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ABSTRACT. In this note we give a characterization of subwavelet sets and show
that any point z € R\0 has a neighborhood which is contained in a regularized
wavelet set.

In [1] the notion of a wavelet set was introduced and in [8] subwavelet sets were
considered. Wavelet sets were also introduced independently and simultaneously as
the support sets of MSF (Minimally Supported Frequency) wavelets in the sequence
of papers [3], [5], and [6]. (See also the recent excellent book [4].) The purpose
of this note is to provide a characterization of the subwavelet sets and to use this
characterization to prove that every point € R\{0} has a neighborhood contained
in a regularized wavelet set. (Regularized wavelet sets are wavelet sets with certain
nice properties; see [7].) In particular, this shows that the union of the interiors of
all wavelet sets is R\{0}.

We begin by introducing some preliminary terminology and notation. The mea-
sure space under consideration will always be R together with its o-ring L of
Lebesgue measurable subsets and Lebesgue measure p. Recall (cf. [1]) that a func-
tion w € L3(R) := L*(R,L, ) is a wavelet if the family of (equivalence classes of)
functions {wj i };rez defined by

wik(s) =2Pw(2s + k), seR, j ke,

is an orthonormal basis for L?(R). A subset G' of R with positive measure is a

wavelet set if me = F(w), where w is a wavelet in L*(R) and F is the
n

Fourier-Plancherel transform on L?(R). A measurable subset G of R is called a
regularized wavelet set if the family {G + 2k} ¢z is a partition of R and the family
{2kG} ez is a partition of R\{0}. For two measurable subsets F' and G of R, we
write F' ~ G if u(F 57 G) = 0. It is proved in [7] that if W is any wavelet set,
then there exists a regularized wavelet set W’ such that W/ ~ W. A measurable
subset G of R is translation congruent modulo 27 to a (measurable) set H C R if
there exists a measurable bijection ¢ : G — (@) such that ¢(s) — s is an integral
multiple of 27 for every s in G and ¢(G) ~ H. Analogously, G C R\{0} is said to
be dilation congruent modulo 2 to a (measurable) set H if there exists a measurable
bijection ¢ : G — (G) such that t(s)/s is an integral power of 2 for every s in
G and Y(G) ~ H. Let 7 : R — E := [-27,—7) U [m,27) be the function defined
by 7(x) = x 4+ 2jm, where j is the unique integer satisfying  + 2j7 € E, and let
§ : R\{0} — E be the function defined by d(x) = 2*z, where k is the unique integer
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for which 2z € E. For a function f : X — X and k € Z we write f(©) for the map
z — z on X and f*) for the composition of f [resp. f~'] with itself |k| times if
k>0 [resp. k <0].

Remark 1. In what follows we use the elementary facts that if G € L N E, then
7 HG), 67YG) € L, and if H € L [resp.,, H € (R\{0}) NL], then 7(G) € L
[0(G) € L.

A measurable subset G of R is called a subwavelet set if it is a subset of some
regularized wavelet set. Our principal result characterizes measurable subsets of R
that are subwavelet sets.

Theorem 2. A set G C L is a subwavelet set if and only if there exist sets Gy and
G2 in L, each containing G, such that
(a) TG, is a measurable bijection of Gy onto E,
(b) TG, s a measurable injection of G into E,
(¢) dG, is a measurable bijection of G2 onto E, and
(d) 6, is a measurable injection of Gy into E.

Proof. Suppose first that G is a subset of a regularized wavelet set W. Define
G1 = G2 = W, and observe that (a) — (d) follow from the definition of a regularized
wavelet set and Remark 1.

For the sufficiency, suppose that there exist measurable sets G; and G2 contain-
ing G such that (a) — (d) hold. We consider the maps hi, he : E — E defined
by hy := dg, o (T‘Gl)_l and hy == 7@, © (5‘G2)_1. It is clear that h; and hs are
measurable injections. We now construct a new map h from hy and ho following
the idea of the proof of the Cantor-Bernstein theorem in set theory. To increase
the clarity of the presentation we write £ := E and consider h; : E — E and
ho: E— E. We denote f =hoohy; : E— FE and g := hy o hy : E — FE, and note
that these maps are measurable injections by Remark 1. One can check that £ and
FE can be partitioned as follows:

E = EyU <U EkUE,g> ,

keN
B B (U EwE,;) |
keN
where
B = () 79®), By = ) 49(B).
jeN jeN

By = fEDENFEY o ho)(E), Ejp = (& oho)(EN\fH(E), keEN,
and

By = g* B\ (g* Y o) (E), Ep = (g% oh)(E)\g*(E), keN
We define the map h : £ — E to be hi1 on E = EyU (UkeNEk) h2_1 on B! =

UrenEs- Since hi(Eo) = Eo and, for k € N, hi(Ey,) = Ej, and hy'(E}) = Ej, it
follows that h is a bijection. We define

