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CLASSIFICATION OF ACTIONS
OF DISCRETE AMENABLE GROUPS

ON STRONGLY AMENABLE SUBFACTORS OF TYPE IIIλ

TOSHIHIKO MASUDA

(Communicated by Palle E. T. Jorgensen)

Abstract. Using the continuous decomposition, we classify strongly free ac-
tions of discrete amenable groups on strongly amenable subfactors of type IIIλ,
0 < λ < 1. Winsløw’s fundamental homomorphism is a complete invariant.
This removes the extra assumptions in the classification theorems of Loi and
Winsløw and gives a complete classification up to cocycle conjugacy.

1. Introduction

In the theory of operator algebras, the study of automorphisms is one of the
most important topics. Especially since Connes’s work [3], much progress has been
made on the classification of the actions of discrete amenable groups on injective
factors.

In the subfactor theory, various studies of automorphisms have been done. In
[13], Popa has introduced the notion of proper outerness of automorphisms and
proved that the properly outer actions of discrete amenable groups on strongly
amenable subfactors of type II1 are classified by the Loi invariant (see [9]). (In [1],
Choda and Kosaki have introduced the same property independently and they call
it strong outerness.)

In the case of subfactors of type IIIλ (0 < λ < 1), partial results on classification
of group actions have been obtained by Winsløw and Loi ([10], [17], [18]). In
[17] and [18], Winsløw has introduced the strong freeness and the fundamental
homomorphism for actions. He has classified the strongly free actions of discrete
amenable groups on subfactors of type IIIλ for groups having the character lifting
property. His fundamental homomorphism is a complete invariant. In [10], Loi gave
a classification theorem when G is finite. Their idea of the proof is that they reduce
the classification problem to the type II∞ case using the discrete decomposition and
apply Popa’s classification result. The most difficult points of their proofs are to
reduce the problem to the type II∞ case. Because of this difficulty, they made extra
assumptions such as the character lifting property or finiteness for groups. But it
seems difficult to generalize their method to the arbitrary discrete amenable group
case.

Our idea of a proof is using the continuous decomposition instead of the discrete
decomposition based on the method in [14] and [15]. But in this case, we treat
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only factors of type IIIλ, 0 < λ < 1, with the trivial characteristic invariants, so
the proof is less complicated than those in [14] and [15]. By using the continuous
decomposition, we can more easily reduce the classification problem to the type II∞
case than using the discrete decomposition and this method is valid for arbitrary
discrete amenable groups.

After the submission of the first version of this paper, we have obtained a clas-
sification result also for group actions on subfactors of type III0 in [11] in a more
complicated method. But the simple argument in this paper is a key to a gen-
eralization in [11], and the author hopes that the short proof in this paper is of
independent interest.

2. Preliminaries

In this section, we recall several results about group actions on subfactors, and
fix notations. The facts stated in this section are found in [1], [9], [10], [13], [17],
[18], [19].

Let N ⊂ M be an inclusion of factors with finite index and N ⊂ M ⊂ M1 ⊂
M2 ⊂ · · · the Jones tower. (Throughout this paper, we always assume that condi-
tional expectations are minimal in the sense of [8] and inclusions of factors of type
II are extremal.) For α ∈ Aut(M, N), we extend α to Mk such that α(ek) = ek

inductively, where ek denotes the Jones projection for Mk−1 ⊂ Mk.
First we recall the Loi invariant and the strong outerness of group actions.

Definition 2.1 ([9, Section 5]). With above notations, Put

Φ(α) := {α|M ′∩Mk
}k.

We call Φ the Loi invariant for α.

Definition 2.2 ([1, Definition 1], [13, Definition 1.5.1]). An automorphism α ∈
Aut(M, N) is said to be properly outer or strongly outer if we have no non-zero
a ∈ ⋃

k Mk satisfying α(x)a = ax for all x ∈ M . The action α of G on N ⊂ M is
said to be strongly outer if αg is strongly outer except for g = e.

The most important result on classification of actions of groups on subfactors
has been obtained by Popa.

Theorem 2.3 ([13, Theorem 3.1]). Let N ⊂ M be a strongly amenable inclusion
of factors of type II1 and G a countable discrete amenable group.

If α and β are strongly outer actions of G on N ⊂ M , then α and β are cocycle
conjugate if and only if Φ(α) = Φ(β).

For type II∞ inclusions, we have the following result due to Popa and Winsløw.

Theorem 2.4 ([13, Theorem 2.1], [17, Theorem 4.3]). Let N ⊂ M a strongly
amenable inclusion of factors of type II∞. If α and β are actions of countable
discrete amenable group G on N ⊂ M , then α and β are cocycle conjugate if and
only if Φ(α) = Φ(β) and mod(α) = mod(β).

Let N ⊂ M be an arbitrary inclusion of factors with the common flow of weights.
Fix a normal state of N and take a crossed product of N ⊂ M by the modular
automorphism. Put Ñ ⊂ M̃ := N oσφ R ⊂ M oσφ◦E R, where E is the minimal
conditional expectation from M onto N . Let α̃ be the canonical extension of α to
Ñ ⊂ M̃ ([5], [7]), i.e.,

α̃(x) := α(x), x ∈ M,
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α̃(λ(t)) := (Dφ ◦ α−1 : Dφ)t λ(t),

where λ(t) is the usual implementing unitary. The notions of strong freeness for
automorphisms and the fundamental homomorphism are introduced by Winsløw
in [17], [18].

