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ON SEMISIMPLE HOPF ALGEBRAS OF DIMENSION pq

SHLOMO GELAKI AND SARA WESTREICH

(Communicated by Lance W. Small)

Abstract. We consider the problem of the classification of semisimple Hopf
algebras A of dimension pq where p < q are two prime numbers. First we
prove that the order of the group of grouplike elements of A is not q, and that
if it is p, then q = 1 (mod p). We use it to prove that if A and its dual Hopf
algebra A∗ are of Frobenius type, then A is either a group algebra or a dual
of a group algebra. Finally, we give a complete classification in dimension 3p,
and a partial classification in dimensions 5p and 7p.

In this paper we consider semisimple Hopf algebras of dimension pq over an
algebraically closed field k of characteristic 0, where p and q are distinct prime
numbers. Masuoka has proved that a semisimple Hopf algebra of dimension 2p
over k, where p is an odd prime, is trivial (i.e. is either a group algebra or a dual
of a group algebra) [Ma1]. Izumi and Kasaki have proved that Kac algebras (i.e.
semisimple Hopf algebras over the field of complex numbers, with an additional
condition on the existence of an involution), of dimension 3p over k, where p is
prime, are trivial [IK]. Thus, a natural conjecture is:

Conjecture 1. Any semisimple Hopf algebra of dimension pq over k, where p and
q are distinct prime numbers, is trivial.

A well known property of A, a finite dimensional semisimple group algebra or a
dual of a group algebra, is that it is of Frobenius type; that is, the dimension of any
irreducible representation of A divides the dimension of A (the definition is due to
Montgomery [Mo]). A special case of Kaplansky’s 6th conjecture [K] is:

Conjecture 2. Any semisimple Hopf algebra of dimension pq over k, where p and
q are distinct prime numbers, is of Frobenius type.

In this paper we prove among the rest that Conjecture 1 is equivalent to Con-
jecture 2 (see Theorem 3.5).

A major role in the analysis is played by G(A) (where G(A) denotes the group
of grouplike elements of A). By [NZ], |G(A)| is either 1, p, q or pq. We prove in
Theorem 2.1 that if p < q, then |G(A)| 6= q, and if |G(A)| = p, then q = 1 (mod p).
Consequently, we prove in Theorem 2.2 that if |G(A)| 6= 1 and q 6= 1 (mod p), then
A is a commutative group algebra.
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Thus Theorem 2.2 suggests the following question: When is |G(A)| 6= 1? In
Proposition 3.1 we prove that this is guaranteed when A∗ is of Frobenius type, and
in Theorem 3.2 we prove that if moreover q 6= 1 (mod p), then A is a commutative
group algebra. In Theorem 3.4 we prove that if |G(A∗)| 6= 1 and A∗ is of Frobenius
type, then A is trivial, and |G(A)| = p < q or pq. The equivalence of Conjectures
1 and 2 is thus a consequence of Proposition 3.1 and Theorem 3.4.

A complete classification of semisimple Hopf algebras of dimension 3p is then
given in Theorem 4.3. Indeed, they are all trivial.

We conclude by using Theorem 2.2 to prove in Theorem 4.5 that if A is a semisim-
ple Hopf algebra of dimension 5p, p an odd prime, and if p = 2 or 4 (mod 5) or
p ∈ {13, 23}, then A is a commutative group algebra. Moreover, we obtain in
Theorem 4.6 the same result for semisimple A of dimension 7p, p a prime, and
p = 6 (mod 7) or p ∈ {17, 31}.

1. Preliminaries

In this paper k will always denote an algebraically closed field of characteristic
0.

Recall that a finite dimensional Hopf algebra over k is semisimple if and only if
it is cosemisimple [LR].

