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ON POINTED HOPF ALGEBRAS OF DIMENSION pn
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(Communicated by Ken Goodearl)

Abstract. In this note we describe nonsemisimple Hopf algebras of dimension
pn with coradical isomorphic to kC, C abelian of order pn−1, over an alge-
braically closed field k of characteristic zero. If C is cyclic or C = (Cp)n−1,
then we also determine the number of isomorphism classes of such Hopf alge-
bras.

0. Introduction and preliminaries

In recent years considerable effort has been made to classify finite dimensional
Hopf algebras over an algebraically closed field k of characteristic 0. In [17], Zhu
proved that a Hopf algebra of prime dimension p is isomorphic to kCp. For the
semisimple case, a series of results has appeared. Masuoka has classified semisimple
Hopf algebras of dimensions 6, 8, p2, p3 and 2p for p an odd prime (see [8], [9], [10],
[11]). Larson and Radford [7] showed that a semisimple Hopf algebra of dimension
≤ 19 is commutative and cocommutative, and thus isomorphic to a group algebra.
Also, in [4], Gelaki constructs interesting examples of semisimple Hopf algebras
of dimension pq2, p, q distinct primes. The nonsemisimple case seems to be more
difficult. In dimension p2, apart from kCp2 and k(Cp × Cp) which are semisimple,
p − 1 types of nonsemisimple Hopf algebras are known. These are the Taft Hopf
algebras, which we denote by Tλ, λ a primitive pth root of 1. The algebras Tλ

are pointed with coradical kCp. Conversely, if H is a pointed nonsemisimple Hopf
algebra of dimension p2, H is a Taft Hopf algebra.

Here, we describe Hopf algebras of dimension pn, n ≥ 3, which have coradical
kC, C abelian of order pn−1, and note that the situation is somewhat different from
the dimension p2 case. The Hopf algebras which occur can be obtained by an Ore
extension construction as in [2] or [3]; if C is cyclic, there are p[ n

2 ] + p[ n−1
2 ] + p− 3

nonisomorphic such Hopf algebras; if C = (Cp)n−1, then there are p−1 isomorphism
classes.

Throughout, k is an algebraically closed field of characteristic 0. We follow the
standard notation in [12]. For H a Hopf algebra, G(H) will denote the group of
grouplike elements and H0, H1, H2, . . . will denote the coradical filtration of H . H
is called pointed if H0 = kG(H). If g, h ∈ G(H) then the set of (g, h)-primitive
elements is Pg,h = {x ∈ H |4(x) = x ⊗ g + h ⊗ x}. Since g − h ∈ Pg,h we can
choose a subspace P ′

g,h of Pg,h such that Pg,h = k(g − h)⊕ P ′
g,h. We will need the
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version of the Taft-Wilson theorem proved in [12, Theorem 5.4.1], which states that
H1 = H0⊕ (

⊕
g,h∈G(H) P

′
g,h) for a finite dimensional pointed Hopf algebra H . If H

is finite dimensional, P1,1 = 0. This implies that if H is also pointed of dimension
> 1, then G(H) is not trivial.

The notation
(

t
j

)
q

denotes a q-binomial coefficient. Details on the definitions of
these coefficients can be found in any introduction to quantum groups, for example,
[6, IV.2] or the introductory section of [15].

An efficient method for constructing nonsemisimple finite dimensional pointed
Hopf algebras by means of iterated Ore extensions was developed in [3]. If a sin-
gle Ore extension of the group algebra of a finitely generated abelian group C is
involved, then, simply put, the method consists of taking an automorphism ϕ of
the group algebra kC of the form ϕ(c) = λ−1c, λ ∈ k, for each generator c of
C, and forming the Ore extension kC[X,ϕ]. Comultiplication is defined on X by
4(X) = g ⊗ X + X ⊗ 1, for some g ∈ C. This defines a Hopf algebra structure
on the infinite dimensional space kC[X,ϕ]. Then we factor out by a Hopf ideal of
finite codimension. For more details about the general construction, see [2, §4] or
[3]. The specific Hopf algebras used in this note are described below.

