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ABSTRACT. In this paper we define a generalized finite Fourier transformation
in distribution spaces. Also we investigate a distributional convolution for this
finite integral transformation.

1. INTRODUCTION

K. Trimeche [T1] introduced the generalized Fourier transformation

Fnm = [ " oa(@)f(2) Alx)da

where (i) A(t) is a real function defined on [0, 00) such that A(t) = t2*+1C(t) with
a > —1/2 and C(t) is an even, infinitely differentiable and strictly positive function
on R, and (ii) the kernel ¢, is the solution of the initial value problem

AQO = _)‘2@7
(1) ¢(0) =1,
Dyp(0) =0

for every A € C. In (1) A represents the operator ﬁD(A(t)D) —qt), D = £,
and the function ¢(t) is even and infinitely differentiable on R. Besides, he defined
and investigated a convolution for the F-transformation.

Later, K. Trimeche [T2] studied generalized Fourier series expansions associated
to the operator A when ¢(t) = —72, ¥ > 0. We now recall some of his definitions
and results that will be useful in the sequel. Thus, £.(R) is the space of all even
infinitely differentiable functions on R. We assign to £.(R) the topology generated
by the family of seminorms {py, m }men where

Pr.m(9) = sup [D™p(x)l, ¢ € E(R),
for every n,m € N.

The generalized translation operator associated to A is defined for every ¢ €
E«(R) by

(720)(y) = XaXyloaXx""0()], z,y €R,
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where (0,0)(y) = w, z,y € R, and x represents a generalized Riemann-
Liouville integral that transmutes the operator A into the operator D? (Definition
5.1 in [T1]).

Now let @ > 0. Denote by M, (R) the space of functions ¢ € £,(R) such that
(12¢)(a) = 0, for each € R. The space £,(R) induces on M, (R) the topology
generated by the family {ay}ren of seminorms where for every k € N

ar(p) = sup |[A%¢(z)|, ¢ € Mu(R).
z€(0,a)
Thus M, (R) is a Fréchet Montel space. The dual space of M, (R) will be denoted,
as usual, by M, (R)’.

Let ¢,1 € M4(R). Then, with the aid of the 7-translation, the convolution ¢#

is defined by

(o#0) (x) = / (WA, T eR.

Next, {£Atren denote the zeros of the entire function A — @y (a) with A\g = 0.
From now on ¢,, will always be represented by ¢,, where n € N. Note also that
©n 1s in Mg (R), for every n € N. Then for every ¢ € M,(R) one has

(2) $(x) =Y puF () (n)pn ()
n=0

where the series converges to ¢ in £,(R). Moreover for every n € N
1

o T2 (@) Alw)de

and
F(¢)(n) = /0 on(2)p(x)A(z)d.

Let ¢ € M,(R). The sequence (F(¢)(n))nen will be called the generalized finite
Fourier transform F ().

Now some properties are listed:

i) The expression (2) can be seen as an inversion formula for the F-transformation.

ii) Let ¢,9 € M,4(R). The convolution takes the form

(@#) (@) = Y pF (@) () F (W) (n)pu(z),  zeR.
n=0

iii) The #-convolution defines a continuous mapping from M, (R)X M, (R) into
M, (R).

We now consider the space V of all complex sequences (a, )nen satisfying

Bi((an)nen) = Y pulAnl**lan| < 00, for every k € N,

n=0

The space V is endowed with the topology associated to the family {8 }ren of
seminorms.

Proposition 1. The generalized finite Fourier transform is a homeomorphism from
M, (R) onto the space V.
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Proof. Tt can be proved making use of Theorem 3.1.1, Lemma 3.1.2 and Proposition
3.1.2 (1,2) of [T2]. O

Motivated by the works of A. H. Zemanian [Z1] and R. S. Pathak [P], in this
paper we investigate the generalized finite Fourier transformation F of distributions.
In Section 2 we define the generalized finite Fourier transformation on M, (R)’". The
distributional #-convolution is studied in Section 3.

Remark 1. Our study includes two important cases. On the one hand, when A(t) =
t2aFl 4 =0 and a > —1/2, A reduces to the Bessel operator. On the other hand, if
we choose A(t) = 22(@+0+1) (sinh )22+ (cosh t)?#*!, v = a+f+1and a, § > —1/2,
then A turns out to be the Jacobi operator.

Throughout this paper C will always represent a positive constant not necessarily
the same in each occurrence.

