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AN EASIER PROOF OF THE MAXIMAL ARCS CONJECTURE
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Abstract. It was a long-standing conjecture in finite geometry that a Desar-
guesian plane of odd order contains no maximal arcs. A rather inaccessible
and long proof was given recently by the authors in collaboration with Maz-
zocca. In this paper a new observation leads to a greatly simplified proof of
the conjecture.

1. Introduction

A (k, n)−arc in a projective plane is a set of k points, at most n on every line.
If the order of the plane is q, then k ≤ 1 + (q + 1)(n − 1) = qn − q + n, with
equality if and only if every line intersects the arc in 0 or n points. Arcs realizing
the upper bound are called maximal arcs. Equality in the bound implies that n | q
or n = q + 1. If 1 < n < q, then the maximal arc is called non-trivial. The only
known examples of non-trivial maximal arcs in Desarguesian projective planes are
the hyperovals (n = 2), and, for n > 2, the Denniston arcs [3] and an infinite family
constructed by Thas [5], [7]. These exist for all pairs (n, q) = (2a, 2b), 0 < a < b.
It is conjectured in [6] that for odd q maximal arcs do not exist. In that paper this
was proved for (n, q) = (3, 3h). The special case (n, q) = (3, 9) was settled earlier
by Cossu [2]. A complete proof was given in [1], however the methods used there
are difficult to follow and the arguments are quite long.

A new observation, concerning a divisibility relation between a function F and
its partial derivative Fx, led to the discovery of a greatly simplified proof which
should be accessible to a wider audience.

We shall consider point sets in the affine plane AG(2, q) instead of PG(2, q).
This is no restriction; there is always a line disjoint from a non-trivial maximal arc.
The points of AG(2, q) can be identified with the elements of GF (q2) in a suitable
way, so that in fact all point sets can be considered as subsets of this field. Note
that three points a, b, c are collinear precisely when (a− b)q−1 = (a− c)q−1. If the
direction of the line joining a and b is identified with the number (a− b)q−1, then
a one-to-one correspondence between the q + 1 directions (or parallel classes) and
the different (q + 1)-st roots of unity in GF (q2) is obtained.

2. Some useful polynomials

Let B be a non-trivial (nq − q + n, n)-arc in AG(2, q) ' GF (q2), q = ph. For
simplicity we assume 0 6∈ B. Let B[−1] = {1/b | b ∈ B}. Define B(x) to be the
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polynomial

B(x) :=
∏
b∈B

(1 − bx) =
∞∑

k=0

(−1)kσkxk,

where σk denotes the k-th elementary symmetric function of the set B; in particular,
σk = 0 for k > |B|. Define the polynomials F in two variables and σ̂k in one variable
by

F (t, x) :=
∏
b∈B

(1− (1− bx)q−1t) =
∞∑

k=0

(−1)kσ̂ktk,

where σ̂k is the k-th elementary symmetric function of the set of polynomials
{(1 − bx)q−1 | b ∈ B}, a polynomial of degree at most k(q − 1) in x. Again,
σ̂k is the zero polynomial for k > |B|. For x0 ∈ GF (q2) \ B[−1] it follows that
F (t, x0) is an n-th power. Indeed, if x0 = 0 this is clear, and if x0 6= 0 then 1/x0 is
a point not contained in the arc, so that every line through 1/x0 contains a number
of points of B that is either 0 or n. In the multiset {(1/x0 − b)q−1 | b ∈ B}, every
element occurs therefore with multiplicity n, so that in F (t, x0) every factor occurs
exactly n times. For x0 ∈ B[−1] we get that F (t, x0) = (1 − tq+1)n−1, for in this
case every line passing through the point 1/x0 contains exactly n− 1 other points
of B, so that the multiset {(1/x0 − b)q−1} consists of every (q + 1)-st root of unity
repeated n− 1 times, together with the element 0. This gives

F (t, x0) =
∏
b∈B

(1− (1/x0 − b)q−1xq−1
0 t) = (1− xq2−1

0 tq+1)n−1 = (1− tq+1)n−1.

From the shape of F in both cases it can be seen that for all x0 ∈ GF (q2),
σ̂k(x0) = 0, 0 < k < n, and since the degree of σ̂k is at most k(q − 1) < q2,
these functions are in fact identically zero. The first coefficient of F that is not
necessarily identically zero therefore is σ̂n. Since σ̂n(0) =

(|B|
n

)
=
(
nq−q+n

n

)
= 1, by

Lucas’ theorem, it is not identically zero. On the other hand the coefficient of tn in
(1− tq+1)n−1 is zero, so σ̂n(x0) = 0 for x0 ∈ B[−1]. In other words, B divides σ̂n.

