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(Communicated by Thomas Goodwillie)

Abstract. For any κ ≥ 1 a κ-dimensional polyhedron Yκ is constructed such
that the Yang index of its deleted product Y ∗κ equals 2κ. This answers a
question of Izydorek and Jaworowski (1995).

For any κ ≥ 1 a 2κ-dimensional closed manifold M with involution is con-
structed such that index M = 2κ, but M can be mapped into a κ-dimensional
polyhedron without antipodal coincidence.

The deleted product of Y is the space

Y ∗ = Y 2 \∆,

where ∆ is the diagonal of Y 2. There is a natural free involution T (x, y) = (y, x)
acting in Y ∗.

Our goal is to compute the Yang index of the deleted product of some polyhedra
(with respect to the involution T ). In particular, we answer the question in [3]
of whether there exists a κ-dimensional polyhedron Yκ with index Y ∗

κ = 2κ. It is
shown that the space Yκ = [∆2κ+2]κ has index Y ∗

κ = 2κ.
In fact, we shall find in Y ∗

κ a closed manifold M2κ with index M2κ = 2κ. Then
the projection p(x, y) = x is a map p : M2κ → Yκ without antipodal coincidence.
Other examples of such manifolds (or even polyhedra) are not known to us. Let us
note the theorem of Šchepin [4], which asserts that every map f : S2κ → Pκ of the
2κ-sphere into a κ-dimensional polyhedron has an antipodal coincidence.

First some notation.
∆n is a standard n-simplex in Rn with center in the origin O.
Let P be a simplicial complex.
For x ∈ P , [x] denotes the carrier of x, i.e. the (closed) simplex containing x in

its interior.
If a ∈ P is a vertex, its star St(a) is the union of all open simplexes with vertex

a.
[P ]κ denotes the κ-dimensional skeleton of P .
All maps are assumed to be continuous.
Now we shall list some properties of the Yang index that we shall make use of,

and refer the reader to [7] for the definition and the whole index theory.
Let X be a compact metric space with a free involution T : X → X . Then

its Yang index is defined inductively by means of the equivariant homology groups
with coefficients in Z2. We denote it here by index X . An important property of

Received by the editors December 18, 1995 and, in revised form, September 5, 1996.
2000 Mathematics Subject Classification. Primary 55M20.
Key words and phrases. Yang index, deleted product, antipodal coincidence.

c©1999 American Mathematical Society

885



886 SIMEON T. STEFANOV

the index is that if index X ≥ n, then every map f : X → Rn has an antipodal
coincidence: f(Tx) = f(x).

Note also that index X ≤ dim X .
The following useful proposition estimates the index of a manifold.

Proposition. Let Mn be an n-dimensional closed manifold with a free involution
T : Mn → Mn. Suppose that there exists an odd map ϕ : Mn → Sn (i.e. ϕ(Tx) =
−ϕ(x)) with deg2 ϕ = 1, where deg2 is the degree mod 2. Then index Mn = n.

Proof. Let zn be the invariant fundamental cycle mod 2 in Mn. Then ϕ∗([zn]) 6= 0
(in the Cech homologies mod 2). We have ν([zn]) = ν(ϕ∗[zn]) 6= 0, as follows from
the properties of the index homomorphism ν (cf. [7] for the definition of ν). But
this means that index Mn ≥ n by definition. The converse inequality follows from
the fact that index ≤ dim.

I. The main theorems

Let M be a finite set in Rn and let σκ
1 , σκ

2 be two κ-dimensional simplexes with
vertices in M , without a common vertex. Suppose that every two such simplexes
either do not intersect or have a single common point, interior to both σκ

1 and σκ
2 .

We shall denote by #κ(M) the number of intersections of pairs {σκ
1 , σκ

2 } as above.
Such an intersection will be called a κ-intersection.

For example, if M = {5 points lying on a circle}, then #1(M) = 5.

Lemma 1. There exists in R2κ a set M of 2κ + 3 points such that #κ(M) = 1.

The proof is given in Section III. For example, in the case κ = 1 it suffices to
take 5 points in R2 in general position, whose convex hull is a triangle.

Consider now the complex

Yκ = [∆2κ+2]κ.

We shall prove that indexY ∗
κ = 2κ. Set

M2κ = {(x, y) ∈ Y 2
κ |[x] ∩ [y] = ∅}.

Clearly, M2κ is an invariant compact subset of Y ∗
κ .

Lemma 2. M2κ is a closed manifold.