Definition 2.5 ([17, Definition 3.2], [18, Definition 4.2]). An automorphism α ∈
Aut(M, N) is said to be strongly free if we have no non-zero a ∈ ⋃

k M̃k satisfying
α̃(x)a = ax for all x ∈ M̃ . For an action α of G on N ⊂ M is said to be strongly
free if αg is strongly free except for g = e.

According to [17] and [18], we set

Υ(α) := {α̃|M̃ ′∩M̃k
}k

and we call this the fundamental homomorphism.

3. Classification of actions

Throughout this section, we assume that inclusions of factors of type IIIλ are
strongly amenable in the sense of Popa. (See [12] and [13].)

The following theorem is the main result of this paper.

Theorem 3.1. Let N ⊂ M be a strongly amenable inclusion of factors of type
IIIλ, 0 < λ < 1, with the common flow of weights. Let G be a countable discrete
amenable group, and α and β strongly free actions of G on N ⊂ M . Then α and
β are cocycle conjugate if and only if Υ(α) = Υ(β).

Our idea of proof is that we lift actions to inclusions of type II∞ von Neumann
algebras using continuous decomposition and apply Popa’s result.

The “only if” part is obvious, so we only prove the “if” part. Let (X, Ft)
be the flow of weights of M . Since M is of type IIIλ, (X, Ft) is of the form
([0,− logλ), translation). And we have an isomorphism

(Ñ ⊂ M̃ ⊂ M̃1 ⊂ · · · ) ∼= (L∞(X)⊗Q ⊂ L∞(X)⊗ P ⊂ L∞(X)⊗ P1 ⊂ · · · ),
where Q ⊂ P ⊂ P1 ⊂ · · · is a tower of factors of type II∞ and Q ⊂ P is strongly
amenable by assumption.

Let θt be the usual trace scaling action of R on Ñ ⊂ M̃ . Since α̃g, g ∈ G,
commutes with θt, we can consider an action of G×R by setting (g, t) → α̃gθt. If
no confusion arises, we also denote this action of G×R by α̃. If we prove that two
actions of G×R, α̃ and β̃ are cocycle conjugate, the proof of [15, Proposition 1.1]
also works in this case and we can deduce that the canonical extensions of α̃ and β̃
on N oσφ R oθ R ⊂ M oσφ◦E R oθ R ∼= N ⊗B(L2(R)) ⊂ M ⊗B(L2(R)) are also
cocycle conjugate and get the conclusion that α and β are cocycle conjugate, since
N and M are properly infinite.

So our purpose is the classification of actions of G ×R on Ñ ⊂ M̃ . Note that
for g ∈ G, the equality trM̃ α̃g = trM̃ holds.

Put H := G×R and we consider the action α̃ of the groupoid H n X on Q ⊂ P
by the equality

α̃g(a) :=
∫ ⊕

X

α̃(g,g−1x)(a(g−1x)) dx (see [15, Proposition 1.2]).

Put x0 := 0 ∈ X and H0 := {(g, x0) ∈ H n X | gx0 = x0}. Then H0 is a
discrete amenable group acting on Q ⊂ P . For x ∈ X = [0,− logλ), we define
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h(x) : X → X by h(x)y := y + x, where sum is taken modulo − logλ. Especially
h(x)x0 = x.

Here we have the following proposition.

Proposition 3.2. If the action of G is strongly free, then the action of H0 is
strongly outer.

Proof. Assume that the action of H0 is not strongly outer. Then there exists
g ∈ H\{e} and a non-zero a ∈ Pk for some k such that for every b ∈ Q, we have
α̃g(b)a = ab. Since α̃g is not strongly outer and mod α̃g = 1, we know that g is in
G.

Set

ã :=
∫ ⊕

X

α̃(h(x),x0)(a)dx.

Then an easy computation shows that the equality α̃g(b)ã = ãb holds for every
b ∈ Q and this means that action α is not strongly free.

Proof of Theorem 3.1. Let α and β be strongly free actions of G on N ⊂ M such
that Υ(α) = Υ(β). Then we get two actions α̃ and β̃ of the same groupoid H n X .
So we get two actions α̃ and β̃ of a discrete amenable group H0.

By Proposition 3.2, both actions are strongly outer and by assumption both
actions have the same Loi invariant and the same module. So there exists an
automorphism θ ∈ Aut(P, Q) and ug ∈ Zβ̃(H0, U(Q)) such that

θ α̃g θ−1 = Adug β̃g, g ∈ H0.

Set

θx := β̃(h(x),x0) θ α̃−1
(h(x),x0)

, x ∈ X, and

u(g,x) := β̃(h(gx)−1gh(x),x0)(uh(gx)−1gh(x)), (g, x) ∈ H n X.

Then an easy computation shows that u(g,x) ∈ Zβ̃(HnX, U(Q)) and the equality

θgx α̃g,x θ−1
x = Ad u(g,x) β̃(g,x)

holds.
Put θ̃ :=

∫ ⊕
X θx dx and ũg :=

∫ ⊕
X u(g,x)dx. Then we get

θ̃ α̃g θ̃−1 = Ad ũg β̃g

and we get the conclusion.
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