \in A$ and $b \in B$.

(2) B is right normal if

$$b \triangleleft a = \sum S(a_1)ba_2 \in B$$

for $a \in A$ and $b \in B$.

(3) B is normal if B is left normal and right normal.

It is well known that if B is a normal subHopf algebra of A, then $AB^+ = B^+A$ (cf. [4], 3.4.2). However, the converse is open. If A is left or right faithfully flat over B, the converse is known to be true (cf. [4], 3.4.3 and [9], 4.4). In this section, we will show that the converse statement holds if B is finite dimensional which enhances the result in [4], 3.4.4.

Lemma 12. Let B be a finite dimensional Hopf algebra and C a left B-module coalgebra. Let $\eta_C : C \longrightarrow C/(B^+C)$ be the canonical B-module coalgebra homomorphism. Then, $\eta_C(_CI)$ is a subcoalgebra of $C/(B^+C)$. In particular, if B is a subHopf algebra of a Hopf algebra A, then $\eta_A(_AI)$ is a right A-submodule coalgebra of $\eta_A(A)$.

Proof. To simplify, we write \overline{C} for $C/(B^+C)$. Clearly, \overline{C} is a left *B*-module coalgebra and *C* admits a natural left and right \overline{C} -comodule structure. Let Λ be a nonzero element in \int_B^r . Consider the map $f_C : \overline{C} \longrightarrow C$ defined by

 $f_C(\eta_C(x)) = \Lambda x$

for $x \in C$ (see [7], p3348). Clearly, the map is well-defined and is a left and right \overline{C} -comodule map. Therefore, ker f_C is a subcoalgebra of \overline{C} . Notice that ker $f_C = \eta_C(CI)$ and hence the result follows. If B is a subHopf algebra of A, then η_A is a right A-module map. Since ${}_{A}I$ is a right A-submodule of A, $\eta_A({}_{A}I)$ is a right A-submodule of $\eta_A(A)$.

Corollary 13. Let B be a finite dimensional Hopf algebra and C a left B-module coalgebra. If C is a projective B-module, $_{CI} = B^{+}C$.

Proof. Clearly, $B^+C \subseteq {}_CI$. It suffices to show that ${}_{C}I \subseteq B^+C$. By Proposition 1, ${}_{C}I \subseteq \ker \varepsilon_C$. Therefore, $\eta_C({}_{C}I) \subseteq \ker \varepsilon_{\overline{C}}$. By Lemma 12 $\eta_C({}_{C}I)$ is also a subcoalgebra of \overline{C} . Therefore, $\eta_C({}_{C}I) = 0$ and so ${}_{C}I \subseteq B^+C$.

Lemma 14. Let A be a Hopf algebra and B a finite dimensional subHopf algebra of A. If A is not a left projective B-module, then

$$_{A}II_{A} + AB^{+}A = A.$$

Proof. By Lemma 12, ${}_{A}I/(B^{+}A)$ is a right A-submodule coalgebra of $A/(B^{+}A)$. Note that $AB^{+}A$ is a Hopf ideal of A. Thus $AB^{+}A/(B^{+}A)$ is also a coideal of $A/B^{+}A$. Therefore, ${}_{A}\overline{I} = ({}_{A}I + AB^{+}A)/AB^{+}A$ is a right A-submodule coalgebra of $A/AB^{+}A$. In particular, ${}_{A}\overline{I}$ is a right ideal of $A/AB^{+}A$. Since A is not a projective B-module, ${}_{A}I \not\subseteq A^{+}$ by Proposition 1. Hence ${}_{A}I \not\subseteq AB^{+}A$, and so ${}_{A}\overline{I}$ is a non-zero right ideal as well as coideal of $A/AB^{+}A$. Therefore, ${}_{A}\overline{I} = A/AB^{+}A$ (see [8], p. 108, Exercise 5). Thus, we have

$$_{A}I + AB^{+}A = A$$

By Corollary 2, A is not a projective right B-module. By virtue of Proposition 1 (ii), we similarly obtain

$$I_A + AB^+A = A.$$

Hence, we have $_{A}II_{A} + AB^{+}A = A$.

Theorem 15. Let A be a Hopf algebra and B a finite dimensional subHopf algebra of A. If $AB^+ \subseteq B^+A$ or $B^+A \subseteq AB^+$, then A is a free left (right) B-module.

Proof. By the Nichols-Zoeller Theorem [5], it suffices to consider the case when A is infinite dimensional. By Schneider's Theorem ([7], Theorem 2.4), it suffices to show that A is a left projective B-module. Suppose A is not a projective left B-module. By Lemma 14, we have

$$_AII_A + AB^+A = A.$$

If $AB^+ \subseteq B^+A$, then $AB^+A = B^+A$. Thus, ${}_{A}II_A + B^+A = A$ and so $\int_B^r A = 0$, contradiction ! Similarly, if $B^+A \subseteq AB^+$, then ${}_{A}II_A + AB^+ = A$ and hence $A\int_B^l = 0$, contradiction ! Therefore, A is a projective B-module.

Corollary 16. Let A be a Hopf algebra and B a finite dimensional subHopf algebra of A. Then

- (i) B is left normal iff $AB^+ \subseteq B^+A$;
- (ii) B is right normal iff $B^+A \subseteq AB^+$;
- (iii) B is normal iff $B^+A = AB^+$.
- (iv) If the antipode of A is bijective, B is left normal iff B is right normal.

Proof. (i) If B is left normal, it is obvious that $AB^+ \subseteq B^+A$ (see [9], 1.4). Conversely, assume $AB^+ \subseteq B^+A$. By Theorem 15, A is a free right B-module and hence faithfully flat. By Theorem 4.4 of [9], B is left normal. Similarly, we can prove (ii).

(iii) An immediate consequence of (i) and (ii).

(iv) A direct consequence of Theorem 15 and Corollary 4.5 of [9].

Acknowledgment

I would like to express my appreciation to Professors E. Taft and C. Weibel for their helpful suggestions and encouragement while writing this paper. I also wish to thank the referee for his or her valuable comments.

References

- C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Interscience, New York, 1962). MR 90g:16001
- [2] Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11 (1983), 243-255. MR 84a:16014
- [3] I. Kaplansky, Bialgebras, Chicago Press, 1975. MR 55:8087
- [4] S. Montgomery, Hopf algebras and their actions on rings, CBMS Lecture Notes, vol. 82, Amer. Math. Soc., Providence, RI, 1993. MR 94i:16019
- [5] W. D. Nichols and M. B. Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), 381-385. MR 90c:16008
- [6] D. E. Radford, Freeness (projectivity) criteria for Hopf algebras over Hopf subalgebras, J. Pure Appl. Algebra 11 (1977) 15-28. MR 57:16344
- [7] H.-J. Schneider, Some remarks on exact sequences of quantum groups. Comm. Algebra 21 (1993), 3337-3357. MR 94e:17026
- [8] M. Sweedler, Hopf algebras, Benjamin, New York, 1969. MR 40:5705
- [9] M. Takeuchi, Quotient spaces for Hopf algebras. Comm. Algebra 22 (1994), 2503-2523. MR 95h:16055

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903 Current address: Department of Mathematics, University of California at Santa Cruz, Santa Cruz, California 95064

E-mail address: shng@math.ucsc.edu