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ON THE PROJECTIVITY OF MODULE COALGEBRAS

SIU-HUNG NG

(Communicated by Ken Goodearl)

Abstract. In this paper, we derive some criteria for the projectivity of a
module coalgebra over a finite dimensional Hopf algebra. In particular, we
show that any Hopf algebra over a field of characteristic zero is faithfully flat
over its group-like subHopf algebra. Finally, we prove that if B is a finite
dimensional subHopf algebra of a Hopf algebra A, then B is normal in A if
and only if AB+ = B+A. This improves a result by S. Montgomery (1993).

1. Preliminary

Let B be a Hopf algebra over the field k. For any left B-module M , let MB

denote the space of invariants of M , that is

MB = {x ∈ M | bx = ε(b)x for b ∈ B} ,

where ε is the counit of B. If B is finite dimensional, BB is just the space of left
integrals

∫ l

B
. Similarly, we write

∫ r

B
for the space of right integrals of B. We let

MI denote the left B-submodule which consists of the elements x ∈ M such that∫ r

B
x = 0. Similarly, if M is a right B-module, IM denotes the B-submodule which

annihilates the left integrals of B.
For any left B-modules M and N , the space Hom(M, N) of k-linear homomor-

phisms admits a natural left B-module structure given by

(h · f)(x) =
∑
(h)

h1f(S(h2)x)

for f ∈ Hom(M, N), x ∈ M , h ∈ B, where S is the antipode of B. In particular, if
N is the trivial B-module k, the B-module action on M∗ = Hom(M, k) is given by

(b ⇁ f)(x) = f(S(b)x)

for f ∈ M∗, x ∈ M and b ∈ B.
A left (right) B-module C is called a left (right) B-module coalgebra if C is a

coalgebra such that the diagonal map ∆C : C −→ C⊗C and the counit εC : C −→ k
are left (right) B-module maps, where k is considered as a trivial B-module. We
write C+ for the coideal C ∩ ker εC . We will call D ⊆ C a B-submodule coalgebra
if D is a subcoalgebra of C and is invariant under the B-action. If X , Y ⊆ C,
recall [8] that the “wedge” X ∧ Y is defined as

X ∧ Y = ∆−1
C (X ⊗ C + C ⊗ Y ).
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We define
∧1

X = X and
∧n+1

X = X ∧ (
∧n

X). In particular, if C0 ⊆ X ,∑
n≥1

∧n
X = C ,

where C0 is the coradical of C (cf. [4],[8]).
Let C be a B-module coalgebra. M is a called a left (C, B)-Hopf module if M

is a left C-comodule and a left B-module such that the comodule structure map
ρM : M −→ C ⊗M is a left B-module map. If C is also projective as a B-module,
we simply call C a projective B-module coalgebra. The category C

BM of all left
(C, B)-Hopf modules is an abelian category.

2. Projectivity of module coalgebra

Proposition 1. Let B be a finite dimensional Hopf algebra.
(i) If C is a left B-module coalgebra, then C is a projective B-module if and only

if CI ⊆ ker εC .
(ii) If C is a right B-module coalgebra, then C is a projective B-module if and

only if IC ⊆ ker εC.

Proof. (i) Let us consider the B-module Hom(C, B) of linear homomorphisms from
C to B. As a B-module, Hom(C, B) is isomorphic to B⊗C∗ under the identification

(b⊗ f)(x) = f(x)b

for f ∈ C∗, x ∈ C and b ∈ B. Let C∗
0 be the trivial B-module with the same

underlying space as C∗. It is easy to see that B⊗C∗
0 is isomorphic to B⊗C∗ under

the B-module isomorphism φ : B ⊗ C∗
0 −→ B ⊗ C∗ given by

φ(b⊗ f) =
∑
(b)

b1 ⊗ (b2 ⇁ f)

for b ∈ B and f ∈ C∗. Therefore, φ((B ⊗ C∗
0 )B) = (B ⊗ C∗)B = HomB(C, B).

