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THE DIOPHANTINE EQUATION b2X4 − dY 2 = 1

MICHAEL A. BENNETT AND GARY WALSH

(Communicated by David E. Rohrlich)

Abstract. If b and d are given positive integers with b > 1, then we show
that the equation of the title possesses at most one solution in positive integers
X, Y . Moreover, we give an explicit characterization of this solution, when
it exists, in terms of fundamental units of associated quadratic fields. The
proof utilizes estimates for linear forms in logarithms of algebraic numbers in
conjunction with properties of Pellian equations and the Jacobi symbol and
explicit determination of the integer points on certain elliptic curves.

1. Introduction

In 1942, W. Ljunggren [13] applied a detailed analysis of units in certain qua-
dratic and biquadratic fields to show that the Diophantine equation

X4 − dY 2 = 1(1)

possesses, for a fixed integer d, at most two solutions in positive integers X and Y .
Since, for d = 1785, we find the solutions X = 13, Y = 4 and X = 239, Y = 1352,
this result is, in a certain sense, best possible. On the other hand, the techniques of
[13] do not lend themselves to the problem of determining whether, for a given d,
equation (1) actually possesses one solution, let alone two. Recently, J.H.E. Cohn
[6] (see also [23]), through a clever argument utilizing properties of the Jacobi
symbol, was able to sharpen Ljunggren’s result. He proved

Theorem 1.1 (Cohn [6]). Let the fundamental solution of the equation v2−du2 =
1 be a + b

√
d. Then the only possible solutions of the equation X4 − dY 2 = 1 are

given by X2 = a and X2 = 2a2−1; both solutions occur in only one case, d = 1785.

The purpose of this paper is to extend the result of Cohn to the Diophantine
equation

b2X4 − dY 2 = 1(2)

where b and d are given integers. Our approach uses properties of the Jacobi
symbol, much like [6], but differs essentially from that of Cohn in its appeal to the
theory of linear forms in logarithms of algebraic numbers. It should be emphasized
that while the main ingredients in our proof are similar to those used by M. Le [11]
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to treat equation (2) for large values of b and d, our argument is fundamentally
different.

Throughout the paper d > 1 will be a squarefree integer, T +U
√

d will denote the
fundamental solution to the Pell equation X2 − dY 2 = 1, and, for k ≥ 1, integers
Tk and Uk will be defined via the equation Tk + Uk

√
d = (T + U

√
d)k.

We focus our attention on the sequence of integers {Tk}. Let b > 1 denote a
positive integer and define the divisibilty index α(b) of b in {Tk} to be the smallest
positive integer k for which b|Tk. If, for all k, b fails to divide Tk, we set α(b) = ∞.
Note that in some instances in the literature (e.g. [12]), α(b) is referred to as the
rank of apparition of b in Tk.

Our main result is

Theorem 1.2. If b, d > 1 are squarefree integers, then there is at most one index
k for which Tk = bx2 for some x ∈ Z, and, consequently, equation (2) has at most
one solution in positive integers X, Y . Moreover, if such a solution exists, then
k = α(b).

The method of proof may be extended to the case b = 1 and serves to provide
a new proof of the old result of Ljunggren [15] that the Diophantine equation
X2 − 2Y 4 = −1 has only the solutions X = 1, Y = 1 and X = 239, Y = 13 in
integers (see also [5] and [19]). For fixed values of b, we can (much as for the case
b = 1 discussed in Theorem 1.1) achieve a rather more explicit determination of
the values of k in question. We have

Corollary 1.3. Let b = 2r3s5t7u11v for some integers r, s, t, u, v ∈ {0, 1}, not all
zero. Then any solution of Tk = bx2 with x ∈ Z implies that k = 1 unless

(i) b = 7, in which case either k = 1 or k = 2 (but not both),
(ii) b = 11 and d = 2, in which case T3 = 11 · 32,
(iii) b = 55 and d = 1139, in which case T3 = 55 · 4232.