Let A be semisimple Hopf algebra over k, and let ρV : A → Endk(V ) be a
finite dimensional representation of A. The associated character χV is given by
χV (a) = tr(ρV (a)) for all a ∈ A. A character χV is called irreducible if the
representation V is irreducible. Let R(A) denote the character ring of A; that
is, the k-subalgebra of A∗ generated by the characters χV of finite dimensional A-
modules V . The set of all irreducible characters forms a basis of R(A) [La]. Zhu has
proved that R(A) is semisimple and if eA∗ , e1, . . . , ek are the primitive idempotents
of R(A), where eA∗ is an integral of A∗, then

dim A = 1 +
k∑

i=1

dim(eiA
∗)(1)

and the dimension of each eiA
∗ divides the dimension of A [Z]. Note that dimR(A)

≥ k + 1, and equality holds if and only if R(A) is commutative.
Let f : A → A∗ be the map given by f(a) = a ⇀ λ =

∑〈a, λ(2)〉λ(1) for
all a ∈ A, where λ is a non-zero integral of A∗. Recall that f gives a linear
isomorphism between kG(A) and the sum of the 1-dimensional ideals of A∗, and a
linear isomorphism between the center Z(A) of A and R(A). Therefore, using the
notation of (1), dim(eiA

∗) = 1 for some i if and only if G(A) ∩ Z(A) 6= {1}.
Let A be a semisimple Hopf algebra over k. Any simple subcoalgebra Cl of A∗

has a basis {xl
ij |1 ≤ i, j ≤ nl}, where ∆(xl

ij) =
∑nl

k=1 xl
ik ⊗ xl

kj and ε(xl
ij) = δi,j .

Note that nl = 1 if and only of Cl = {g} for some g ∈ G(A). Nichols and Richmond
have proved that if dimA is odd, then A does not have a 2-dimensional irreducible
module [NR], hence

dim A = |G(A)|+
∑

l

n2
l , nl ≥ 3.(2)

Now, L is an irreducible left coideal of Cl if and only if

L = Ll
j = sp{xl

kj |1 ≤ k ≤ nl}(3)
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for some 1 ≤ j ≤ nl. Similarly, R is an irreducible right coideal of Cl if and only if

R = Rl
k = sp{xl

kj |1 ≤ j ≤ nl}(4)

for some 1 ≤ k ≤ nl. Note that

dim(Ll
j ∩Rl

k) = 1(5)

for any 1 ≤ j, k ≤ nl.
In what follows we recall some of the properties of a Hopf algebra with a projec-

tion, which we shall use in the sequel.

Theorem 1.1 ([R]). If H
i

↪→ A
π
↪→ H is a sequence of finite dimensional Hopf

algebra maps where i is injective, π is surjective and π ◦ i = idH , then there exists
B ⊆ A so that :

(i) B is a left H-module algebra and coalgebra via the adjoint action.
(ii) B is a left H-comodule algebra and coalgebra via ρ(b) =

∑
b(1) ⊗ b(2) =∑

π(b(1))⊗ b(2).
(iii) B ∼= A/AH+ as a coalgebra, via the map b× h 7→ bε(h).
(iv) B is a left coideal subalgebra of A.
(v) As an algebra A = B ×H is a smash product.
(vi) As a coalgebra A = B × H is a smash coproduct, that is : ∆(b × h) =∑
b(1) × b

(1)
(2)h(1) ⊗ b

(2)
(2) × h(2).

(vii) The map B ×H → A(b× h 7→ bi(h)) is an isomorphism of bialgebras.

2. On the order of G(A) and G(A∗)

In this section we prove some results concerning the group of grouplike elements
of semisimple Hopf algebras of dimension pq.

Theorem 2.1. Let A be a semisimple Hopf algebra of dimension pq over k, where
p < q are two prime numbers. Then:

1. |G(A)| 6= q.
2. If |G(A)| = p, then q = 1 (mod p).

Proof. 1. Suppose to the contrary that |G(A)| = q. If G(A) ∩ Z(A) = G(A),
then H = kG(A) is central in A, hence is a normal sub-Hopf algebra of A. Since
A/AH+ is a Hopf algebra of dimension p it follows by [Z] that A/AH+ ∼= kCp.
An elementary argument which follows from [Ma2, Section 2], shows that A is
isomorphic as an algebra to the twisted group ring kCt

q[Cp] of the cyclic group Cp

over the commutative algebra kCq, and hence must be commutative. Thus, A∗ is
a group algebra and hence of Frobenius type. By (2), pq = q + ap2 + bq2 for some
integers a, b ≥ 0. But p < q, hence b = 0, which yields a contradiction. We conclude
that G(A)∩Z(A) = {1}. Therefore, using the notation of (1), dim(eiA

