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A DISTRIBUTIONAL CONVOLUTION FOR A GENERALIZED
FINITE FOURIER TRANSFORMATION

J. J. BETANCOR, M. LINARES, AND J. M. R. MÉNDEZ

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we define a generalized finite Fourier transformation
in distribution spaces. Also we investigate a distributional convolution for this
finite integral transformation.

1. Introduction

K. Trimèche [T1] introduced the generalized Fourier transformation

(Ff)(λ) =
∫ ∞

0

ϕλ(x)f(x)A(x)dx

where (i) A(t) is a real function defined on [0,∞) such that A(t) = t2α+1C(t) with
a > −1/2 and C(t) is an even, infinitely differentiable and strictly positive function
on R, and (ii) the kernel ϕλ is the solution of the initial value problem

∆ϕ = −λ2ϕ,

ϕ(0) = 1,

Dϕ(0) = 0

(1)

for every λ ∈ C. In (1) ∆ represents the operator 1
A(t)D(A(t)D) − q(t), D = d

dt ,
and the function q(t) is even and infinitely differentiable on R. Besides, he defined
and investigated a convolution for the F -transformation.

Later, K. Trimèche [T2] studied generalized Fourier series expansions associated
to the operator ∆ when q(t) = −γ2, γ ≥ 0. We now recall some of his definitions
and results that will be useful in the sequel. Thus, E∗(R) is the space of all even
infinitely differentiable functions on R. We assign to E∗(R) the topology generated
by the family of seminorms {pn,m}m∈N where

pn,m(φ) = sup
|x|≤n

|Dmφ(x)|, φ ∈ E∗(R),

for every n,m ∈ N.
The generalized translation operator associated to ∆ is defined for every φ ∈

E∗(R) by

(τxφ)(y) = χxχy[σxχ
−1φ(y)], x, y ∈ R,
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where (σxφ)(y) = φ(x+y)+φ(x−y)
2 , x, y ∈ R, and χ represents a generalized Riemann-

Liouville integral that transmutes the operator ∆ into the operator D2 (Definition
5.1 in [T1]).

Now let a > 0. Denote by Ma(R) the space of functions φ ∈ E∗(R) such that
(τxφ)(a) = 0, for each x ∈ R. The space E∗(R) induces on Ma(R) the topology
generated by the family {αk}k∈N of seminorms where for every k ∈ N

αk(φ) = sup
x∈(0,a)

|∆kφ(x)|, φ ∈ Ma(R).

Thus Ma(R) is a Fréchet Montel space. The dual space of Ma(R) will be denoted,
as usual, by Ma(R)′.

Let φ, ψ ∈Ma(R). Then, with the aid of the τ -translation, the convolution φ#ψ
is defined by

(φ#ψ)(x) =
∫ a

0

(τxφ)(y)ψ(y)A(y)dy, x ∈ R.

Next, {±λk}k∈N denote the zeros of the entire function λ → ϕλ(a) with λ0 = 0.
From now on ϕλn will always be represented by ϕn, where n ∈ N. Note also that
ϕn is in Ma(R), for every n ∈ N. Then for every φ ∈Ma(R) one has

φ(x) =
∞∑

n=0

ρnF(φ)(n)ϕn(x)(2)

where the series converges to φ in E∗(R). Moreover for every n ∈ N

ρn =
1∫ a

0
ϕ2

n(x)A(x)dx

and

F(φ)(n) =
∫ a

0

ϕn(x)φ(x)A(x)dx.

Let φ ∈ Ma(R). The sequence (F(φ)(n))n∈N will be called the generalized finite
Fourier transform F(φ).

Now some properties are listed:
i) The expression (2) can be seen as an inversion formula for the F -transformation.
ii) Let φ, ψ ∈Ma(R). The convolution takes the form

(φ#ψ)(x) =
∞∑

n=0

ρnF(φ)(n)F(ψ)(n)ϕn(x), x ∈ R.

iii) The #-convolution defines a continuous mapping from Ma(R)XMa(R) into
Ma(R).