This generalizes work of Z. Cao [4], who treated the case b = 2. We could, of
course, extend this result to consider more choices for b, but this would involve
solving an increasingly large collection of hyperelliptic equations, either by elemen-
tary techniques (when they apply), or by the more general method of linear forms
in logarithms, as described in e.g. [8] and [18]. Instead, we prove

Theorem 1.4. If b > 1 is a squarefree positive integer, then there exists an effec-
tively computable constant C = C(b) such that if d > C and Tk = bx2 for some
x ∈ Z, then k = 1 or k = 2. The latter possibility can only occur if the equation
2U2 − bV 2 = 1 is solvable in integers U and V .

Along somewhat different lines, define a sequence of polynomials Pn(x) by

Pn(x) =
T2n+1(x)

x

where Tm(x) denotes the mth Tschebyscheff polynomial, satisfying

Tm(x) = cos (m arccosx) = xm +
(

m

2

)
xm−2(x2 − 1) + · · ·

for m a nonnegative integer. We consider the family of hyperelliptic curves defined
by

y2 = Pn(x).
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Since this equation defines a curve of genus n− 1, if n ≥ 2 is fixed, a classic result
of Siegel implies the existence of at most finitely many integral points. In our
situation, Theorem 1.2 immediately implies

Corollary 1.5. Let n ≥ 1 be given. Then the only integral points on the curve

y2 = Pn(x)

are given by (x, y) = (1,±1) and, if 2n + 1 = m2 for m an odd integer, by (x, y) =
(0,±m).

2. A key proposition

The following result is the main theorem of [2]. It relies upon lower bounds
for linear forms in logarithms of two algebraic numbers (specifically, those due to
Laurent, Mignotte and Nesterenko [10]) in conjunction with a gap principle based
on the theory of continued fractions.

Proposition 2.1. If a, b and c are positive integers, then there is at most one
positive integer n for which (n− 1, n, n + 1) = (ax2, by2, cz2) for some integers x, y
and z.

Roughly speaking, the proof of this result proceeds as follows. First, we note
that, from the theory of Pellian equations, if there exists a triple of positive integers
(x, y, z) such that (n− 1, n, n + 1) = (ax2, by2, cz2), then

y =
γj − γ−j

2
√

b
=

βk + β−k

2
√

b

where j and k are positive integers and γ and β are the fundamental solutions to
the equations cX2 − bY 2 = 1 and bX2 − aY 2 = 1 (i.e. γ =

√
cu0 +

√
bv0 and

β =
√

bu1 +
√

av1 where (u0, v0) and (u1, v1) are the smallest solutions in positive
integers to cX2 − bY 2 = 1 and bX2 − aY 2 = 1 respectively). It follows that the
linear form

Λ = j log γ − k log β

is extremely small in modulus. Applying results from [10], we deduce upper bounds
for the coefficients j and k in terms of γ and β. On the other hand, if (x1, y1, z1)
is another triple of positive integers such that (m − 1, m, m + 1) = (ax2

1, by
2
1 , cz

2
1)

for some positive m and, say, y1 > y, then elementary arguments from the theory
of continued fractions imply that the integers j1 and k1 corresponding to y1 grow
very quickly in terms of γ and β, enabling us to derive a contradiction.

We remark that the proof of Proposition 2.1 does not entail any particularly deep
or involved computations. In fact, only a few rudimentary results on the convergents
in the continued fraction expansions of certain real numbers are required. The
reader is directed to [2] for more details.

3. More preliminary results

Before proceeding with the proof of Theorem 1.2, we require some elementary
results concerning the behaviour of elements of binary linear recurrence sequences.

Lemma 3.1. Let ε = T + U
√

d denote the fundamental solution of X2− dY 2 = 1.
If T is odd, then there are positive integers A, B, r, s with ε = τ2, where τ =
A
√

r + B
√

s, A2r − B2s = 1 and d = rs. If T is even, then there are odd positive
integers A, B, r, s with ε = τ2/2, where τ = A

√
r+B

√
s, A2r−B2s = 2 and d = rs.
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Proof. This follows easily upon considering the factorization

T 2 − 1 = (T − 1)(T + 1) = U2d.