1. The classification results

Before proving our results, we define Hopf algebras H(λ, u) and H̃(λ, u) of di-
mension pn. These Hopf algebras are exactly Ore extension constructions as in [2,
§4] or [3].

Fix a prime p and an integer n ≥ 2. Let C = C1 × . . . × Cm be a finite
abelian group of order pn−1, where Ci = 〈ci〉 is cyclic of order pni , and let φ be
an automorphism of kC defined by φ(ci) = λ−1

i ci. Then clearly λpni

i = 1. We
write cu to denote cu1

1 . . . cum
m and λu to denote λu1

1 . . . λum
m if u = (u1, . . . , um) is

an m-tuple of integers. As outlined in the introduction, we define a Hopf algebra
structure on the Ore extension kC[X,φ] by setting ∆(X) = cu⊗X+X⊗1 for some
element cu 6= 1 of C, and ε(X) = 0. The Hopf algebra kC[X,φ] has generators ci,
1 ≤ i ≤ m, and X , relations

cp
ni

i = 1, Xci = λ−1
i ciX,

and coalgebra structure induced by

4(ci) = ci ⊗ ci, 4(X) = cu ⊗X +X ⊗ 1, ε(ci) = 1, ε(X) = 0,

where u = (u1, u2, . . . , um) ∈ Zm and cu = cu1
1 cu2

2 . . . cum
m . The antipode is given

by S(ci) = c−1
i , S(X) = −c−uX. Then kC[X,φ] is an infinite dimensional pointed

Hopf algebra with G(kC[X,φ]) = C.
Now let λu = λu1

1 . . . λum
m be a primitive pth root of unity. Write cup for (cu)p =

cu1p
1 . . . cump

m . Then ∆(Xp) = cup⊗Xp +Xp⊗ 1, so that the ideal generated by Xp

is a Hopf ideal in kC[X,φ]. If λu is a primitive pth root of unity and if also cu has
order different from p, the ideal generated by Xp− cup +1 is a different Hopf ideal.
The quotient Hopf algebras

H(λ, u) = kC[X,φ]/〈Xp〉, H̃(λ, u) = kC[X,φ]/〈Xp − cup + 1〉
are pointed Hopf algebras of dimension pn and G(H(λ, u)) ∼= C ∼= G(H̃(λ, u)) [14,
Lemma 1]. Let x denote the coset of X .

Note that in both cases P ′
1,g 6= 0 only if g = cu and that dimP ′

1,cu = 1. We see
below that the cases H and H̃ are distinct.
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Lemma 1. For C an abelian group of order pn−1 and H(λ, u), H̃(ξ, v) as above,
then H(λ, u) cannot be isomorphic to H̃(ξ, v).

Proof. Suppose φ : H̃(ξ, v) → H(λ, u) is a Hopf algebra isomorphism. Then φ

induces an automorphism of the group C. Now dim P1,g = 2 in H̃(ξ, v) if and only
if dim P1,φ(g) = 2 in H(λ, u). So φ(cv) = cu and 0 6= x ∈ P1,cv−k(cv−1) ⊂ H̃(ξ, v),
so that φ(x) = α(φ(cv)−1)+y for some α ∈ k and some 0 6= y ∈ P1,cu−k(cu−1) ⊂
H(λ, u) with yp = 0.

Since φ(xcv) = φ(x)φ(cv) = φ(ξ−vcvx) = ξ−vφ(cv)φ(x), we see that α = 0, and
φ(x) = y. But then xp = 0, in contradiction to the definition of H̃(ξ, v).

If C = Cp × . . . × Cp = Cn−1
p then no H̃(λ, u) occur, since every element of C

has order p. In particular, when n = 2 then C = Cp, and the Hopf algebras we get
are isomorphic to the Taft Hopf algebras of dimension p2, denoted Tλ, λ a primitive
pth root of 1. There are p− 1 nonisomorphic Tλ.

In H̃(λ, u), if C = Cpn−1 , then xp = cup − 1 commutes with c, so that λp = 1.
Thus λ is a primitive pth root of unity, and since λu is also a primitive pth root, p
does not divide u and cu is a generator of C.