We now consider the space V of all complex sequences (an)n∈N satisfying

βk((an)n∈N) =
∞∑

n=0

ρn|λn|2k|an| <∞, for every k ∈ N.

The space V is endowed with the topology associated to the family {βk}k∈N of
seminorms.

Proposition 1. The generalized finite Fourier transform is a homeomorphism from
Ma(R) onto the space V.



A GENERALIZED FINITE FOURIER TRANSFORMATION 549

Proof. It can be proved making use of Theorem 3.I.1, Lemma 3.I.2 and Proposition
3.I.2 (1,2) of [T2].

Motivated by the works of A. H. Zemanian [Z1] and R. S. Pathak [P], in this
paper we investigate the generalized finite Fourier transformationF of distributions.
In Section 2 we define the generalized finite Fourier transformation onMa(R)′. The
distributional #-convolution is studied in Section 3.

Remark 1. Our study includes two important cases. On the one hand, when A(t) =
t2α+1, γ = 0 and α > −1/2, ∆ reduces to the Bessel operator. On the other hand, if
we choose A(t) = 22(α+β+1)(sinh t)2α+1(cosh t)2β+1, γ = α+β+1 and α, β > −1/2,
then ∆ turns out to be the Jacobi operator.

Throughout this paper C will always represent a positive constant not necessarily
the same in each occurrence.

2. The generalized finite Fourier transformation

In this section we define the finite generalized Fourier transformation F on the
space Ma(R)′ and we establish its main properties.

The finite generalized Fourier transform F ′(F ) of F ∈ Ma(R)′ is defined by

〈F ′(F ), (an)n∈N〉 =

〈
F (x),

∞∑
n=0

ρnϕn(x)an

〉
, (an)n∈N ∈ V .

Using well-known results of duality we infer that F ′ is a homeomorphism from
Ma(R)′ onto V ′, whenever Ma(R)′ and V ′ are endowed either with the strong
topology or the weak* topology.

Let F ∈Ma(R)′. There exist C > 0 and r ∈ N such that

|〈F, φ〉| ≤ C max
0≤k≤r

sup
x∈(0,a)

|∆kφ(x)|, φ ∈Ma(R).(3)

Hence, according to Theorem 1.1 in [T1], we may write∣∣∣∣∣
〈
F (x),

∞∑
n=p

anρnϕn(x)

〉∣∣∣∣∣ ≤ C max
0≤k≤r

∞∑
n=p

|an|ρn|λn|2k

for every (an)n∈N ∈ V and p ∈ N.
Now, by invoking again Proposition 3.I.2 (2) of [T2] we obtain∣∣∣∣∣

〈
F (x),

∞∑
n=p

anρnϕn(x)

〉∣∣∣∣∣ ≤ C

∞∑
n=p

|an| |λn|2r(|λn|2 + γ2)α+1/2,

provided that p ≥ 1.
Therefore, given an ε > 0, there exists a p0 ∈ N in such a way that∣∣∣∣∣

〈
F (x),

∞∑
n=p

anρnϕn(x)

〉∣∣∣∣∣ < ε, for every p ≥ p0.(4)

Next, keeping (3) in mind, we can write∣∣∣∣∣
∞∑

n=p

anρn〈F, ϕn〉
∣∣∣∣∣ ≤ C

∞∑
n=p

|an|(|λn|2 + γ2)α+1/2|λn|2r < ε,(5)

provided that p is sufficiently large.
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From (4) and (5) we conclude that〈
F (x),

∞∑
n=0

anρnϕn(x)

〉
=

∞∑
n=0

anρn〈F (x), ϕn(x)〉, (an)n∈N ∈ V .

Thus we have established the following.