Lemma 3.2. Let d denote a squarefree positive integer with d > 1. If d is odd,
then there are precisely two triples of nonnegative integers (r, s, δ) such that the
equation rX2 − sY 2 = 2δ, with δ ∈ {0, 1} and d = rs is solvable in integers X, Y .
If d is even, then there are precisely two pairs of positive integers (r, s) such that
the equation rX2 − sY 2 = 1 with d = rs is solvable in integers X, Y .

Proof. A somewhat more general version of this is an immediate consequence of
Theorem 3 of [17].

Lemma 3.3. Let b, d > 1 be squarefree integers. Further, let T + U
√

d denote the
fundamental solution of X2 − dY 2 = 1 and Tk + Uk

√
d = (T + U

√
d)k for k ≥ 1.

Suppose that Tk = by2 for some odd integer y. If, additionally, Tl = bw2 for some
integer w, then w is odd.

Proof. Let α(b) denote the divisibility index of b in the sequence {Tk}. The set of k
for which b|Tk is precisely the set {tα(b); t is odd }. Furthermore, by the binomial
theorem it is easy to see that if 2a properly divides Tα(b), then 2a properly divides
Ttα(b) for all odd integers t, whence the result readily obtains.

The following two lemmata were deduced by Cohn [6] in the course of proving
Theorem 1.1.

Lemma 3.4. For {Tk} as above and n an odd positive integer, define wn = Tn/T .
Let k be an odd positive integer with gcd(k, n) = 1 and ( ··) denote the Jacobi symbol.
Then

(i) wn ≡ (−1)
n−1

2 n (mod 4T )

and

(ii)
(wn

k

)
=
(

k

n

)
.

Lemma 3.5. If n and m are odd positive coprime integers, then gcd(wn, wm) = 1
and ( wn

wm
) = 1.

4. Proof of Theorem 1.2

The proof is in two parts. We first show that there is at most one solution to
the equation of the title. Let x and y be integers such that b2x4 − dy2 = 1. If bx2

is even, then gcd(bx2 − 1, bx2 + 1) = 1, and so there are odd positive integers r, s, z
and w such that d = rs, bx2 − 1 = rz2 and bx2 + 1 = sw2. If bx2 is odd, then
it is easily verified that there are positive integers r, s, z and w such that d = rs,
bx2−1 = 2rz2 and bx2 +1 = 2sw2. Thus, we have for bx2 even that (rz2, bx2, sw2)
are three consecutive integers and, for bx2 odd, that (2rz2, bx2, 2sw2) are three
consecutive integers, with d = rs in both cases.

Applying Proposition 2.1 and Lemma 3.2, then, we conclude that there are at
most two solutions to b2X4 − dY 2 = 1, and, if two solutions exist, that one of the
triples of consecutive integers given above must be of the form (2dz2, bx2, 2w2). By
Lemma 3.3, another solution X = u, Y = v to b2X4 − dY 2 = 1 must have u odd
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and so, by the analysis given in the above paragraph, the corresponding triple of
consecutive integers (bu2− 1, bu2, bu2 +1) must be of the form (2rz2

1 , bu2, 2sw2
1) for

positive squarefree integers r and s > 1 with d = rs. Since sw2
1−rz2

1 = 1 and s 6= 1,
it follows from Lemma 3.1 and Lemma 3.2 that ε = T + U

√
d, the fundamental

solution of X2 − dY 2 = 1, is of the form ε = τ2, where τ = A
√

r + B
√

s with
B2s−A2r = 1. Since z1

√
r + w1

√
s is necessarily an odd power of τ , we have that(

z1

√
r + w1

√
s
)2 = bu2 + 2z1w1

√
d

is an odd power of ε. Noting that b > 1 and arguing as in the proof of Lemma 3.3,
we conclude that bx2 + 2zw

√
d is also an odd power of ε.

If w is even, then since w2−dz2 = 1, it follows that T is even, which contradicts
Lemma 3.1. We therefore have that w is odd. But

(2dz2, bx2, 2w2) = (2w2 − 2, 2w2 − 1, 2w2)

and so

bx2 + 2zw
√

d = bx2 + 4w

√
w2 − 1

4
= (2w2 − 1) + 4w

√
w2 − 1

4

=

(
w + 2

√
w2 − 1

4

)2

.