∗) ∈ {p, q} for
all i. Let E0 be the integral of H = kG(A) with ε(E0) = 1. Since dim(A/AH+) = p,
it follows that AH+ = A(1 − E0) has dimension (q − 1)p and thus dim(AE0) = p.
Moreover, E0eA = eA, hence E0 = eA +

∑
j eij . But p < q, hence counting

dimensions yields a contradiction and the result follows.
2. If G(A) ∩ Z(A) = G(A), then H = kG(A) is central in A, and hence A is

commutative. Therefore, A∗ is a group algebra and hence of Frobenius type. By
(2), pq = p+ap2+bq2 for some integers a, b ≥ 0. Clearly, b = 0 and hence q = 1+ap.
If G(A) ∩ Z(A) = {1}, then using the notation of (1), dim(eiA

∗) ∈ {p, q} for all i.
Since dim(A/AH+) = q, it follows that AH+ = A(1 − E0) has dimension (p− 1)q
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and thus dim(AE0) = q. Hence, E0 = eA +
∑

j eij . But, counting dimensions yields
that dim(eij A

∗) = p for all j, and the result follows in this case as well.

As a direct consequence of Theorem 2.1 we have:

Theorem 2.2. Let A be a semisimple Hopf algebra of dimension pq over k, where
p < q are two prime numbers satisfying q 6= 1 (mod p). If |G(A)| 6= 1, then A is a
commutative group algebra.

3. The main result

In this section we consider semisimple Hopf algebras A of dimension pq such that
A∗ is of Frobenius type. First we find out when |G(A)| 6= 1 is guaranteed.

Proposition 3.1. Let A be a semisimple Hopf algebra of dimension pq over k,
where p < q are two prime numbers. If A∗ is of Frobenius type, then either |G(A)| =
p and q = 1 (mod p), or |G(A)| = pq.

Proof. If A is cocommutative, then |G(A)| = pq. Otherwise, |G(A)| 6= pq, and by
Theorem 2.1, |G(A)| 6= q. If |G(A)| = 1, then by (1), pq = 1 + ap2 + bq2 for some
integers a, b ≥ 0, as A∗ is of Frobenius type. But, q2 > pq hence b = 0 which yields
a contradiction.

As a corollary of Proposition 3.1 we have:

Theorem 3.2. Let A be a semisimple Hopf algebra of dimension pq over k, where
p < q are two prime numbers satisfying q 6= 1 (mod p). If A∗ is of Frobenius type,
then A is a commutative group algebra.

In the following proposition we determine the coalgebra structure of A.

Proposition 3.3. Let A be a non-cocommutative and non-commutative semisimple
Hopf algebra of dimension pq over k, where p < q are prime numbers. Let R(A∗)
be the character ring of A∗. If A∗ is of Frobenius type, then:

1. R(A∗) is commutative.
2. As a coalgebra A = k1⊕ kg ⊕ · · · ⊕ kgp−1 ⊕C1 ⊕ · · · ⊕ Ca, where a = q−1

p , g

is a grouplike element and Ci is a simple subcoalgebra of A of dimension p2

for all 1 ≤ i ≤ a.
3. gCi = Ci = Cig for all 1 ≤ i ≤ a.

Proof. Set H = kG(A). By Theorem 2.1 and Proposition 3.1, dim H = p. If H
is central in A, then (as in the proof of Theorem 2.1) A must be commutative.
Therefore, we conclude that G(A) ∩ Z(A) = {1}.

Set n = dim R(A∗) − 1. Then, by (1) there exist two natural numbers a and b
such that:

pq = 1 + ap + bq(6)

and

n ≥ a + b.(7)

Clearly, a ≥ 1 and b < p. Moreover, A∗ is of Frobenius type and p < q, hence by
(2)

pq = p2(n + 1− p) + p.(8)
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Substituting (6) and (7) in (8) yields

pq ≥ p2(a + b + 1− p) + p = p2

(
(p− b)q − 1

p
+ b + 1− p

)
+ p

and hence (1− p + b)q ≥ (1− p + b)p. Since p < q and b < p, this is possible if and
only if b = p− 1 and equality holds in (7). This implies that R(A∗) is commutative
and that pq = 1 + ap + (p− 1)q, and hence a = q−1

p . Let

eA, e1, . . . , ea, ea+1, . . . , ea+p−1

be the primitive idempotents of R(A∗), where eA is the integral of A with ε(eA) =
1, dim(Aei) = p for 1 ≤ i ≤ a and dim(Aea+j) = q for 1 ≤ j ≤ p − 1. Let E0 =
1
p