Since (B ⊗ C∗
0 )B =

∫ l

B ⊗C∗,

HomB(C, B) =
∑
(Λ)

Λ1 ⊗ Λ2 ⇁ C∗ .

where Λ is a non-zero left integral of B. Let f ∈ C∗ and x ∈ C.

εB ◦
∑
(Λ)

(Λ1 ⊗ Λ2 ⇁ f)(x) = εB(Λ1)f(S(Λ2)x)

= f(S(Λ)x) .

Note that S(Λ) is a right non-zero integral of B. Therefore, CI ⊆ ker εC iff there
exists f ∈ C∗ such that f(S(Λ)x) = εC(x) for x ∈ C which is equivalent to
εB ◦

∑
(Λ)(Λ1 ⊗ Λ2 ⇁ f) = εC . By virtue of Doi’s Theorem ([2], Corollary 1), the

proof is completed. (ii) can be proved similarly.

A particular case of a result of Takeuchi ([9], Corollary 3.5) is then an immediate
consequence of the above proposition.

Corollary 2. Let B ⊆ A be a Hopf algebras, with B finite dimensional. Then A
is a left projective B-module iff A is a right projective B-module.
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Proof. If A is not projective as a left B-module, then by Proposition 1 there exists
a ∈ A such that

∫ r

B a = 0 and εA(a) 6= 0. Let S be the antipode of A. Then
S(a)S(

∫ r

B
) = 0 and εA(S(a)) = εA(a) 6= 0. Since S(

∫ r

B
) =

∫ l

B
, A is not a right

projective B-module by Proposition 1.

3. Projectivity for Hopf algebras over group-like subalgebras

Let A be a Hopf algebra and B a subHopf algebra of A. Following [9], we use
“B-projective” to mean “projective B-module”.

Lemma 3. If the antipode of B is bijective, then the following statements are equiv-
alent :

(a) A is left B faithfully flat;
(b) A is right B faithfully flat;
(c) A is left B-projective;
(d) A is right B-projective;
(e) A is a left B-projective generator;
(f) A is a right B-projective generator;
(g) for any simple subcoalgebra C of A, BC is a projective B-module;
(h) if M ∈A

B M and M = BV for some simple left A-comodule V , then M is a
projective B-module;

(i) for M ∈A
BM, M is left B-flat.

Proof. By [9], Corollary 3.5, (a) to (f) are all equivalent statements. (e) ⇒ (g) and
(g) ⇒ (h) are consequences of [2], Theorem 4.

(h) ⇒ (i) Let M ∈A
B M and S be the set of all left (A, B)-subcomodules J of

M such that J is a flat left B-module. The assumption (h) assures that S 6= ∅.
Since flatness is preserved under direct limit, by Zorn’s Lemma there is a maximal
element J0 ∈ S. We claim that J0 = M . If not, there exists a simple left A-
subcomodule V of M/J0. Then BV is a flat B-module. Let V ⊃ J0 be the left
(A, B)-submodule of M such that V/J0 = BV . Then V/J0 = BV and we have the
exact sequence in A

BM
0 −→ J0 −→ V −→ BV −→ 0 .

As flatness is preserved under extension, V is flat and hence V ∈ S. This contradicts
the maximality of J0. Therefore J0 = M , and hence M is left B flat.

(i) ⇒ (a) Let N be a non-zero right B-module. By applying the functor N⊗B ?
to the exact sequence of left B-modules :

0 −→ B −→ A −→ A/B −→ 0

we have the long exact sequence

· · · −→ Tor1(N, A/B) −→ N ⊗B B −→ N ⊗B A −→ N ⊗B (A/B) −→ 0 .

By assumption (i), A and A/B are left B-flat since they are left (A, B)-modules.
Therefore Tor1(N, A/B) = 0, and so N ⊗B A 6= 0. Hence A is left B faithfully
flat.

Remark. If B is a Hopf subalgebra of A with bijective antipode, then by virtue of
the above lemma, the adjectives “left” and “right” can be dropped. For example, we
will simply say A is faithfully flat over B instead of A is left (or right) B faithfully
flat.
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Let G(A) denote the set of all group-like elements of A. Let G ⊆ G(A) be a
subgroup of G(A) and B = k[G].