This shows that bx2 + 2zw
√

d is an even power of ε, a contradiction.
We conclude, therefore, that there is at most one solution in integers to b2X4 −

dY 2 = 1, provided b > 1.
To complete the proof of Theorem 1.2, we now demonstrate that if a solution to

b2X4 − dY 2 = 1 exists, then Tα(b) = bx2 for some x ∈ Z. We will assume that m

is an integer for which Tm·α(b) = bx2
1 and show that there is an integer x for which

Tα(b) = bx2. The desired result then follows from the uniqueness of the solution.
Let t = Tα(b) and u = Uα(b) and define tk +uk

√
d = (t + u

√
d)k for k ≥ 1. If, for

n ≥ 1 odd, we define wn = tn/t, then it is evident that the conclusion of Lemma
3.4 remains valid for the sequence {wn}.

From Tm·α(b) = bx2
1, it follows that tm = bx2

1. Further, the definition of t implies
that t = bl for some integer l. If n is a positive integer with gcd(n, tm) = 1, then

gcd(wn, bl) = gcd(wn, tm) = 1

whence (
b

wn

)
=
(

bx2
1

wn

)
=
(

tm
wn

)
.

Applying Lemma 3.5, we have

1 =
(

wm

wn

)
=
(

wmt21
wn

)
=
(

tm
wn

)(
t1
wn

)
=
(

b

wn

)(
t1
wn

)
=
(

b

wn

)2(
l

wn

)
,

and so
(

l
wn

)
= 1. Since tm = bx2

1, t1 = bl and, arguing as in the proof of Lemma

3.3, we have ord2 tm = ord2 t1, it follows that l = 22µl1 for some µ ∈ Z and l1 odd.
Therefore, from Lemma 3.4 and quadratic reciprocity,

1 =
(

l

wn

)
=
(

l1
wn

)
=
(

wn

l1

)
=
(

l1
n

)
=
(

l

n

)
.
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This is only possible if l is the square of an integer, since otherwise we may choose
n ≡ 1(mod 4) such that gcd(n, tm) = 1 and n is a quadratic non-residue modulo l.
This completes the proof of Theorem 1.2.

5. Proof of Corollary 1.3

To prove Corollary 1.3, we appeal to the following moderately explicit character-
ization of the divisibility index α(p) of a prime p in the sequence {Tk}. The result
is quite standard; for a proof, the reader is directed to the classic paper of Lehmer
[12].

Lemma 5.1. Let ε = T +U
√

d denote the fundamental solution to X2− dY 2 = 1,
and Tk + Uk

√
d = εk for k ≥ 1. Let p be prime and α(p) denote, as before, the

divisibility index of p in the sequence {Tk}.
(i) If p = 2, then α(p) = 1 or ∞.
(ii) If p > 2 divides d, then α(p) = ∞.

(iii) If p > 2 fails to divide d, then either α(p)| p−( d
p )

2 or α(p) = ∞.

Here (d
p ) denotes the usual Legendre symbol.

We are now in position to establish Corollary 1.3. Let b be of the form given
in the statement of the corollary and assume that Tk = bx2 for some integer x.
Suppose first that k is even, k = 2l, say. Then Tk = 2T 2

l − 1 = bx2. Since 2 must
be a quadratic residue of the prime divisors of 2T 2

l − 1, b must be a product of
primes congruent to ±1 modulo 8. Thus, except for b = 7, there is no solution to
Tk = bx2 with k even. Since the preceding lemma implies that α(7) = 1, 2, 3, 4 or
∞, it remains, from Theorem 1.2, to show that the equation T4 = 8T 4− 8T 2 +1 =
7x2 possesses no solutions in integers, which follows trivially upon considering the
equation modulo 4.

Assume now that k is odd. By Lemma 5.1, α(2) = 1 or ∞, α(3) = 1, 2 or
∞, α(5) = 1, 2, 3 or ∞, α(7) = 1, 2, 3, 4 or ∞, and α(11) = 1, 2, 3, 5, 6 or ∞. By
Theorem 1.2, k = α(b), and it follows from the fact that k is odd that either
k = 1, 3, 5 or 15. For the values of b under consideration, we first show that
there are no solutions with k = 5 (which also eliminates the possibility of k = 15,
since T15 = T5(T3)). Suppose that T5 = bx2 for some T > 1 and x ∈ Z. Since
T5 = T

(
16T 4 − 20T 2 + 5

)
and

gcd
(
16T 4 − 20T 2 + 5, 2 · 3 · 7 · 11

)
= 1,

it follows that

16T 4 − 20T 2 + 5 = 5δu2

for some u ∈ Z and δ ∈ {0, 1} and so(
8T 2 − 5

)2 − 5 = 5δ(2u)2.