Proposition 2. Let F ∈ Ma(R)′. Then the sequence (〈F (x), ϕn(x)〉)n∈N defines
a member of V ′ by

〈(〈F (x), ϕn(x)〉)n∈N, (an)n∈N〉 =
∞∑

n=0

ρn〈F (x), ϕn(x)〉an, (an)n∈N ∈ V ,

and F ′(F ) = (〈F (x), ϕn(x)〉)n∈N in the sense of equality in V ′.
In the sequel we set F ′(F )(n) = 〈F (x), ϕn(x)〉, n ∈ N and F ∈Ma(R)′.

Remark 2. If φ ∈ Ma(R), we get F ′(φ) = (〈φ(x), ϕn(x)〉)n∈N = (F(φ)(n))n∈N.
Consequently, the classical F -transformation on Ma(R) is a particular case of the
F ′-transformation.

We now show a representation for the elements of Ma(R)′ that can be seen as
an inversion formula for the generalized F ′-transformation.

Proposition 3. Let F ∈Ma(R)′. Then

F = lim
n→∞

n∑
p=0

ρp〈F, ϕp〉ϕp

where the convergence is understood in the strong topology of Ma(R)′.

Proof. Let ∈Ma(R)′. Note that it is sufficient to prove {∑n
p=0 ρp〈F, ϕp〉ϕp}n∈N is

a weak* convergent sequence to F , because Ma(R) is a Montel space.
Let φ ∈Ma(R). According to [T2, Theorem 3.I.1] we get

φ(x) =
∞∑

p=0

ρpF(φ)(p)ϕp(x), x ∈ R.

Moreover the series is convergent in Ma(R). By taking into account that, for every
p ∈ N, ϕp defines an element of Ma(R)′ by

〈ϕp, φ〉 =
∫ a

0

ϕp(x)φ(x)A(x)dx, φ ∈Ma(R),

it follows that

〈F, φ〉 = lim
n→∞

〈
F,

n∑
p=0

ρpF(φ)(p)ϕp

〉

= lim
n→∞

n∑
p=0

ρpF(φ)(p)〈F, ϕp〉 = lim
n→∞

〈
n∑

p=0

ρp〈F, ϕp〉ϕp, φ

〉
.

Our next objective is to characterize the complex sequences that are F ′-
transforms of an element of Ma(R)′. First, we need to characterize the elements of
V ′.
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Proposition 4. Let H be a linear functional on V. Then H ∈ V ′ if, and only if,
there exists a complex sequence (bn)n∈N such that

|bn| ≤ Cλ2k
n , n ∈ N, n ≥ 1,(6)

for some C > 0 and some k ∈ N, for which

〈H, (an)n∈N〉 =
∞∑

n=0

bnanρn, (an)n∈N ∈ V .(7)

Proof. First, assume that H takes the form (7) where (bn)n∈N satisfies (6). Because
of Proposition 3.I.2 (2) in [T2] it is not hard to see that H ∈ V ′.

Conversely, let H ∈ V ′. As is well-known there exists k ∈ N such that

|〈H, (an)n∈N〉| ≤ C max
0≤p≤k

∞∑
n=0

|λn|2p|an|, (an)n∈N ∈ V .

Even more, since λn 6= 0, n ∈ N and n ≥ 1, and 0 is not an adherent point of the
set {λn}n∈N we can write

|〈H, (an)n∈N〉| ≤ C

∞∑
n=1

|λn|2k|an|, (an)n∈N ∈ V .(8)

We now introduce the subset of V defined by

W = {(an)n∈N ∈ V : a0 = 0}
and the mapping

J :W −→ J(W ) ⊂ `1

(an)n∈N −→ (λ2k
n an)n∈N, n ≥ 1.