We can now describe Hopf algebras of dimension pn with coradical kC, where C
is an abelian group of order pn−1.

Theorem 2. A Hopf algebra H of dimension pn whose coradical H0 is the group
algebra of an abelian group of order pn−1 is isomorphic to H(λ, u) or H̃(λ, u) for
some (λ, u).

Proof. Let C = ×m
i=1Ci be a cyclic decomposition with generators c1, c2, . . . , cm.

The Taft-Wilson theorem says thatH1 = H0⊕(⊕g,h∈CP
′
g,h). Observe that aPg,hb =

Pagb,ahb for any a, b ∈ C. Consider the action of C on H1 given by conjugation,
i.e. for each g ∈ C the automorphism Tg : H1 → H1 is defined by Tg(y) = gyg−1.
Then T pn−1

g is the identity and the eigenvalues of Tg satisfy the equation λpn−1
= 1.

Since C is abelian, each Pg,h is invariant under this action and has a basis of joint
eigenvectors, i.e. vectors w such that Ta(w) = awa−1 = λaw for every a ∈ C. Since
H is not commutative there is a nonzero joint eigenvector w /∈ H0 contained in some
Pg,h and in fact in P1,r for some 1 6= r = cs1

1 c
s2
2 . . . csm

m = cs, s = (s1, . . . , sm) ∈ Zm,
whose eigenvalue λi 6= 1 for at least one generator ci. Thus, we have

∆(w) = r ⊗ w + w ⊗ 1, ciw = λiwci.

The Hopf subalgebra of H generated by {c1, c2, . . . , cm, w} is the subspace spanned
by the elements ciwj with i ∈ Nm and j ∈ N. By the Nichols-Zoeller Theorem
[12, 3.1.5] this Hopf subalgebra must be all of H . Note that (w ⊗ 1)(r ⊗ w) =
λ−s(r⊗w)(w⊗1). Also λ−s 6= 1 since otherwise r and w commute and so generate
a commutative nonsemisimple Hopf subalgebra of H , which then must be infinite
dimensional. Thus λ−s is a primitive root of unity of order pl for some l > 0, so
that for t ≤ pl

∆(wt) =
t∑

j=0

(
t

j

)
λ−s

rt−jwj ⊗ wt−j .

We prove by induction on t, 1 ≤ t ≤ p − 1, that wt ∈ Ht − Ht−1. For t = 1 the
statement is obvious. Assume that wv ∈ Hv − Hv−1 for v < t. Then rt ⊗ wt ∈
H0 ⊗ H , rt−jwj ⊗ wt−j ∈ H ⊗ Ht−2 for j ≥ 2, and rt−1w ⊗ wt−1 ∈ H ⊗ Ht−1.
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Thus, ∆(wt) ∈ H0⊗H+H⊗Ht−1, and it follows that wt ∈ Ht. If wt ∈ Ht−1, then
∆(wt) ∈ H0 ⊗H + H ⊗Ht−2; hence

(
t
1

)
λ−sr

t−1w ⊗ wt−1 ∈ H0 ⊗H + H ⊗Ht−2.
Since t < p, we must have

(
t
1

)
λ−s 6= 0. Now rt−1w ∈ H1 − H0 and wt−1 /∈ Ht−2

gives a contradiction, and thus wt ∈ Ht −Ht−1.
By [14, Corollary 2.3], Ht is a free H0-module so that dimHt ≥ (t + 1)pn−1 for

0 ≤ t ≤ p − 1 and in particular dimHp−1 ≥ pn. This shows that H = Hp−1 and
dimHt = (t+ 1)pn−1 for t ≤ p− 1. Thus, dimH1 = 2pn−1 and by the Taft-Wilson
Theorem the subset {hw|h ∈ C} of H1 −H0 is linearly independent in H1, so that
dimPh,hr = 2 for all h ∈ C.