∑p−1
i=0 gi be an integral of H where g is a generator of G(A). Since dim(A/AH+) =

q, it follows that AH+ = A(1−E0) has dimension (p−1)q and thus dim(AE0) = q.
Moreover, E0eA = eA, hence counting dimensions yields that

E0 = eA + e1 + · · ·+ ea.

Since R(A∗) is commutative, dim(R(A∗)eA) = dim(R(A∗)ei) = 1 for all 1 ≤ i ≤ a,
and hence

dim(R(A∗)E0) = a + 1.(9)

Since the set of all the irreducible left A∗-modules consists of p 1-dimensional mod-
ules and a = q−1

p p-dimensional modules, it follows that

A = k1⊕ kg ⊕ · · · ⊕ kgp−1 ⊕ C1 ⊕ · · · ⊕ Ca

as a coalgebra, where Ci is a simple subcoalgebra of A of dimension p2 for all
1 ≤ i ≤ a. Let

{1, g, . . . , gp−1, χ1, . . . , χa}
be the set of irreducible characters of A∗, where χi corresponds to Ci. This set
clearly forms a basis of R(A∗). Then

R(A∗)E0 = sp{E0, E0χ1, . . . , E0χa}
which implies by (9) that {E0, E0χ1, . . . , E0χa} forms a basis of R(A∗)E0. If gχi =
χj for i 6= j, then E0χi = E0χj which is a contradiction. Therefore, gχi = χi, and
hence

gCi = Ci = Cig

for all i. This concludes the proof of the proposition.

Theorem 3.4. Let A be a semisimple Hopf algebra of dimension pq over k, where
p < q are prime numbers. If A∗ is of Frobenius type and |G(A∗)| 6= 1, then A is
trivial, and |G(A)| = p < q or pq.

Proof. If A is either cocommutative or commutative, then A is either a group
algebra or a dual of a group algebra respectively. In any event A∗ is of Frobenius
type, hence by Proposition 3.1, |G(A)| = p < q or pq and we are done.

Suppose that A is not cocommutative and not commutative. Then Proposition
3.3 is applicable. Set H = kG(A). By Proposition 3.1, |G(A)| = p. Let g be a
generator of G(A). By Theorem 2.1, |G(A∗)| 6= q, hence |G(A∗)| = p too. Thus we
have the following sequence of maps:

H
i

↪→ A
π
↪→ H
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where i is the inclusion map and π is a surjection homomorphism of Hopf algebras.
If π ◦ i = ε, then H ⊆ K = AcoH . Since K is a left coideal of A, it is a direct sum
of irreducible left coideals K = k1⊕ kg⊕ · · ·⊕ kgp−1⊕V1⊕ · · ·⊕Vn. Since A∗ is of
Frobenius type it follows that dim Vi = p for all i. But, this is a contradiction since p
does not divide dim K = q. Therefore π◦i 6= ε and we may assume that π◦i = idH .
Therefore by Theorem 1.1, there exists B ⊂ A so that A ∼= B × H . By Theorem
1.1(iv), B is a left coideal of A, hence a direct sum of irreducible left coideals of A.
By Proposition 3.3(2), the dimensions of these irreducible left coideals are either
1 or p. Since dim B = q, it follows that B contains an irreducible left coideal V
of A, of dimension p. Since V ⊂ C for some p2-dimensional simple subcoalgebra
C, it follows by Theorem 1.1(vii) and Proposition 3.3(3), that V × H ⊆ C. But,
dim(V ×H) = p2 = dim C, hence V ×H = C. By Theorem 1.1(iii), A/AH+ ∼= B
as coalgebras, and V is the image of C = V ×H under this isomorphism, hence

V is a subcoalgebra of B.