Here as usual `1 stands for the space of all those complex sequences (an)n∈N, n≥1

such that
∑∞

n=1 |an| < ∞. It is obvious that J is one to one. Moreover, by virtue
of (8), the linear mapping

L :J(W ) ⊂ ` −→ C

(λ2k
n an)∞n=1 −→ 〈H, (an)n∈N〉

is continuous when J(W ) is endowed with the topology induced on it by `1. There-
fore, by invoking the Hahn-Banach theorem, L can be extended to `1 as a member
of `′1. Then there exists (βn)n∈N ∈ `∞ such that

L(λ2k
n an)∞n=1 = 〈H, (an)n∈N〉 =

∞∑
n=1

βnanλ
2k
n , (an)n∈N ∈W.(9)

From (9) we can conclude that

〈H, (an)n∈N〉 = an〈H, e0〉+
∞∑

n=1

βnanλ
2k
n , (an)n∈N ∈ V ,

where e0 = (1, 0, . . . ), and the proof is finished by taking b0 = 〈H,e0〉
ρ0

and bn =
βnλ2k

n

ρn
, n ∈ N, n ≥ 1.
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Corollary 1. Let (bn)n∈N be a complex sequence. There exists F ∈ Ma(R)′ such
that F ′(F )(n) = bn, n ∈ N, if, and only if, there exist C > 0 and k ∈ N such that

|bn| ≤ C|λn|2k, n ≥ 1, n ∈ N.(10)

Proof. Necessity is an immediate consequence of [Z2, Theorem 1.8.1]. In order to
establish the sufficiency, we consider a sequence (bn)n∈N satisfying (10). Then the
series

∑∞
n=0 bnρnϕn converges in the strong topology of Ma(R)′. By denoting said

limit by F , from Proposition 3 we can infer that F ′(F )(n) = bn, n ∈ N.

3. The generalized convolution

In this section we introduce and investigate a convolution operation in Ma(R)′.
According to [T2] for every φ ∈ Ma(R) we define the translation operator τx,

x ∈ R, on Ma(R) as

(τxφ)(y) =
∞∑

n=0

ρnF(φ)(n)ϕn(x)ϕn(y), x, y ∈ R.

It is clear that F(τxφ)(n) = ϕn(x)F(φ)(n), n ∈ N and x ∈ R.

Proposition 5. For every x ∈ R, τx continuously maps Ma(R) into itself.

Proof. Let x ∈ R, φ ∈Ma(R) and k ∈ N. We have

∆k(τxφ)(y) = (−1)k
∞∑

n=0

ρnF(φ)(n)ϕn(x)λ2k
n ϕn(y), x, y ∈ R.

Then, from [T2, Proposition 3.I.2 (2)] it is deduced that

sup
x∈(0,a)

|∆k(τxφ)(y)| ≤ C

∞∑
n=0

(|λn|2 + γ2)α+1/2|λn|2k|F(φ(n)|.

Hence, since F is a homeomorphism from Ma(R) onto V , we conclude that τx
is a continuous mapping from Ma(R) into itself.

Proposition 5 allows us to define the #-convolution F#φ of F ∈ Ma(R)′ and
φ ∈ Ma(R) as follows:

(F#φ)(x) = 〈F (y), (τxφ)(y)〉, x ∈ R.(11)

Remark 3. Note that if f ∈Ma(R), then f ∈ Ma(R)′ according to Proposition 2.
Besides, f#φ given by (11) coincides with the classical #-convolution of f and φ.

Two interesting properties of the #-convolution are shown in the following as-
sertion.

Proposition 6. (i) For every F ∈ Ma(R)′ and φ ∈Ma(R)

(F#φ)(x) =
∞∑

n=0

ρnF(φ)(n)ϕn(x)(F ′F )(n), x ∈ R.

(iii) For every F ∈ Ma(R)′, the mapping φ→ F#φ is continuous from Ma(R)
into itself.
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Proof. To see (i) we have to prove that〈
F (y),

∞∑
n=0

ρnF(φ)(n)ϕn(x)ϕn(y)

〉

=
∞∑

n=0

ρnF(φ)(n)〈F (y), ϕn(y)〉ϕn(x), x ∈ R,
(12)

for every F ∈Ma(R)′ and φ ∈Ma(R).
Let f ∈Ma(R)′. As is known there exists k ∈ N such that

|〈F (y), φ(y)〉| ≤ C max
0≤r≤k

sup
y∈(0,a)

|∆rφ(y)|, φ ∈ Ma(R).