We claim that the subset {hwj |h ∈ C, 0 ≤ j ≤ p−1} ofH is linearly independent.
If not, then there is some t ≤ p− 1 such that∑

h∈C

αhhw
t =

∑
h∈C,0≤q<t

βh,qhw
q

for some scalars αh and βh,q with αg 6= 0 for some g ∈ G. The image of the
comultiplication map ∆ applied to the right hand side of the equation above
lies in H ⊗ Ht−1. Let ψ ∈ H∗ be such that ψ(Ht−1) = 0 and ψ(gwt) = 1, and
also let φ ∈ H∗ be such that φ(grt) = 1 and φ(hrt) = 0 for h 6= g. Then
(φ ⊗ ψ)(H ⊗ Ht−1) = 0 but φ ⊗ ψ applied to the left hand side of the equation
above yields (φ⊗ ψ)(

∑
h∈C αhhr

t ⊗ hwt) = αg 6= 0, a contradiction.
Since Hp−1 = H , we have that wp ∈ Hp−1, so that ∆(wp) ∈ H0⊗H+H⊗Hp−2.

Expanding as above, we find that
(
p
1

)
λ−sr

p−1w⊗wp−1 ∈ H0⊗H+H⊗Hp−2. Since
rp−1w ∈ H1 −H0 and wp−1 /∈ Hp−2 we conclude that

(
p
1

)
λ−s = 0, so that λ−s is a

primitive pth root of 1. Then
(

p
j

)
λ−s

= 0 for 1 ≤ j ≤ p− 1 and

∆(wp) = rp ⊗ wp + wp ⊗ 1

so that wp ∈ P1,rp = k(rp − 1)⊕ P ′
1,rp . Since rp 6= r we have P1,rp = k(rp − 1) and

wp = γ(rp − 1) for some scalar γ.
If wp = 0, then it is clear that H ∼= H(λ, s). If wp 6= 0, then replacing w by

γ−1/pw, we see that H ∼= H̃(λ, s).

Corollary 3. The only nonsemisimple pointed Hopf algebras of dimension p2 are
the Taft-Hopf algebras.

Now we show that if C = (Cp)n−1 = 〈c1〉 × 〈c2〉 × . . . × 〈cn−1〉, then a result
similar to Corollary 3 holds.

Proposition 4. If C = (Cp)n−1, then H(λ, u) ∼= k(Cp)n−2 ⊗ Tλi for some i, and
there are exactly p− 1 isomorphism classes of such Hopf algebras.

Proof. We argue by induction on n. If n − 1 = 1, then the result follows from
Corollary 3. Recall that cu 6= 1, since dimP1,1 = 0 and also λu 6= 1, else cu and
x commute and H(λ, u) could not be finite dimensional. Thus some λui

i 6= 1, and
we may assume that λu2

2 6= 1, in particular λ2 6= 1 and u2 6= 0. Now we distinguish
two cases.

If λ1 = 1, then let u′ = (u2, u3, . . . , un−1) and λ′ = (λ2, λ3, . . . , λn−1). Then
the map

f : H(λ, u) → H((1, λ′), (0, u′)) ∼= kCp ⊗H(λ′, u′)
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defined by

f(x) = x, f(c1) = c−u2
1 , f(c2) = cu1

1 c2, f(ci) = ci

for i > 2 is an isomorphism of Hopf algebras.
If λ1 6= 1, then λ1 = λh

2 for some h. Now let u′ = (hu1 + u2, u3, . . . , un−1) and
λ′ = (λ2, λ3, . . . , λn−1). Then the map

f : H(λ, u) → H((1, λ′), (0, u′)) ∼= kCp ⊗H(λ′, u′)

defined by

f(x) = x, f(c1) = chu2
1 ch2 , f(c2) = c−hu1

1 c2, f(ci) = ci

for i > 2 is an isomorphism.
Thus, if the assertion holds for C = (Cp)n−2, it holds for C = (Cp)n−1 and we

are done.

Finally, we count the number of isomorphism classes of Hopf algebras of dimen-
sion pn with coradical kCpn−1 . First we need two lemmas. From now on, since
C = 〈c〉 is cyclic, the notation H(λ, i) refers to λ ∈ k, i ∈ Z. Also, since in the
cyclic case in H̃(λ, u) the element cu is a generator of C we may assume that u = 1,
and we abbreviate H̃(λ, 1) by H(λ).

