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A SHORT PROOF FOR THE STABILITY THEOREM
FOR POSITIVE SEMIGROUPS ON Lp(µ)

LUTZ WEIS

(Communicated by Palle E. T. Jorgensen)

Abstract. We give a short proof showing that the growth bound of a positive
semigroup on Lp(µ) equals the spectral bound of its generator. It is based on
a new boundedness theorem for positive convolution operators on Lp(Lq). We
also give a counterexample, showing that Gearhart’s result does not extend
from Hilbert spaces to Lp(µ)-spaces.

1. The results

Let Tt be a c0-semigroup on Lp(Ω, µ), 1 ≤ p < ∞, with generator A. Tt is called
positive if f ≥ 0 implies Ttf ≥ 0 for all t. The spectral bound s(A) of A is defined
by

s(A) = sup{Reλ : λ ∈ σ(A)}
and the growth bound of Tt is given by

ω(Tt) = inf{ω : ∃C < ∞ with ‖Tt‖ ≤ Ceωt for all t ≥ 0}.
The following theorem was proved in [9].

Theorem 1. If Tt is a positive c0-semigroup on Lp(Ω, µ), 1 ≤ p < ∞, then s(A) =
ω(Tt).

The case p = 2 is due to Gearhart and Greiner-Nagel, the case p = 1 is due
to Derndinger (see [7], [8], or [3], Theorems 9.5 and 9.7), but the general case re-
mained an open problem for about 10 years. The proof in [9] used a new spectral
mapping theorem for the evolutionary semigroup I ⊗ Tt on Lq(Lp) by Latushkin
and Montgomery-Smith [5] and an extrapolation procedure for the Yosida approx-
imation of Tt. In [6] S. Montgomery-Smith simplified the proof by replacing the
extrapolation procedure by a direct resolvent estimate.

In this note we give a new and simpler proof of Theorem 1 that is based on
a boundedness result for positive convolutions on mixed norm spaces Lp(Lq), and
which may be of independent interest (see Theorem 2 below). With this convolution
result we can reduce Theorem 1 to a well-known characterization of the spectral
bound in terms of weak integrability ([3], Theorem 7.4).

Finally, we point out that recent counterexamples concerning stability of semi-
groups (see e.g. [1]) can be “transplanted” onto Lp-spaces. At the end of this note
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we give an example of a semigroup Tt on Lp(0, 1), 1 < p < ∞, p 6= 2, for which
s(A) = s∞(A) < ω(Tt). Here

s∞(A) = inf{ω : R(λ, A) is uniformly bounded for λ, Re λ ≥ ω}.
This shows that Gearhart’s spectral mapping theorem on Hilbert space (see e.g.
[3], Theorem 9.6) does not extend to Lp-spaces for 1 < p < ∞, p 6= 2, and answers
negatively question (IV) on page 147 of [8].

To state our convolution result we need the following notation. For 1 ≤ p, q < ∞
and f ∈ L1,loc(R+ × Ω) put

‖f‖p,q =

(∫
Ω

(∫
R
|f(t, ω)|qdt

)p/q

dµ(ω)

)1/p

,

Lp(Lq) = {f ∈ L1,loc(R+, Ω) : ‖f‖p,q < ∞} .

Note that for p = q we have by Fubini’s theorem Lp(Lp) = Lp(R, Lp(Ω, µ)). For
these mixed norm spaces we have the following convolution result:

Theorem 2. For a fixed 1 ≤ p < ∞, let t ∈ R → K(t) be a function of positive
operators on Lp(Ω, µ) such that t → K(t)f is locally Bochner integrable for f ∈
Lp(Ω, µ). Assume that for all 0 ≤ h ∈ Lp(Ω, µ) and 0 ≤ g ∈ Lp′(Ω, µ) we have∫

R
〈g, K(t)h〉Lpdt ≤ C‖g‖Lp′ · ‖h‖Lp .

Then the convolution integral

Kf(t) =
∫ ∞
−∞

K(t− s)(f(s))ds

defined for stepfunctions f : R → Lp(Ω) extends to a bounded operator on Lp(Lq)
with ‖Kf‖p,q ≤ C‖f‖p,q for all 1 ≤ q ≤ ∞.

2. The proofs

Proof of Theorem 1. Since s(A) ≤ ω(Tt) is always true, we only have to show that
s(A) < 0 implies ω(Tt) < 0, or, by a result of Pazy ([3], Proposition 9.4), that
s(A) < 0 implies that for all f ∈ Lp(Ω, µ)∫ ∞

0

‖Ttf‖p
Lp

dt < ∞.(1)

This claim can be reformulated as a convolution estimate. Indeed, for a fixed
α > ω(Tt) ∫ t

0

Tt−s(e−αsTsf)ds =
1
α

(1− e−αt)Ttx.