Lemma 4 ([6], Proposition 2). If C is a simple subcoalgebra of A, then

(i) GC = {g ∈ G | gC = C} is a finite subgroup of G, and
(ii) BC =

⊕
g∈S gC, where S is a set of left coset representatives of GC in G.

Proposition 5. The following statements are equivalent :

(i) A is k[G]-projective;
(ii) for any subgroup H of G, A is projective over k[H ];
(iii) for any finite subgroup H of G, A is projective over k[H ].

Proof. (i) ⇒ (ii) Suppose A is left k[G]-projective. Then A is a direct summand
of a free k[G]-module F . Since k[G] is a free left k[H ]-module, F is a free left
k[H ]-module. Hence A is left k[H ]-projective.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) Assume that A is left k[H ]-projective for any finite subgroup H of G.

Let C be a simple subcoalgebra of A. By Lemma 4, H = GC is a finite subgroup
of G. Consider the map µ : B ⊗k[H] C −→ BC, µ : b ⊗ c 7→ bc. Clearly, µ is left
B-linear and surjective. By Lemma 4 (ii), µ is also injective and hence

B ⊗k[H] C ∼= BC

as B-modules. By Lemma 3, C is a projective k[H ]-module. Since the functor
B⊗k[H] ? preserves projective objects, BC is B-projective. It follows from Lemma
3 that A is B-projective.

Theorem 6. Let A be a Hopf algebra over a field k and G be a subgroup of G(A).

(i) If char k = 0, A is faithfully flat over k[G].
(ii) If char k = p > 0, A is faithfully flat over k[G] if and only if A is projective

over k[H ] for any finite p-subgroup of G.

Proof. (i) For any finite subgroup H of G, k[H ] is semisimple by Maschke’s Theo-
rem. Hence, every left k[H ]-module is projective and, in particular, A is projective
over k[H ]. By Proposition 5, A is faithfully flat over k[G].

(ii) Let H be a finite subgroup of G and N a p-Sylow subgroup of H . Notice
that every k[H ]-module M can be embedded into a free k[H ]-module F . If M is
k[N ]-projective, then M is also k[N ]-injective and so M is a summand of F as
k[N ]-module. Therefore, M is a summand of F as k[H ]-module (cf. [1], 63.7).
Hence, the result follows from Proposition 5.

4. The existence of a unique maximal

projective module subcoalgebra

Proposition 7. Let B be a finite dimensional Hopf algebra and C a left B-module
coalgebra.

(i) If C1 and C2 are projective B-submodule coalgebras, then C1∧C2 and C1+C2

are B-projective.
(ii) Let {Ci}i∈J be a family of projective B-submodule coalgebras of C. Then∑

i∈J Ci is also a projective B-module.
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Proof. Since B is a Frobenius algebra, C1 is injective as a B-module. Let C′
1 be a B-

submodule of C such that C = C1⊕C′
1. Then C1⊗C+C⊗C2 = C1⊗C⊕C′

1⊗C2 as a
B-module. Let x ∈ C1∧C2 such that

∫ r

B
x = 0. Then ∆(x) =

∑
i ai⊗bi+

∑
i ci⊗di

where
∑

i ai ⊗ bi ∈ C1 ⊗ C and
∑

i ci ⊗ di ∈ C′
1 ⊗ C2. For Λ ∈ ∫ r

B
, ∆(Λx) = 0.

Therefore, ∑
i,j

Λjai ⊗ Λ′
jbi +

∑
i,j

Λjci ⊗ Λ′
jdi = 0 ,

where ∆(Λ) =
∑

j Λi ⊗ Λ′
i. Thus,∑

i,j

Λjai ⊗ Λ′
jbi = 0,(1)

∑
i,j

Λjci ⊗ Λ′
jdi = 0 .(2)

Applying id⊗ ε to equation (1) and ε⊗ id to equation (2), we have

Λ(
∑

i

ε(bi)ai) = 0,

Λ(
∑

i

ε(ci)di) = 0 .