Hence, for every p ∈ N and x ∈ R,∣∣∣∣∣
〈
F (y),

∞∑
n=p

ρnF(φ)(n)ϕn(x)ϕn(y)

〉∣∣∣∣∣
≤ max

0≤r≤k
sup

y∈(0,a)

∣∣∣∣∣∆r

( ∞∑
n=p

ρnF(φ)(n)ϕn(x)ϕn(y)

)∣∣∣∣∣ .
(13)

By invoking again [T2, Proposition 3.I.2 (2)] one has for every x ∈ R, y ∈ (0, a),
k, p ∈ N,

∞∑
n=p

ρnF(φ)(n)|λn|2k|ϕn(x)| |ϕn(y)| ≤ C

∞∑
n=p

(|λn|2 + γ2)α+1/2|λn|2k|F(φ)(n)|.
(14)

Also by proceeding in a similar way we obtain for every x ∈ R

∣∣∣∣∣
∞∑

n=p

ρnF(φ)(n)〈F (y), ϕn(y)〉ϕn(x)

∣∣∣∣∣ ≤ C

∞∑
n=p

(|λn|2 + γ2)α+1/2|F(φ)(n)| |λn|2r.

(15)

Since F(φ) ∈ V , by combining (13), (14) and (15) we can establish (12).
Part (ii) can be proved taking into account (i) and using [T2, Proposition 3.I.2

(2)].

We will denote by L(Ma(R)) the space of the continuous linear mappings from
Ma(R) into itself. We now characterize the elements of L(Ma(R)) that commute
with τ -translations.

Proposition 7. Let L ∈ L(Ma(R)). The following two properties are equivalent.
(i) L(τxφ) = τxLφ, φ ∈ Ma(R) and x ∈ R.
(ii) There exists F ∈ Ma(R)′ such that Lφ = F#φ, φ ∈Ma(R).

Proof. Let L ∈ L(Ma(R)) such that L(τxφ) = τx(Lφ) for every x ∈ R and φ ∈
Ma(R). Define a functional F on Ma(R) by

〈F, φ〉 = 〈δ, Lφ〉, φ ∈Ma(R),

where δ represents the Dirac distribution.
It is clear that F ∈Ma(R)′. Moreover, for every φ ∈Ma(R)

(F#φ)(x) = 〈F, τxφ〉 = 〈δ, L(τxφ)〉 = 〈δ, τxLφ〉 = (Lφ)(x), x ∈ R,
because 〈δ, τxφ〉 = φ(x), for every φ ∈Ma(R) and x ∈ R.
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Conversely, if L ∈ L(Ma(R)) is defined by

Lφ = F#φ, φ ∈Ma(R),

where F ∈Ma(R)′, then by invoking Proposition 6

τx(Lφ) = τx(F#φ) = τx

( ∞∑
n=0

ρnF(φ)(n)F ′(F )(n)ϕn(y)

)

=
∞∑

n=0

ρnF(φ)(n)F ′(F )(n)ϕn(y)ϕn(x)

=

〈
F (z),

∞∑
n=0

ρnF(φ)(n)ϕn(z)ϕn(y)ϕn(x)

〉
= F#(τxφ) = L(τxφ), x ∈ R,

because the series
∑∞

n=0 ρnF(φ)(n)ϕn(z)ϕn(y)ϕn(x) is convergent in Ma(R) for
every x, y ∈ R.