We wish to prove that V is a simple subcoalgebra of B and thus to reach a
contradiction. Note that since V is an irreducible left coideal of A it follows that
V × gi is also an irreducible left coideal of A for all 0 ≤ i ≤ p− 1. By Proposition
3.3(3), it follows that

{V × gi|0 ≤ i ≤ p− 1}
is the set of all the irreducible left coideals of A contained in C. Since V is a left
coideal of A, it follows from Theorem 1.1(ii) that V is an H subcomodule of B. Let
ρ : B → H ⊗ B be the comodule structure map, and write V =

⊕p−1
i=0 Vi, where

Vi = ρ−1(gi ⊗ V ). We claim that dimVi = 1 for all i. Indeed, let {v0, . . . , vp−1} be
a basis of V consisting of homogeneous elements; that is, ρ(vi) = gmi ⊗ vi for some
0 ≤ mi ≤ p−1. Let 0 6= v ∈ V and write ∆B(v) =

∑p−1
i=0 bi⊗ vi. Then by Theorem

1.1(vi),

∆A(v × 1) =
p−1∑
i=0

bi × gmi ⊗ vi × 1.

Therefore, using Kaplansky’s notation [K], L(v×1) = sp{bi×gmi |0 ≤ i ≤ p−1} ⊂ C
is a right coideal of A of dimension ≤ p. Since C is a simple subcoalgebra of A
of dimension p2, it follows that dim(L(v × 1)) = p and L(v × 1) is irreducible.
Therefore by (5), dim(L(v× 1)∩ (V × gi)) = 1 for all i, hence {mi|0 ≤ i ≤ p− 1} =
{0, 1, . . . , p−1}. Thus V has a basis {vi|0 ≤ i ≤ p−1}, where ρ(vi) = gi⊗vi. Since
V is an H-comodule coalgebra it follows that ∆B(Vi) ⊆

∑p−1
j=0 Vj ⊗ Vi−j , hence

∆B(vi) =
∑p−1

j=0 αijvj ⊗ vi−j for all i, for some αij ∈ k. Computing ∆A(vi × 1)
yields that Ri = L(vi × 1) = sp{αijvj × gi−j |0 ≤ j ≤ p− 1} ⊂ C is a right coideal
of A of dimension ≤ p, for all i. Hence dimRi = p and

Ri = sp{vj × gi−j |0 ≤ j ≤ p− 1}(10)

is irreducible. It is straightforward to verify that Ri 6= Rt for i 6= t, and hence the
set {Ri|0 ≤ i ≤ p− 1} is the set of all the irreducible right coideals of A which are
contained in C.

Finally, let D ⊆ V be a subcoalgebra. By Theorem 1.1(vi), D×H ⊆ C is a right
coideal of A and hence D×H =

⊕
l Ril

, where Ril
is as in (10). But, the image of

D ×H under the map id⊗ ε : A → B equals D, while the image of
⊕

l Ril
under
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this map equals V . Therefore D = V , and hence V is a simple coalgebra. But, this
is a contradiction since dim V = p is not a square.

As a corollary we obtain the following:

Theorem 3.5. Let A be a semisimple Hopf algebra of dimension pq over k, where
p < q are prime numbers. If both A and A∗ are of Frobenius type, then A is trivial.

Proof. Follows from Proposition 3.1 and Theorem 3.4.

4. The dimensions 3p, 5p and 7p

We start this section with a complete classification of semisimple Hopf algebras
of dimension 3p.

Proposition 4.1. Let A be a non-cocommutative semisimple Hopf algebra of di-
mension 3p over k, where p > 3 is prime. Then |G(A)| = 3.

Proof. By Theorem 2.1, |G(A)| 6= p. Since A is non-cocommutative, |G(A)| 6= 3p.
Assume |G(A)| = 1 and let R(A∗) ⊆ A be the ring of characters of A∗. Set
n = dim R(A∗) − 1. Then by (1), there exist two natural numbers a and b such
that

3p = 1 + 3a + bp and n ≥ a + b.

Note that a ≥ 1 and hence b = 1 or 2. Since 2 does not divide 3p, and A∗ is
semisimple we have by [NR] that A∗ does not have a 2-dimensional irreducible
module and hence the following two inequalities hold:

n ≥ a + 1 =
(3 − b)p + 2

3
and 3p ≥ 9n + 1.