By Proposition 1, ε(
∑

i ε(bi)ai) = 0 and ε(
∑

i ε(ci)di) = 0. Thus, ε(x) = 0. Since
C1∧C2 is obviously a B-submodule coalgebra, C1∧C2 is projective by Proposition
1. Obviously, C1, C2 are left (C1 ∧ C2, B)-Hopf modules and so is C1 + C2. By
[2](Theorem 4), C1 + C2 is a projective B-module.

(ii) Let x ∈ ∑
i∈I Ci such that Λx = 0. Then there exist Ci1 , · · · , Cin such that

x ∈ ∑n
k=1 Cik

. By (i),
∑n

k=1 Cik
is projective and so ε(x) = 0 by Proposition 1.

Hence
∑

i∈I Ci is B-projective by Proposition 1.

Corollary 8. Let B be a finite dimensional Hopf algebra 1. For any left B-module
coalgebra C, there exists a unique maximal projective B-submodule coalgebra P (C).
Moreover, P (C) is co-idempotent, i.e. P (C) ∧ P (C) = P (C).

Proof. Let S be the set of all projective B-submodule coalgebras of C. By Propo-
sition 7, P (C) =

∑
D∈S D is then the largest projective B-submodule coalgebra

of C. P (C) ∧ P (C) = P (C) is a direct consequence of Proposition 7 (i) and the
maximality of P (C).

Corollary 9. Let B be a finite dimensional Hopf algebra and C a B-module coal-
gebra. (i) If D is a B-submodule coalgebra of C, P (D) = P (C) ∩D. (ii) If C is a
direct sum of B-submodule coalgebras {Ci}, then P (C) =

⊕
i P (Ci).

Proof. (i) By Corollary 8, P (D) ⊆ P (C) and hence P (D) ⊆ P (C)∩D. Conversely,
by Theorem 4 of [2], P (C)∩D is a projective B-module. Then, we have P (C)∩D ⊆
P (D).

(ii) If C =
⊕

i Ci as B-module coalgebra, it follows by Theorem 3 of [3] that
P (C) =

⊕
i(P (C) ∩ Ci). Hence, by (i), P (C) =

⊕
i P (Ci).

Corollary 10. Let B be a finite dimensional Hopf algebra and C a B-module coal-
gebra. The following statements are equivalent :

1After this paper was written, the author was able to eliminate the finite dimension hypothesis
on B using different techniques.
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(i) C is a projective B-module,
(ii) BC0 is B-projective, where C0 is the coradical of C,
(iii) BD is B-projective for any simple subcoalgebra D of C.

Proof. (i) ⇒ (iii) is a direct consequence of Theorem 4 in [2].
(iii) ⇒ (ii) follows from Proposition 7 (ii).
(ii) ⇒ (i) Since BC0 is B-projective, by Proposition 7 (i),

∧n
BC0 is B-projective

for any n ≥ 1. Hence, by Proposition 7 (ii),
∑

n≥1

∧n
BC0 is B-projective. The

result follows from the fact that C =
∑

n≥1

∧n BC0.

5. Normal subHopf algebras

Definition 11. Let A be any Hopf algebra, B a subHopf algebra of A and S the
antipode of A.

(1) B is left normal if

a . b =
∑

a1bS(a2) ∈ B

for a ∈ A and b ∈ B.
(2) B is right normal if

b / a =
∑

S(a1)ba2 ∈ B

for a ∈ A and b ∈ B.
(3) B is normal if B is left normal and right normal.

It is well known that if B is a normal subHopf algebra of A, then AB+ = B+A
(cf. [4], 3.4.2). However, the converse is open. If A is left or right faithfully flat
over B, the converse is known to be true (cf. [4], 3.4.3 and [9], 4.4). In this section,
we will show that the converse statement holds if B is finite dimensional which
enhances the result in [4], 3.4.4.

Lemma 12. Let B be a finite dimensional Hopf algebra and C a left B-module
coalgebra. Let ηC : C −→ C/(B+C) be the canonical B-module coalgebra homo-
morphism. Then, ηC(CI) is a subcoalgebra of C/(B+C). In particular, if B is a
subHopf algebra of a Hopf algebra A, then ηA(AI) is a right A-submodule coalgebra
of ηA(A).