(1) W = (16,) "(E) U (rg,) ().
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Since £’ is a set in the range of ho, it is clear from (1) that the set W is translation
congruent modulo 27 to E. Also if € G, then

f(76, () = ha (3¢, () = T, (5|_G12 (5\G1($))) =76, (2) = T, (2)

since d)g,(z) = dj¢,(x) and 7)¢,(x) = 7|, (z). This shows that 7, (G) C Ep
and hence G C W. To complete the proof we need to check that W is dilation
congruent modulo 2 to E. This follows from the facts that dc, ((1c,) *(E)) =

hi(E), 5‘G2((T‘G2)_1(E’)) = hy }(E’), and the function h is a bijection from E to
E (= E). In fact one can check that W is a regularized wavelet set. (]

Corollary 3. For any point xo € R\{0} there exists an € > 0 such that the interval
I, := (x0 —&,20 + €) is a subwavelet set.

Proof. Tt suffices to consider the case zg > 0. Choose 0 < ¢ < min{w/4, zo/16}. We
construct two sets G; and G2 containing I. and satisfying (a) — (d) in Theorem 2.
We write £y = [m,27) and E_ = [—27, —7). Note that since ¢ < min{x,z/3}
the maps 77, : I. — E, §;. : I. — E are measurable and injective. (Indeed, if
7(z1) = 7(x2) With x1,z9 € I, then x; — x9 = 2k7 for some k € Z, and since
|z1 — 22| < 2¢ < 27, it follows that k = 0 and so z1 = za. If 6(z1) = d(x2) with
X1, € I, then a1 /x9 = 2% for some k € Z. Since € < x0/3 we have

1/2 < (g —¢)/(xo+e) <z1/xa < (o +€) /(20 — €) < 2,

and so k = 0 and x; = x2.) Next we show that since € < x0/16 the set E\d(I;)
contains an interval of length greater than 37w/8. To see that this is true, we
observe that the set §(I.) is either an interval of length 2¥(2¢), where the integer
k is uniquely determined by the inequalities 7 < 2¥xy < 27, or it is a union
of two intervals of combined lengths no more than 2*¥+1(2¢). In the first case,
the set E\0(I;) is either an interval or the union of two intervals, and if we
assume that each such interval has length no greater than 37/8, we get the following
contradiction:

T = p(Ey) = p(EL\O(L)) + p(6(1:))
< 2(37/8) + 27(2¢) < 3m/4 + 2% (220/16) < 7.

In the second case (i.e., 6(I;) is a union of intervals), the set E;\d(I;) is an interval,
and if we assume it has length no larger than 37/8, we get a similar contradiction:

T = p(Ey) = p(EL\6(Le)) + p(6(1e))
< (37/8) + 2F+1(2¢) < 37/8 + 271 (224 /16) < 7.

Thus 23 (E4+\§(I.)) contains an interval of length greater than 3. Hence there ex-
ists £ in N such that Ey + 20 C 23 (B \6(1:)). We define Gy = (E_\7(I.))UI. U
((E4\T(Ie)) + 2€m). Tt is clear that 7(G1) = E. Since the maps T(g_\(1.)), T|L.>
and 7|(g,\r(1.)) are all injective and the sets 7(E_\7(I.)), 7(I:), and T(E\7(l:))
are pairwise disjoint, it follows that 7|, is injective and hence is a measurable bijec-
tive map. From the choice of £ we conclude that §((E+\7(I.)) + 2¢m) C E4\7(12).
Hence the sets §(F_\7(I.)), 6(I.), and 6(F4+\7(I;)) are pairwise disjoint, and since
the maps 0( g, \r(1.))» 91., and O(g \r(1.)) are injective, it follows that d|¢, is a
measurable injective map. Thus G; has the desired properties.

To construct Ga, we observe first that the collection {27"E_ + 27},en
U{27"E} — 27 }pen is an interval partition of the set E\{—27}. Moreover 7(I;) is
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either an interval of length 2¢ or the union of two intervals of combined lengths 2e.
Since € < 7/4, there exists an ng € N such that 7(27"°E) N 7(Il.) = @. In other
words, 7(27™ E) C E\7(I;). We define G2 = I, U270 (E\J(I.)). Using arguments
similar to those above, one shows that J|g, : G2 — E is a measurable bijective
map, and using the fact that

727" (ENO(LL))) = (27" (B-\6 (L)) + 27)
U2 (Bx\6(IL)) — 21) C (27 E) € E\r(I.),

we obtain that TGy - G2 — FE is a measurable injective map. Thus G5 has the
desired properties, and the proof is complete. O

A regularized wavelet set W is called a reqularized MRA-wavelet set [2] if the
family {W +2k7}rez is a partition of R\ {2k : k € Z}, where W =, oy 27" (W).
A set is called an MRA-subwavelet set if it is a subset of a regularized MR A-wavelet
set.

Question 4. Is there a characterization of MRA-subwavelet sets similar to that
given in Theorem 2 for subwavelet sets?
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