2. THE GENERALIZED FINITE FOURIER TRANSFORMATION

In this section we define the finite generalized Fourier transformation F on the
space M, (R)" and we establish its main properties.
The finite generalized Fourier transform F'(F) of F' € M,(R)’ is defined by

<-7:/( ) (an)neN < Z PnSDn n> ) (an)nEN e V.

Using well-known results of duality we infer that F’ is a homeomorphism from
Mo (R)" onto V', whenever My (R)" and V' are endowed either with the strong
topology or the weak* topology.

Let F € My(R)'. There exist C' > 0 and r € N such that

(3) [(F, )| <C m]?x sup)|Ak ()|, &€ MyR).

Tze(0

Hence, according to Theorem 1.1 in [T1], we may write

<F(:c), Z anpn‘ﬂn(x)>

for every (an)nen € V and p € N.
Now, by invoking again Proposition 3.1.2 (2) of [T2] we obtain

<F($), Z anpnspn(x)>

provided that p > 1.
Therefore, given an € > 0, there exists a pg € N in such a way that

<F(z), Z anpntpn(x)>

Next, keeping (3) in mind, we can write

Z Qn Pn <F, ‘Pn>
n=p

provided that p is sufficiently large.

< C max Z |an|pn|An|?*

<O fanl Pl (a2 72172,

n=p

(4)

<¢g, forevery p > po.

(5) <O anl(Anl? + 42 2N <,

n=p
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From (4) and (5) we conclude that

< Z An P (T > Z anpn(F(2), on(x)), (@n)nen € V.

Thus we have estabhshed the followmg.
Proposition 2. Let F € M,(R)". Then the sequence ({F(x), on(2)))nen defines

a member of V' by

(({(F' (@), pn(2))nen; (an)nen) an on(z)an,  (an)nen €V,

and F'(F) = ((F(x), on(2)))nen in the sense of equality in V'. O
In the sequel we set F'(F)(n) = (F(x), pn(x)), n € Nand F € M,(R)".
Remark 2. If ¢ € Ma(R), we get F'(¢) = ((¢(x), on(2)))nen = (F(¢)(n))nen-

Consequently, the classical F-transformation on M, (R) is a particular case of the
F'-transformation.

We now show a representation for the elements of M,(R)’ that can be seen as
an inversion formula for the generalized F’-transformation.

Proposition 3. Let F' € M,(R)". Then

F=lim Y pp(F,0p)0p

p=0

where the convergence is understood in the strong topology of Mg (R).

Proof. Let € M4(R)". Note that it is sufficient to prove {3°7_, pp(F, ¢p)@p bnen is
a weak* convergent sequence to F', because M, (R) is a Montel space.
Let ¢ € My (R). According to [T2, Theorem 3.1.1] we get

2) =Y ppF(@)P)ep(x), TR
p=0

Moreover the series is convergent in M, (R). By taking into account that, for every
p € N, ¢, defines an element of M, (R)’ by

(on o= [ D op(@)d@)A@)dr, ¢ € Ma(R),

it follows that

(F,¢) = lim <szppf(¢)(p)wp>
nlgrgozpp P){F,0p) = lim <pr wp><ppa¢>-

p=0

|

Our next objective is to characterize the complex sequences that are F’-
transforms of an element of M, (R)’. First, we need to characterize the elements of
V.
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Proposition 4. Let H be a linear functional on V. Then H € V' if, and only if,
there exists a complex sequence (by)nen such that
(6) bn| <CXF, neN, n>1,

for some C > 0 and some k € N, for which
(7) <H7 (an>n€N> = Z bnanpna (an)neN ev.
n=0

Proof. First, assume that H takes the form (7) where (b,,)nen satisfies (6). Because
of Proposition 3.1.2 (2) in [T2] it is not hard to see that H € V.
Conversely, let H € V'. As is well-known there exists k£ € N such that

2
|<Ha (a‘n)TLEN>| < Cor%ll‘?‘%(k; |)‘n| plan|7 (an)nEN ev.

Even more, since A, # 0, n € N and n > 1, and 0 is not an adherent point of the
set {\n }nen we can write

(8) (H, (@n)new)] < C Y Pal™anl,  (@n)nen € V.

n=1
We now introduce the subset of V defined by
W = {(an)nen € V1 ag = 0}
and the mapping
J W — JW) C 4
(an)nen — (AFan)nen, n > 1.