Lemma 5. H(λ, i) ' H(µ, j) if and only if there exists h relatively prime to p such
that λ = µh and j ≡ hi (mod pn−1).

Proof. Let f : H(λ, i) → H(µ, j) be a Hopf algebra isomorphism. Then f induces
an automorphism of the coradical kCpn−1 , so that f(c) = ch for some h relatively
prime to p.

Furthermore, let x ∈ P ′
ci,1 in H(λ, i). Then Pchi,1 in H(µ, j) is nonzero, so

chi = cj. Thus hi ≡ j mod pn−1. Finally, since cx = λxc, chf(x) = λf(x)ch.
But f(x) ∈ Pcj ,1 and the above equation implies that f(x) ∈ P ′

cj ,1 so that cf(x) =
µf(x)c in H(µ, j). Then chf(x) = µhf(x)ch, so λ = µh.

Conversely, given such an integer h, define f by f(c) = ch and f(x) = z ∈
P ′

gj ,1.

Lemma 6. H(λ) ' H(µ) if and only if λ = µ. Thus there are exactly p − 1
nonisomorphic H(λ).

Proof. As in Lemma 5, if f : H(λ) → H(µ) is a Hopf algebra isomorphism, f(c) =
ch for some h. Let x ∈ P ′

1,c in H(λ). Then f(x) ∈ P1,ch in H(µ) which implies that
h = 1. The result then follows immediately.

Proposition 7. For n ≥ 3, there exist precisely p[ n
2 ] + p[ n−1

2 ] + p− 3 Hopf algebras
of dimension pn with coradical kCpn−1 , where [y] is the largest integer less than or
equal to y.

Proof. We first count the Hopf algebras of the form H(λ, i). If H(λ, i) ' H(µ, j),
then λ and µ must have the same order. Let us fix the order of λ, say pb, 1 ≤ b ≤
n− 1. Then by Lemma 5, we can fix λ. Since λi is primitive of order p, i = qpb−1

where (p, q) = 1 and 1 ≤ q ≤ pn−b. Thus there are pn−b− pn−b−1 choices for i. For
a fixed such i we have H(λ, i) ' H(λ, j) if and only if there exists an h not divisible
by p with λh = λ and j ≡ hi (mod pn−1). But λh = λ implies that h = αpb + 1,
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0 ≤ α ≤ pc−b− 1. Since for h = αpb +1, h′ = βpb +1 we have hi ≡ h′i (mod pn−1)
if and only if pn−b|(α − β)pb, we distinguish two cases. If b ≥ n

2 , then hi ≡ i (mod
pn−1) for all the indicated h’s, and in this case H(λ, i) ' H(λ, j) implies i = j.
Therefore there exist pn−b − pn−b−1 types of such Hopf algebras. If b < n

2 , then
hi ≡ h′i (mod pn−1) is equivalent to pn−2b|α − β, which means that for a fixed h
there are precisely (pn−1−b)/(pn−2b) = pb−1 elements h′ for which h′i ≡ hi (mod
pn−1). This implies that there are (pn−1−b)/(pb−1) = pn−2b elements j such that
H(λ, i) ' H(λ, j). Therefore there exist (pn−b−pn−b−1)/(pn−2b) = pb−pb−1 types
of such Hopf algebras. It follows that there are∑

1≤b≤n
2

(pb − pb−1) +
∑

n
2 <b≤n−1

(pn−b − pn−b−1)

types of Hopf algebras of the form H(λ, i). Adding the p − 1 types of the form
H(λ) (see Lemma 6), an easy computation proves the required formula.

Remark 8. Note that Corollary 3 also follows from [5, 1.1.1] for dim H = p2, p
prime. Contrary to the assertion in [5, 1.1.1], if N is not prime, then Hopf algebras
such as H(λ) appear. (An addendum to [5] will appear.)

Added in proof. The fact that pointed nonsemisimple Hopf algebras of dimension
p2 are Taft Hopf algebras seems to have been known for some time. Proofs appear
also in [1], where Nichols is quoted, and in [16] where Andruwskiewitsch and Chin
are acknowledged.
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