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ON SUBWAVELET SETS

EUGEN J. IONASCU AND CARL M. PEARCY

(Communicated by David R. Larson)

Abstract. In this note we give a characterization of subwavelet sets and show
that any point x ∈ R\0 has a neighborhood which is contained in a regularized
wavelet set.

In [1] the notion of a wavelet set was introduced and in [8] subwavelet sets were
considered. Wavelet sets were also introduced independently and simultaneously as
the support sets of MSF (Minimally Supported Frequency) wavelets in the sequence
of papers [3], [5], and [6]. (See also the recent excellent book [4].) The purpose
of this note is to provide a characterization of the subwavelet sets and to use this
characterization to prove that every point x ∈ R\{0} has a neighborhood contained
in a regularized wavelet set. (Regularized wavelet sets are wavelet sets with certain
nice properties; see [7].) In particular, this shows that the union of the interiors of
all wavelet sets is R\{0}.

We begin by introducing some preliminary terminology and notation. The mea-
sure space under consideration will always be R together with its σ-ring L of
Lebesgue measurable subsets and Lebesgue measure µ. Recall (cf. [1]) that a func-
tion w ∈ L2(R) := L2(R,L, µ) is a wavelet if the family of (equivalence classes of)
functions {wj,k}j,k∈Z defined by

wj,k(s) = 2j/2w(2js+ k), s ∈ R, j, k ∈ Z,
is an orthonormal basis for L2(R). A subset G of R with positive measure is a
wavelet set if 1√

µ(G)
χG = F(w), where w is a wavelet in L2(R) and F is the

Fourier-Plancherel transform on L2(R). A measurable subset G of R is called a
regularized wavelet set if the family {G+2kπ}k∈Z is a partition of R and the family
{2kG}k∈Z is a partition of R\{0}. For two measurable subsets F and G of R, we
write F ∼ G if µ(F 5 G) = 0. It is proved in [7] that if W is any wavelet set,
then there exists a regularized wavelet set W ′ such that W ′ ∼ W . A measurable
subset G of R is translation congruent modulo 2π to a (measurable) set H ⊂ R if
there exists a measurable bijection ϕ : G→ ϕ(G) such that ϕ(s) − s is an integral
multiple of 2π for every s in G and ϕ(G) ∼ H . Analogously, G ⊂ R\{0} is said to
be dilation congruent modulo 2 to a (measurable) set H if there exists a measurable
bijection ψ : G → ψ(G) such that ψ(s)/s is an integral power of 2 for every s in
G and ψ(G) ∼ H . Let τ : R → E := [−2π,−π) ∪ [π, 2π) be the function defined
by τ(x) = x + 2jπ, where j is the unique integer satisfying x + 2jπ ∈ E, and let
δ : R\{0} → E be the function defined by δ(x) = 2kx, where k is the unique integer
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for which 2kx ∈ E. For a function f : X → X and k ∈ Z we write f (0) for the map
x → x on X and f (k) for the composition of f [resp. f−1] with itself |k| times if
k > 0 [resp. k < 0].

Remark 1. In what follows we use the elementary facts that if G ∈ L ∩ E, then
τ−1(G), δ−1(G) ∈ L, and if H ∈ L [resp., H ∈ (R\{0}) ∩ L], then τ(G) ∈ L
[δ(G) ∈ L].

A measurable subset G of R is called a subwavelet set if it is a subset of some
regularized wavelet set. Our principal result characterizes measurable subsets of R
that are subwavelet sets.

Theorem 2. A set G ⊂ L is a subwavelet set if and only if there exist sets G1 and
G2 in L, each containing G, such that

(a) τ|G1 is a measurable bijection of G1 onto E,
(b) τ|G2 is a measurable injection of G2 into E,
(c) δ|G2 is a measurable bijection of G2 onto E, and
(d) δ|G1 is a measurable injection of G2 into E.

Proof. Suppose first that G is a subset of a regularized wavelet set W . Define
G1 = G2 = W , and observe that (a)−(d) follow from the definition of a regularized
wavelet set and Remark 1.