If δ = 0, this implies that T = ±1, contradicting T > 1. If, however, δ = 1, then
T = 5v for some v ∈ Z and so

(2u)2 − 5(40v2 − 1)2 = −1.

Since it is readily proved by induction that all integer solutions to X2 − 5Y 2 =
−1 satisfy Y ≡ 1(mod 8) (upon, for instance, noting that the smallest solution
corresponds to 2 +

√
5), we obtain the desired contradiction.
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It remains to consider when T3 = T (4T 2 − 3) = bx2 for T > 1 and x ∈ Z. Since
gcd(4T 2 − 3, 2 · 5 · 7) = 1, we therefore have

4T 2 − 3 = 3a11bu2

for some u ∈ Z and a, b ∈ {0, 1}. Considering this equation modulo 4, it follows
that a + b ≡ 0 (mod 2) and so a = b = 0 or a = b = 1. In the first instance,
T = ±1, contradicting T > 1. In the second,

4T 2 − 3 = 33u2(3)

and so 11|b. If 2|b, then from T (4T 2− 3) = bx2, we have 2|T and so, from equation
(3), u2 ≡ 5(mod 8), a contradiction. Similarly, if 7|b, then necessarily 7|T and so
u2 ≡ 5(mod 7), again a contradiction. It follows that b ∈ {11, 33, 55, 165}.

Let us suppose now that b = 5δ · 33 for δ ∈ {0, 1}. It follows that T = 5δ9v2 for
some v ∈ Z and so

108
(
5δv2

)2 − 11u2 = 1.

Now the smallest solution to 108X2 − 11Y 2 = 1 corresponds to 15
√

108 + 47
√

11
and so we may show by induction that all solutions X, Y to this equation satisfy
X ≡ 3, 7(mod 8). Since 5δv2 ≡ 0, 1, 4, 5(mod 8), we reach the desired contradiction.

It remains only to consider when b = 11 or 55. Regarding these cases, we prove

Proposition 5.2. (i) The only solution in positive integers to the equation

T (4T 2 − 3) = 11x2

is given by T = 3 and x = 3.
(ii) The only solution in positive integers to the equation

T (4T 2 − 3) = 55x2

is given by T = 135 and x = 423.

Proof. We apply standard techniques for finding integer points on elliptic curves
based on the theory of linear forms in elliptic logarithms, specifically following the
exposition of Gebel, et al. [8] (see also [18] for a similar approach). We note that the
bounds given in [8] are not quite correct as stated, so we actually utilize the revised
constants given in Proposition 2 of [9]. To perform the necessary computations, we
employ Ian Connell’s Apecs, GP/PARI 1.38 and Maple V. Taking

X = 44T, Y = 222x

and

X = 220T, Y = 1102x

in (i) and (ii) respectively, we are led to consider, in Weierstrass form, the elliptic
curves

E1 : Y 2 = X3 − 1452X

and

E2 : Y 2 = X3 − 36300X.

The first of these has discriminant

∆ = 195920474112 = 21233116,
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modular invariant j = 1728, a two element torsion group generated by T = (0, 0)
and, via 2-descent, rank 1. The Mordell-Weil group E1(Q) is generated, modulo
torsion, by the point P1 = (132, 1452), with canonical height

ĥ(P1) = 0.6811644354 . . .

and elliptic logarithm

u1 = 0.17558123819156381213025583974497106901 . . . .

This last value may be computed quite quickly and accurately via the algorithm
given in [22]. Related fundamental periods are

ω1 = 0.4247668014 . . .

and ω2 = i ω1, so that

τ = ω2/ω1 = i.