Proof. To simplify, we write C for C/(B+C). Clearly, C is a left B-module coal-
gebra and C admits a natural left and right C-comodule structure. Let Λ be a
nonzero element in

∫ r

B
. Consider the map fC : C −→ C defined by

fC(ηC(x)) = Λx

for x ∈ C (see [7], p3348). Clearly, the map is well-defined and is a left and
right C-comodule map. Therefore, ker fC is a subcoalgebra of C. Notice that
ker fC = ηC(CI) and hence the result follows. If B is a subHopf algebra of A, then
ηA is a right A-module map. Since AI is a right A-submodule of A, ηA(AI) is a
right A-submodule of ηA(A).

Corollary 13. Let B be a finite dimensional Hopf algebra and C a left B-module
coalgebra. If C is a projective B-module, CI = B+C.

Proof. Clearly, B+C ⊆ CI. It suffices to show that CI ⊆ B+C. By Proposition
1, CI ⊆ ker εC . Therefore, ηC(CI) ⊆ ker εC. By Lemma 12 ηC(CI) is also a
subcoalgebra of C. Therefore, ηC(CI) = 0 and so CI ⊆ B+C.
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Lemma 14. Let A be a Hopf algebra and B a finite dimensional subHopf algebra
of A. If A is not a left projective B-module, then

AIIA + AB+A = A .

Proof. By Lemma 12, AI/(B+A) is a right A-submodule coalgebra of A/(B+A).
Note that AB+A is a Hopf ideal of A. Thus AB+A/(B+A) is also a coideal of
A/B+A. Therefore, AI = (AI + AB+A)/AB+A is a right A-submodule coalgebra
of A/AB+A. In particular, AI is a right ideal of A/AB+A. Since A is not a
projective B-module, AI 6⊆ A+ by Proposition 1. Hence AI 6⊆ AB+A, and so AI
is a non-zero right ideal as well as coideal of A/AB+A. Therefore, AI = A/AB+A
(see [8], p. 108, Exercise 5). Thus, we have

AI + AB+A = A .

By Corollary 2, A is not a projective right B-module. By virtue of Proposition 1
(ii), we similarly obtain

IA + AB+A = A .

Hence, we have AIIA + AB+A = A.

Theorem 15. Let A be a Hopf algebra and B a finite dimensional subHopf algebra
of A. If AB+ ⊆ B+A or B+A ⊆ AB+, then A is a free left (right) B-module.

Proof. By the Nichols-Zoeller Theorem [5], it suffices to consider the case when A is
infinite dimensional. By Schneider’s Theorem ([7], Theorem 2.4), it suffices to show
that A is a left projective B-module. Suppose A is not a projective left B-module.
By Lemma 14, we have

AIIA + AB+A = A .

If AB+ ⊆ B+A, then AB+A = B+A. Thus, AIIA + B+A = A and so
∫ r

B A = 0,
contradiction ! Similarly, if B+A ⊆ AB+, then AIIA + AB+ = A and hence
A

∫ l

B = 0, contradiction ! Therefore, A is a projective B-module.

Corollary 16. Let A be a Hopf algebra and B a finite dimensional subHopf algebra
of A. Then

(i) B is left normal iff AB+ ⊆ B+A ;
(ii) B is right normal iff B+A ⊆ AB+ ;
(iii) B is normal iff B+A = AB+ .
(iv) If the antipode of A is bijective, B is left normal iff B is right normal .

Proof. (i) If B is left normal, it is obvious that AB+ ⊆ B+A (see [9], 1.4). Con-
versely, assume AB+ ⊆ B+A. By Theorem 15, A is a free right B-module and
hence faithfully flat. By Theorem 4.4 of [9], B is left normal. Similarly, we can
prove (ii).

(iii) An immediate consequence of (i) and (ii).
(iv) A direct consequence of Theorem 15 and Corollary 4.5 of [9].
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