For the sufficiency, suppose that there exist measurable sets G1 and G2 contain-
ing G such that (a) − (d) hold. We consider the maps h1, h2 : E → E defined
by h1 := δ|G1 ◦ (τ|G1)

−1 and h2 := τ|G2 ◦ (δ|G2)
−1. It is clear that h1 and h2 are

measurable injections. We now construct a new map h from h1 and h2 following
the idea of the proof of the Cantor-Bernstein theorem in set theory. To increase
the clarity of the presentation we write Ẽ := E and consider h1 : E → Ẽ and
h2 : Ẽ → E. We denote f = h2 ◦ h1 : E → E and g := h1 ◦ h2 : Ẽ → Ẽ, and note
that these maps are measurable injections by Remark 1. One can check that E and
Ẽ can be partitioned as follows:

E = E0∪̇
( ·⋃

k∈N
Ek∪̇E′

k

)
,

Ẽ = Ẽ0∪̇
( ·⋃

k∈N
Ẽk∪̇Ẽ′

k

)
,

where

E0 =
⋂
j∈N

f (j)(E), Ẽ0 =
⋂
j∈N

g(j)(Ẽ),

Ek = f (k−1)(E)\(f (k−1) ◦ h2)(Ẽ), E′
k = (f (k−1) ◦ h2)(Ẽ)\f (k)(E), k ∈ N,

and

Ẽk = g(k−1)(Ẽ)\(g(k−1) ◦ h1)(E), Ẽ′
k = (g(k−1) ◦ h1)(E)\g(k)(Ẽ), k ∈ N.

We define the map h : E → Ẽ to be h1 on Ê = E0∪̇
(⋃̇

k∈NEk

)
h−1

2 on Ê′ =⋃̇
k∈NE

′
k. Since h1(E0) = Ẽ0 and, for k ∈ N, h1(Ek) = Ẽ′

k and h−1
2 (E′

k) = Ẽk, it
follows that h is a bijection. We define

W = (τ|G1)
−1(Ê) ∪ (τ|G2)

−1(Ê′).(1)



ON SUBWAVELET SETS 3551

Since Ê′ is a set in the range of h2, it is clear from (1) that the set W is translation
congruent modulo 2π to E. Also if x ∈ G, then

f(τ|G1(x)) = h2

(
δ|G1(x)

)
= τ|G2

(
δ−1
|G2

(δ|G1(x))
)

= τ|G2(x) = τ|G1(x)

since δ|G2(x) = δ|G1(x) and τ|G2(x) = τ|G1(x). This shows that τ|G1(G) ⊂ E0

and hence G ⊂ W . To complete the proof we need to check that W is dilation
congruent modulo 2 to E. This follows from the facts that δ|G1((τ|G1)

−1(Ê)) =
h1(Ê), δ|G2((τ|G2)

−1(Ê′)) = h−1
2 (Ê′), and the function h is a bijection from E to

Ẽ(= E). In fact one can check that W is a regularized wavelet set.

Corollary 3. For any point x0 ∈ R\{0} there exists an ε > 0 such that the interval
Iε := (x0 − ε, x0 + ε) is a subwavelet set.

Proof. It suffices to consider the case x0 > 0. Choose 0 < ε < min{π/4, x0/16}. We
construct two sets G1 and G2 containing Iε and satisfying (a)− (d) in Theorem 2.
We write E+ = [π, 2π) and E− = [−2π,−π). Note that since ε < min{π, x0/3}
the maps τ|Iε

: Iε → E, δ|Iε
: Iε → E are measurable and injective. (Indeed, if

τ(x1) = τ(x2) with x1, x2 ∈ Iε, then x1 − x2 = 2kπ for some k ∈ Z, and since
|x1 − x2| < 2ε < 2π, it follows that k = 0 and so x1 = x2. If δ(x1) = δ(x2) with
x1, x2 ∈ Iε, then x1/x2 = 2k for some k ∈ Z. Since ε < x0/3 we have