Applying Theorem 2 of [9] (which depends crucially upon the lower bound for linear
forms in elliptic logarithms of David [7]), if

P = n1P1 + P2

is an integral point on E1 over Q, for P2 a torsion point, then

|n1| ≤ 1.22× 1015.

To dispose of the remaining “small” cases, we need only apply the continued fraction
algorithm to u1 or, roughly equivalently, lattice basis reduction à la de Weger [21]
to the lattice corresponding to the 2× 2 matrix(

1 0
bc0u1c c0

)
for suitably chosen c0. Taking c0 = 1033, we may argue as in Section 6 of [8] to
conclude that in fact we have

|n1| ≤ 5.

Since, for these values of n1, we find only the integer points (−11,±121) and
(132,±1452), we obtain the desired result (upon noting that only (132, 1452) comes
from a positive solution to the original equation).

The case of E2 follows similarly upon noting that we have discriminant

∆ = 3061257408000000 = 2123356116,

modular invariant j = 1728, a two element torsion group generated by (0, 0) and,
via 2-descent, rank 2. The group E2(Q) is generated, modulo torsion, by the points
P1 = (550, 12100) and P2 = (825/4, 9075/8), with canonical heights

ĥ(P1) = 0.6154894898 . . .

and

ĥ(P2) = 1.2421525473 . . .

and elliptic logarithms

u1 = 0.086358672409930109404192159288451277567487744
407252028684374582367014574461547695504335546 . . .
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and

u2 = 0.161112119997397812255104416108297537975373454
163961789464739288470482610837785998762340026 . . .

respectively. Related fundamental periods are

ω1 = 0.1899614885 . . .

and ω2 = i ω1, so again

τ = ω2/ω1 = i.

Further, the smallest eigenvalue of the (positive definite) matrix associated with ĥ
and the basis P1, P2 is given by

λ1 = 0.997595055 . . . .

Once again applying the main theorem of [8], if

P = n1P1 + n2P2 + P3

is an integral point on E2 over Q, for P3 a torsion point, then

max{|n1|, |n2|} ≤ 4.09× 1028.

Applying de Weger reduction to 1 0 0
0 1 0

bc0u1c bc0u2c c0


where here we take c0 = 1090, this enables us to conclude that in fact

max{|n1|, |n2|} ≤ 12

from which a routine computation with Apecs confirms that the only integral points
on E2 are (−50,±1300), (−66,±1452), (−176,±968), (196,±644), (550,±12100),
(726,±18876) and (29700,±5118300). Since only the point (29700, 5118300) corre-
sponds to a solution to our original equation, this completes the proof.

6. Proof of Theorem 1.4

For n ≥ 1, note that Tn is a polynomial in T of degree n, say Tn = fn(T ).
Moreover, from the fact that the polynomials {fn} satisfy the recurrence fn+1(T ) =
2T · fn(T ) − fn−1(T ), the height of fn (that is, the maximum modulus of the
coefficients) is bounded by 3n.

Now assume that Tn = bx2, with n ≥ 3, b > 1 and b squarefree. Then Theorem
1.2 implies that n = α(b). If b = p1p2 · · · ps is the factorization of b into distinct
primes, then α(b) ≤ α(p1) · · ·α(ps) and so, by Lemma 5.1, α(b) < b. It follows that
we have an integral solution T, x to the Diophantine equation fn(T ) = bx2 for some
n < b. Since the degree of fn(T ) is bounded by b, the height of fn(T ) is bounded
by 3b and its roots are readily seen to be distinct, we may apply standard results
from the theory of linear forms in logarithms (see e.g. [1] or [20]) to conclude that
x (and hence d) is bounded by C = C(b), for some computable constant depending
on b. This concludes the proof of Theorem 1.4.
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7. Concluding remarks

The situation is somewhat less simple if we consider the more general equation

aX4 − dY 2 = 1,

for a an arbitrary but fixed integer. Presumably, there are at most two solutions
in positive integers X, Y (as, for instance, is the case when a = 3 and d = 2; see
the paper of Bumby [3]), but an explicit statement to this effect is not, to our
knowledge, available in the literature. On the other hand, the techniques of [13]
could likely be applied to yield such a result (see e.g. [16] for further remarks along
these lines).
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