Here as usual ¢; stands for the space of all those complex sequences (an)nen, n>1
such that Y7 |a,| < co. It is obvious that J is one to one. Moreover, by virtue
of (8), the linear mapping

L:JW)ct—C
(/\ikan)io:l — (H, (an)nen)

is continuous when J(W) is endowed with the topology induced on it by ¢;. There-
fore, by invoking the Hahn-Banach theorem, L can be extended to ¢ as a member
of ¢]. Then there exists (8, )nen € £oo such that

(9) L(/\fzkanx.zozl = <H7 (an)n€N> = Z 6nan/\31kv (a’n)neN ew.
n=1
From (9) we can conclude that

(H, (an)nen) = an(H,e0) + Y _ BnanAnf,  (an)nen € V,

n=1
where eg = (1,0,...), and the proof is finished by taking by = % and b, =
2k
%, neN, n>1. O
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Corollary 1. Let (by)nen be a complex sequence. There exists F € My (R) such
that F'(F)(n) = by, n € N, if, and only if, there exist C > 0 and k € N such that

(10) lbn| < CAal**,  n>1, neN.

Proof. Necessity is an immediate consequence of [Z2, Theorem 1.8.1]. In order to
establish the sufficiency, we consider a sequence (b,,),en satisfying (10). Then the
series " bupnipn converges in the strong topology of M, (R)’. By denoting said
limit by F, from Proposition 3 we can infer that F'(F)(n) = by, n € N. O

3. THE GENERALIZED CONVOLUTION

In this section we introduce and investigate a convolution operation in M, (R)’.
According to [T2] for every ¢ € My(R) we define the translation operator 7,
x € R, on M, (R) as

(r20)(y an en(@)pn(y), Ty ER.

It is clear that F(r:¢)(n) = on(x)F(¢)(n), n € Nand z € R.
Proposition 5. For every x € R, 7, continuously maps Mq(R) into itself.

Proof. Let © € R, ¢ € M,(R) and k € N. We have

AM(1d)(y) = (=1F D puF (@) (n)on (@)X only),  z,y €R.
Then, from [T2, Proposition 3.1.2 (2)] it is deduced that
sup AR (m0) ()] < C Y (1Aal® +77) 2N PHF (S(n).
x ,a n—0

Hence, since F is a homeomorphism from M,(R) onto V, we conclude that 7,
is a continuous mapping from M,(R) into itself. |

Proposition 5 allows us to define the #-convolution F#¢ of F € M,(R)" and
¢ € My(R) as follows:

(11) (F#) () = (F(y), (20)(y)),  x€R.

Remark 3. Note that if f € M, (R), then f € M,(R) according to Proposition 2.
Besides, f#¢ given by (11) coincides with the classical #-convolution of f and ¢.

Two interesting properties of the #-convolution are shown in the following as-
sertion.

Proposition 6. (i) For every F € M,(R)" and ¢ € M,(R)
(F#¢)(x Z onF on(z)(F'F)(n), zeR.

(iii) For every F € My(R)’, the mapping ¢ — F#¢ is continuous from My (R)
into itself.
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Proof. To see (i) we have to prove that

< Z pnF )wn(y)>

= Z P F(S) () (F (), 00 (W) pn(x),  z€ER,

(12)

for every F € M, (R) and ¢ € M, (R).
Let f € My(R). As is known there exists k¥ € N such that

[(F(y),d(y))| < C maéck sup)|AT (y)l, o € My(R).

y€(0
Hence, for every p € N and = € R,

< Z pnF (@)n(y )>‘
(Z pnF )%(y)> :

By invoking again [T2, Proposition 3.1.2 (2)] one has for every z € R, y € (0,a),
k,peN,
(14)

an ) lon (@) [ea ()l < C Y (Aal® + 72 20 PFIF(9) ().

n=p

(13)

< max sup
0<r<ky6(0 a)

Also by proceeding in a similar way we obtain for every z € R
(15)

S peF @O F W), am))en@)| < C S (Dal? + 722 F@)m)] A
Since F(¢) € V, by combining (13), (14) and (15) we can establish (12).

Part (ii) can be proved taking into account (i) and using [T2, Proposition 3.1.2
2)]- 0

We will denote by £(M,(R)) the space of the continuous linear mappings from
M, (R) into itself. We now characterize the elements of £L(M,(R)) that commute
with 7-translations.

Proposition 7. Let L € L(M,(R)). The following two properties are equivalent.

(i) L(mw¢) = Tu L, ¢ € Mg(R) and z € R.

(ii) There exists F € My(R)" such that L = F#d, ¢ € M,(R).