Put K(t) = Tt for t ≥ 0 and K(t) = 0 for t < ∞, and f(t) = e−αtTtf for t ≥ 0 and
f(t) = 0 for t < 0. Then for t ≥ 1 there is a constant D such that

‖Ttx‖ ≤ D

∥∥∥∥∫ ∞−∞K(t− s)(f(s))ds

∥∥∥∥ .(2)

The function t → K(t) satisfies the assumption of Theorem 2 since by Theorem 7.4
of [3] we have for all 0 ≤ g ∈ Lp′ and 0 ≤ f ∈ Lp that∫ ∞

0

〈g, Ttf〉dt ≤ ‖R(0, A)‖ ‖g‖Lp′‖f‖Lp .
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Since f ∈ Lp(R, Lp(Ω)) we obtain from Theorem 2∫ ∥∥∥∥∫ K(t− s)(f(s))ds

∥∥∥∥p

Lp

d(t) ≤ C

∫
‖f(s)‖p

Lp
ds ≤ C1‖f‖p.(3)

Now (3) together with (2) implies (1) and the proof is complete. Alternatively, one
can obtain (3) from the estimate in the proof of Theorem 1 in [6].

Proof of Theorem 2. First we check the claim for q = 1. Given a stepfunction
f : R → Lp(Ω) with f ≥ 0 and a 0 ≤ g ∈ Lp′(Ω) we have for all N ∈ N〈

g,

∫ N

−N

Kf(t)dt

〉
Lp

=
∫ N

−N

〈g,Kf(t)〉Lpdt

=
∫ N

−N

〈
g,

∫
K(s)f(t− s)ds

〉
dt

=
∫ ∫ N

−N

〈g, K(s)f(t− s)〉dt ds

=
∫ 〈

g, K(s)

[∫ N

−N

f(t− s)dt

]〉
ds

≤
∫
〈g, K(s)h〉ds ≤ C‖g‖Lp′ · ‖h‖Lp

by assumption, where h =
∫

f(t)dt with ‖h‖Lp = ‖f‖p,1. Since such stepfunctions
are dense in Lp(L1) we can extend K to Lp(L1) with

‖Kf‖p,1 ≤ C‖f‖p,1.

For q = ∞ and a stepfunction f : Ω → L∞(R), f(t, ω) =
∑

k gk(t)χAk
(ω), with

f ≥ 0 the integral∫ N

−N

K(s)f(t− s)ds =
∑

k

∫ N

−N

gk(t− s)K(s)[χAk
(ω)]ds

exists. Put h(ω) = ess supt f(t, ω) with ‖h‖Lp = ‖f‖p,∞. For all g ∈ Lp′ with
g ≥ 0, ‖g‖Lp′ = 1 and N ∈ N we have〈

g,

∫ N

−N

K(s)f(t− s)ds

〉
≤
〈

g,

∫ N

−N

K(s)hds

〉
Lp

≤
∫
〈g, K(s)h〉ds

≤ C‖g‖Lp′ · ‖h‖Lp = C‖f‖p,∞.

Since stepfunctions with countably many values are dense in Lp(L∞) we can extend
K to Lp(L∞) by Fatou’s Lemma and continuity so that ‖Kf‖p,∞ ≤ C‖f‖p,∞.

Interpolating in the scale Lp(Lq), 1 ≤ q ≤ ∞, gives the general claim according
to [2], Theorem 5.1.2.

Example. Let X = Lp(1,∞)∩L2(1,∞) with norm ‖f‖ = ‖f‖2+‖f‖p for 2 < p <
∞. Consider the semigroup (Stf)(x) = f(xet), t ≥ 0, with generator (Bf)(x) =
x( d

dxf)(x) on a suitable domain and (R(0, B)f)(x) =
∫∞

x f(y)dy
y . One can check

that s(B) = − 1
2 < − 1

p = ω(St) (cf. [1]). Since St is positive, we also have
s∞(B) = s(B) (see [3], Corollary 7.5).



3256 LUTZ WEIS

By [4], 2.e.8(ii) and section 2.f, there is an isomorphism J of X onto Lp[0, 1]
(essentially given by a stochastic integral with respect to the Poisson process). Then
the semigroup Tt = JStJ

−1 on Lp[0, 1] with generator A = JBJ−1 on D(A) =
J(D(B)) still satisfies s∞(A) = − 1

2 < − 1
p = ω(Tt).

If 1 < p < 2 we take the dual of Tt on Lp′ , to obtain a similar example.
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[2] J. Bergh and J. Löfström, Interpolation Spaces, Springer Verlag, 1976. MR 58:2349
[3] Ph. Clement, H. J. A. M. Heijmans, et al., One Parameter Semigroups, North-Holland, 1987.

MR 89b:47058
[4] J. Lindenstrauß and L. Tzafriri, Classical Banach Spaces, Vol. II, Springer Verlag, 1979. MR

81c:46001
[5] Y. Latushkin and S. J. Montgomery-Smith, Evolutionary semigroups and Lyapunov theorems

in Banach spaces, Journal of Functional Analysis 127 (1995), 173–197. MR 96k:47072
[6] S. J. Montgomery-Smith, Stability and dichotomy of positive semigroups on Lp, Proc. Amer.

Math. Soc. 124 (1996), 2433–2437. MR 96j:47037
[7] R. Nagel (ed.), One Parameter Semigroups of Positive Operators, Springer Verlag, 1986. MR

88i:47022
[8] J. van Neerven, The Asymptotic Behavior of a Semigroup of Linear Operators, Birkhäuser
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