1/2 < (x0 − ε)/(x0 + ε) < x1/x2 < (x0 + ε)/(x0 − ε) < 2,

and so k = 0 and x1 = x2.) Next we show that since ε < x0/16 the set E+\δ(Iε)
contains an interval of length greater than 3π/8. To see that this is true, we
observe that the set δ(Iε) is either an interval of length 2k(2ε), where the integer
k is uniquely determined by the inequalities π ≤ 2kx0 < 2π, or it is a union
of two intervals of combined lengths no more than 2k+1(2ε). In the first case,
the set E+\δ(Iε) is either an interval or the union of two intervals, and if we
assume that each such interval has length no greater than 3π/8, we get the following
contradiction:

π = µ(E+) = µ(E+\δ(Iε)) + µ(δ(Iε))

≤ 2(3π/8) + 2k(2ε) < 3π/4 + 2k(2x0/16) < π.

In the second case (i.e., δ(Iε) is a union of intervals), the set E+\δ(Iε) is an interval,
and if we assume it has length no larger than 3π/8, we get a similar contradiction:

π = µ(E+) = µ(E+\δ(Iε)) + µ(δ(Iε))

≤ (3π/8) + 2k+1(2ε) < 3π/8 + 2k+1(2x0/16) < π.

Thus 23 (E+\δ(Iε)) contains an interval of length greater than 3π. Hence there ex-
ists ` in N such that E+ + 2`π ⊂ 23 (E+\δ(Iε)). We define G1 = (E−\τ(Iε)) ∪ Iε ∪
((E+\τ(Iε)) + 2`π). It is clear that τ(G1) = E. Since the maps τ|(E−\τ(Iε)), τ|Iε

,
and τ|(E+\τ(Iε)) are all injective and the sets τ(E−\τ(Iε)), τ(Iε), and τ(E+\τ(Iε))
are pairwise disjoint, it follows that τ|G1 is injective and hence is a measurable bijec-
tive map. From the choice of ` we conclude that δ((E+\τ(Iε)) + 2`π) ⊂ E+\τ(Iε).
Hence the sets δ(E−\τ(Iε)), δ(Iε), and δ(E+\τ(Iε)) are pairwise disjoint, and since
the maps δ(|E+\τ(Iε)), δ|Iε

, and δ|(E+\τ(Iε)) are injective, it follows that δ|G1 is a
measurable injective map. Thus G1 has the desired properties.

To construct G2, we observe first that the collection {2−nE− + 2π}n∈N
∪ {2−nE+ − 2π}n∈N is an interval partition of the set E\{−2π}. Moreover τ(Iε) is
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either an interval of length 2ε or the union of two intervals of combined lengths 2ε.
Since ε < π/4, there exists an n0 ∈ N such that τ(2−n0E) ∩ τ(Iε) = ∅. In other
words, τ(2−n0E) ⊂ E\τ(Iε). We define G2 = Iε∪2−n0(E\δ(Iε)). Using arguments
similar to those above, one shows that δ|G2 : G2 → E is a measurable bijective
map, and using the fact that

τ(2−n0(E\δ(Iε))) = (2−n0(E−\δ(Iε)) + 2π)

∪ (2−n0(E+\δ(Iε))− 2π) ⊂ τ(2−n0E) ⊂ E\τ(Iε),
we obtain that τ|G2 : G2 → E is a measurable injective map. Thus G2 has the
desired properties, and the proof is complete.

A regularized wavelet set W is called a regularized MRA-wavelet set [2] if the
family {W̃ +2kπ}k∈Z is a partition of R\{2kπ : k ∈ Z}, where W̃ =

⋃
n∈N 2−n(W ).

A set is called an MRA-subwavelet set if it is a subset of a regularized MRA-wavelet
set.

Question 4. Is there a characterization of MRA-subwavelet sets similar to that
given in Theorem 2 for subwavelet sets?
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