Proof. Let L € L(M4(R)) such that L(7,¢) = 7.(L¢) for every z € R and ¢ €
M (R). Define a functional F' on M, (R) by

(F,¢) =(6,Lo), ¢ € Ma(R),

where § represents the Dirac distribution.
It is clear that F' € M,(R)’. Moreover, for every ¢ € M,(R)

(F#¢)(x) = (F,720) = (6, L(72¢)) = (0, 7 L¢) = (Lo)(z),  z€R,
because (3, 7,¢) = ¢(z), for every ¢ € M,(R) and z € R.
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Conversely, if L € £L(My(R)) is defined by
Lo =F#¢, ¢ € Ma(R),

where F' € M, (R)’, then by invoking Proposition 6

7o (L9) = T (F#) = T <Z pnF(0)(n)F'(F)(n)en (y)>

n=0

= 3" PuF(B)0)F (F)(n)pn(y)pn(x)
n=0

= <F(2), > pnf(¢>)(n)wn(Z)wn(y)wn(x)>
n=0

= F#(120) = L(120), z R,

because the series Y07 pnF(0)(n)en (2)en(y)en(z) is convergent in My (R) for
every x,y € R. O

Let F and G be two arbitrary elements of M,(R)". In accordance with the
preceding results, it is natural to try to define F#G by

(16) (F#G,¢) = (F,G#¢), ¢ € Ma(R).

From Proposition 6 if F,G € M,(R)" we have F#G € M,(R). Also Proposition
6 allows us to infer the following.

Proposition 8. For every F,G € M,(R)’
F#G = pu(FF)(n)(F'G)(n)pn
n=0

where the convergence of the series is understood in the strong topology in M,(R)".

Proof. By proceeding as in the proof of Proposition 6, for every G € M,(R)’ it can
be established that

(G#e)(@) = lm Y pF()0)(F'G)p)ep(a), ¢ € Ma(R),
p=0

in the sense of convergence in M,(R).
Hence it follows for each F,G € M,(R)’ that

(F#G,¢) = lim Y p,(F)(p)(F'F)(p)(F'G)(p)
p=0

n—oo
p=0

= lim <Z(7'F)(p)(f/G)(p)Pp%0p,¢5>, ¢ € Mo (R).
Thus we have proved that {37 pp(F'F)(p)(F'G)(p)#p}nen is weak™ convergent
to F#G, as n — oo. Since M, (R) is a Montel space the proof is concluded. O

Remark 4. If f,g € M4(R), then the generalized convolution f#g¢ defined by (16)
coincides with the classical #-convolution.
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It is not hard to prove the following properties for the #-convolution.

Proposition 9. Let F,G,H € M,(R)'. Then:
(i) F#G = G#F.
(ii) (F#G)#H = F#(G#H).
(iii) F#6 = F, where 6 as usual denotes the Dirac distribution.
(iv) FI(F#G)(n) = F'(F)(n)F (G)(n), n € N. O

The 7-translation is defined on M, (R)" in a usual way as the transpose of the
7-translation on M, (R), i.e., for every F € M,(R)" we define

(T F, 0) = (F,729), ¢ € My(R) and z € R.

The space L(M,(R)") denotes the set of continuous linear mappings from M, (R)’
into itself when M, (R)’ is endowed with the weak* topology.
We now characterize the commuting elements with 7,, of L(M,(R)").
Proposition 10. Let L € L{(M4(R)"). The two following properties are equivalent.
(i) L(1:G) = 7, LG, for every G € My(R)" and x € R.
(i) There exists F € My(R) such that LG = F#G, for every G € M,(R)'.

Proof. To see that (i) implies (ii) we first note that the family {7,.0},cr is a weakly™
dense subset of M, (R)’ (K, Problem W(b)]). Define the mapping Q € L(M,(R)")
by

OG = L(G) — G#(LY), G € M, (R)'.
By invoking Proposition 9 (iii), for every x € R we have
Q(146) = L(146) — 104 (L)
=7,L6 — 7, (0#L6) = 17, L6 — 7, L6 = 0.

Then {76 },cr is contained in the kernel of Q. Hence we have concluded that Q = 0
and LG = Lo#G, G € M,(R)".
Now let G € My(R)" and x € R. If (ii) holds we can write

<Tz(LG)7¢> = <Tz(F#G)a¢> = <F#Ga7-z¢>

= (F(y),(G(2), 7y (120)(2))) = (F(y), (G(2), 7 (140)(2)))
= (F), (1:G)(2), (1y9)(2))) = (F#7G, ¢), ¢ € Ma(R).
This completes the proof. O
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