Let z = x − xq2
. Since in both cases, i.e. for all x0 ∈ GF (q2), σ̂k vanishes

unless n|k or (q + 1)|k, it follows that z|σ̂k. If n - k, then σ̂k still vanishes for
x0 ∈ GF (q2)\B[−1], and since B | σ̂n we get the divisibility relation (x−xq2

) | σ̂nσ̂k.
Hence we can write

F (t, x) = 1 +
q−q/n+1∑

i=1

(−1)iσ̂intin +
n−1∑
i=1

σ̂i(q+1)t
i(q+1) (mod z)

and

BF (t, x) = B + B

q−q/n+1∑
i=1

(−1)iσ̂intin (mod z).

The polynomial σ̂q+1 will be of some use as well, so it is worth noting that
σ̂q+1(x0) = 1 for all x0 ∈ B[−1] and σ̂q+1(x0) = 0 for all x0 ∈ GF (q2) \ B[−1].

3. Proof of the theorem

The main objective of the proof is to show that (Bσ̂n)′ ≡ 0, which will lead
swiftly to a contradiction for p 6= 2. Throughout, f ′ will represent the derivative
of a function f with respect to x, and fx will denote the partial derivative with
respect to x.
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By computing the derivative of B(x) and expanding the denominator as an
infinite sum we get

B′(x) =
∑
b∈B

−b

1− bx
B(x) = −

(∑
b∈B

∞∑
i=0

bi+1xi

)
B(x).

Note that all b ∈ B[−1] are elements of GF (q2). Hence bq2
= b, and it follows that

(x− xq2
)

(∑
b∈B

∞∑
i=0

bi+1xi

)
=
∑
b∈B

q2−1∑
i=0

bixi =
∑
b∈B

(1 − bx)q2−1.

The polynomial −∑b∈B(1− bx)q2−1 is equal to 1 for all x0 ∈ B[−1], since there are
nq− q +n terms in the sum, of which one will be zero and the others will be 1. For
all other elements of GF (q2) it will be zero, since every term in the sum will be 1.
Now σ̂q+1 takes the same values, and both are of degree q2 − 1. Hence it follows
that they are the same, i.e. σ̂q+1 = −∑b∈B(1 − bx)q2−1. So we get the important
relation

zB′ = σ̂q+1B.

Differentiating this, multiplying by B and noting that Bσ̂q+1 = 0 (mod z), we get
another useful relation:

BB′ = B2σ̂′q+1 (mod z).
Differentiating F (t, x) with respect to x, we get

Fx(t, x) =

(∑
b∈B

−b(1− bx)q−2t

1− (1 − bx)q−1t

)
F (t, x) =

|B|∑
k=0

(−1)kσ̂′ktk.

The terms in the denominator are of the form (1 − (1 − bx)q−1t), and for all x =
x0 ∈ GF (q2) this is a factor of (1− tq+1). Expanding the term in the bracket as a
formal power series in t, multiplying by (1 − tq+1) and reducing mod z, we obtain
a polynomial R(t, x) of degree at most q + 1 in t such that

FR = (1− tq+1)Fx (mod z).

Comparing coefficients of powers of t we can calculate that the polynomial R(t, x)
is of the form

R(t, x) = −σ̂′n(x)tn + R̂(t, x)t2n + σ̂′q+1t
q+1,

where R̂(t, x) is a polynomial containing only powers of t with exponents divisible
by n. Multiplying the equation by B givesq−q/n+1∑

i=0

(−1)iBσ̂intin

R = (1− tq+1)BFx (mod z).

By equating the coefficient of tq+1+n we see that

−σ̂′q+1Bσ̂n = −σ̂′q+1+nB + Bσ̂′n.

Note that since B|σ̂n we can use the relation B2σ̂′q+1 = BB′ (mod z), and rear-
ranging terms gives

Bσ̂′q+1+n = (Bσ̂n)′ (mod z).

Equating successively the coefficient of ti(q+1)+n for 1 < i < (n− 1) gives

Bσ̂′i(q+1)+n = Bσ̂′(i−1)(q+1)+n = (Bσ̂n)′ (mod z).
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Since |B| = nq − q + n, it follows that σ̂(n−1)(q+1)+n ≡ 0, and so when we look at
the coefficient of t(n−1)(q+1)+n we find that

(Bσ̂n)′ ≡ 0 (mod z).

Since Bσ̂n has degree at most (nq−q+n)+n(q−1) < q2, it follows that (Bσ̂n)′ = 0
identically, and hence Bσ̂n is a p-th power. Since B does not have multiple factors,
this implies that Bp−1|σ̂n, which gives a contradiction for p 6= 2, since the degree
of σ̂n is at most n(q − 1) and it is not identically zero.
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