Let F and G be two arbitrary elements of Ma(R)′. In accordance with the
preceding results, it is natural to try to define F#G by

〈F#G, φ〉 = 〈F,G#φ〉, φ ∈Ma(R).(16)

From Proposition 6 if F,G ∈ Ma(R)′ we have F#G ∈ Ma(R)′. Also Proposition
6 allows us to infer the following.

Proposition 8. For every F,G ∈Ma(R)′

F#G =
∞∑

n=0

ρn(F ′F )(n)(F ′G)(n)ϕn

where the convergence of the series is understood in the strong topology in Ma(R)′.

Proof. By proceeding as in the proof of Proposition 6, for every G ∈Ma(R)′ it can
be established that

(G#φ)(x) = lim
n→∞

n∑
p=0

ρpF(φ)(p)(F ′G)(p)ϕp(x), φ ∈Ma(R),

in the sense of convergence in Ma(R).
Hence it follows for each F,G ∈ Ma(R)′ that

〈F#G, φ〉 = lim
n→∞

n∑
p=0

ρp(Fφ)(p)(F ′F )(p)(F ′G)(p)

= lim
n→∞

〈
n∑

p=0

(F ′F )(p)(F ′G)(p)ρpϕp, φ

〉
, φ ∈Ma(R).

Thus we have proved that {∑n
p=0 ρp(F ′F )(p)(F ′G)(p)ϕp}n∈N is weak* convergent

to F#G, as n→∞. Since Ma(R) is a Montel space the proof is concluded.

Remark 4. If f, g ∈Ma(R), then the generalized convolution f#g defined by (16)
coincides with the classical #-convolution.
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It is not hard to prove the following properties for the #-convolution.

Proposition 9. Let F,G,H ∈ Ma(R)′. Then:
(i) F#G = G#F .
(ii) (F#G)#H = F#(G#H).
(iii) F#δ = F , where δ as usual denotes the Dirac distribution.
(iv) F ′(F#G)(n) = F ′(F )(n)F ′(G)(n), n ∈ N.

The τ -translation is defined on Ma(R)′ in a usual way as the transpose of the
τ -translation on Ma(R), i.e., for every F ∈Ma(R)′ we define

〈τxF, φ〉 = 〈F, τxφ〉, φ ∈Ma(R) and x ∈ R.

The space L(Ma(R)′) denotes the set of continuous linear mappings from Ma(R)′

into itself when Ma(R)′ is endowed with the weak* topology.
We now characterize the commuting elements with τx of L(Ma(R)′).

Proposition 10. Let L ∈ L(Ma(R)′). The two following properties are equivalent.
(i) L(τxG) = τxLG, for every G ∈Ma(R)′ and x ∈ R.
(ii) There exists F ∈ Ma(R)′ such that LG = F#G, for every G ∈ Ma(R)′.

Proof. To see that (i) implies (ii) we first note that the family {τxδ}x∈R is a weakly*
dense subset of Ma(R)′ ([K, Problem W(b)]). Define the mapping Ω ∈ L(Ma(R)′)
by

ΩG = L(G)−G#(Lδ), G ∈Ma(R)′.

By invoking Proposition 9 (iii), for every x ∈ R we have

Ω(τxδ) = L(τxδ)− τxδ#(Lδ)

= τxLδ − τx(δ#Lδ) = τxLδ − τxLδ = 0.

Then {τxδ}x∈R is contained in the kernel of Ω. Hence we have concluded that Ω = 0
and LG = Lδ#G, G ∈Ma(R)′.

Now let G ∈Ma(R)′ and x ∈ R. If (ii) holds we can write

〈τx(LG), φ〉 = 〈τx(F#G), φ〉 = 〈F#G, τxφ〉
= 〈F (y), 〈G(z), τy(τxφ)(z)〉〉 = 〈F (y), 〈G(z), τx(τyφ)(z)〉〉
= 〈F (y), 〈(τxG)(z), (τyφ)(z)〉〉 = 〈F#τxG, φ〉, φ ∈ Ma(R).

This completes the proof.
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