But these two inequalities are incompatible since they imply that (−6 + 3b)p ≥ 7
which is impossible. This concludes the proof of the proposition.

Proposition 4.2. Every semisimple Hopf algebra A of dimension 3p over k, where
p > 3 is prime, is of Frobenius type.

Proof. If A is a group algebra or a dual of a group algebra, then it is known that
A is of Frobenius type. Otherwise, by Proposition 4.1, |G(A)| = 3. Since A is
non-commutative we must have G(A) ∩ Z(A) = {1}.

Set n = dim R(A∗) − 1. Then, by (1) there exist two natural numbers a and b
such that:

3p = 1 + 3a + bp and n ≥ a + b.

Clearly, a ≥ 1 and hence b = 1 or 2. Since 2 does not divide 3p we have by [NR] that
A∗ does not have a 2-dimensional irreducible module and hence that the following
two inequalities hold:

n ≥ a + b and 3p ≥ 9(n− 2) + 3.

Therefore, 3p ≥ 9( (3−b)p−1
3 + b − 2) + 3 and hence (−2 + b)p ≥ 3b − 6. Clearly,

this is possible if and only if the equalities above hold, and b = 2. Therefore,
3p = 1 + 3a + 2p and a = p−1

3 . This implies that R(A∗) is commutative and that

A = k1⊕ kg ⊕ kg2 ⊕ C1 ⊕ · · · ⊕ Ca
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as a coalgebra where Ci is a simple subcoalgebra of A of dimension 9 for all 1 ≤
i ≤ a. Hence A∗ is of Frobenius type. Replacing A by A∗ yields the same result
for A.

As a corollary of the above and of Theorem 3.5 we have:

Theorem 4.3. A semisimple Hopf algebra of dimension 3p over k, where p > 3 is
prime, is trivial.

We conclude the paper by considering semisimple Hopf algebras of dimensions
5p and 7p.

Lemma 4.4. Let A be a semisimple Hopf algebra of odd dimension over k. If
|G(A)| = 1, then there exists an irreducible A∗-module V with dim V ≥ 4.

Proof. Suppose on the contrary that for any non-trivial A∗-irreducible module V ,
dim V ≤ 3. Then by [NR], dimV = 3. Hence, dim(V ⊗ V ∗) = 9 and by [La],
V ⊗ V ∗ = k ⊕ V1 ⊕ · · · ⊕ Vi, where Vj 6= k is an A∗-irreducible module for all j.
Since dim Vj = 3, this is a contradiction.

Theorem 4.5. Let A be a semisimple Hopf algebra over k. If dim A = 5p, p an
odd prime, and if p = 2 or 4 (mod 5) or p ∈ {13, 23}, then A is a commutative
group algebra.

Proof. We wish to show that |G(A)| 6= 1. Suppose on the contrary that |G(A)| = 1.
Set n = dim R(A∗)−1. By (1), there exist two natural numbers 1 ≤ a and 1 ≤ b ≤ 4
such that

5p = 1 + 5a + bp,

n ≥ a + b and

5p ≥ 9(n− 1) + 16 + 1

where the last inequality follows from (2) and Lemma 4.4. Hence (−20 + 9b)p ≥
45b+31. But, if p = 2 or 4 (mod 5), then b = 2 or 1 respectively and if p ∈ {13, 23},
then b = 3. In any event this is impossible and we have proved that |G(A)| 6= 1.
The result follows now from Theorem 2.2.

Theorem 4.6. Let A be a semisimple Hopf algebra over k. If dim A = 7p, p
a prime, and if p = 6 (mod 7) or p ∈ {17, 31}, then A is a commutative group
algebra.

Proof. Suppose |G(A)| = 1 and set n = dim R(A∗) − 1. By (1), there exist two
natural numbers 1 ≤ a and 1 ≤ b ≤ 6 so that

7p = 1 + 7a + bp,

n ≥ a + b and

7p ≥ 9(n− 1) + 16 + 1

where the last inequality follows from (2) and Lemma 4.4. Thus, (−14 + 9b)p ≥
63 + 47. But, if p = 6 (mod 7) or p ∈ {17, 31}, then this is impossible. The result
follows now from Theorem 2.2.
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