The proof of this interesting proposition is given in Section II. Notice that M2κ

has a structure of a cell complex. It is also easy to show that there is a deformation
of Y ∗

κ on M2κ, so M2κ contains all the information about Y ∗
κ .

Theorem 1. Let Yκ = [∆2κ+2]κ. Then

index Y ∗
κ = 2κ.

Proof. It suffices to prove that index M2κ = 2κ. As follows from Lemma 1, there
exists in R2κ a set

M = {a1, a2, . . . , a2κ+3}
of 2κ + 3 points such that #κ(M) = 1. Let the single κ-intersection arise between
the simplexes [a1, . . . , aκ+1] and [aκ+2, . . . , a2κ+2]. Consider in R2κ+1 the set

N = {a1 + l2κ+1, a2, . . . , a2κ+3},
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where l2κ+1 is a unit vector orthogonal to R2κ. Clearly, #κ(N) = 0. Then Yκ =
[∆2κ+2]κ may be embedded in R2κ+1 with vertices in N . Let us define an odd map
ϕ : M2κ → S2κ as follows:

ϕ(x, y) =
y − x

‖y − x‖ .

The preimage ϕ−1(−l2κ+1) contains a single point (x0, y0) corresponding to the
single κ-intersection in M . Here x0 ∈ [a1 + l2κ+1, . . . , aκ+1], y0 ∈ [aκ+2, . . . , a2κ+2].
We shall prove that deg2 ϕ = 1 (mod 2). It is clear that there exists in S2κ a
neighbourhood W 3 −l2κ+1 such that the map ϕ restricted to ϕ−1(W ) is a home-
omorphism. Let us approximate ϕ with a smooth map ϕ0 : M2κ → S2κ such
that ϕ0(x) = ϕ(x) for x ∈ ϕ−1(W ). Then −l2κ+1 is a regular value of ϕ0 and
ϕ−1

0 (−l2κ+1) contains a single point (x0, y0). But then for its degree mod 2 we have
deg2 ϕ0 = 1 (cf. [2]), and therefore deg2 ϕ = 1.

Then indexM2κ = 2κ, as follows from the Proposition in the preliminary section.
The theorem is proved.

Note that if Pκ is a contractible κ-dimensional polyhedron, then indexP ∗
κ ≤

2κ− 1. This is established in [3].

Theorem 2. For any κ ≥ 1 there exists a closed manifold M2κ with a free involu-
tion T , such that index M2κ = 2κ, but there is a map

f : M2κ → Yκ

into a κ-dimensional polyhedron without antipodal coincidence: f(Tx) 6= f(x) for
any x ∈ M2κ.

Proof. Let M2κ and Yκ be as in Theorem 1. Set f(x, y) = x. Then f : M2κ → Yκ

is a map without antipodal coincidence: f(x, y) 6= f(y, x).
Let us note that not every manifold of index 2κ admits such a map. Šchepin [4]

has shown that every map f : S2κ → Pκ of the sphere S2κ into a κ-dimensional
polyhedron has an antipodal coincidence: f(−x) = f(x).

The following is a simple but useful proposition that we shall refer to in the last
two sections.

Proposition (∗). Let ∆n = [a1, . . . , an+1] be the standard n-simplex in Rn. Sup-
pose that

∑n+1
i=1 λiai = 0. Then λ1 = λ2 = · · · = λn+1.

Proof. Since
∑

ai = 0, we find a1 = −a2 − · · · − an+1. Substitute in
∑

λiai = 0
and make use of the fact that a2, . . . , an+1 are independent.

II. Proof that M2κ is a manifold

In this section we shall prove Lemma 2. The key is Lemma 3, which is interesting
for itself. Let

Pκ = O([∆2κ]κ−1)

be the cone over [∆2κ]κ−1 with vertex the origin O. Consider the set

U = {(x, y) ∈ P 2
κ |[x] ∩ [y] = {O}}.(1)
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Lemma 3. The map ϕ : U → R2κ defined by

ϕ(x, y) = x− y

maps U homeomorphically onto some open star-like subset of R2κ with center O.

Proof. Let ∆2κ = [a1, . . . , a2κ+1]. If (x, y) ∈ U , then

x =
∑
i∈I

αiai, y ∈
∑
j∈J

βjaj ,

where αi, βj > 0 and |I| ≤ κ, |J | ≤ κ, I ∩ J = ∅. (The index sets are disjoint, since
[x] ∩ [y] = {O} by definition.)

1) First we prove that ϕ is “mono”.
Let ϕ(x, y) = ϕ(u, v), i.e. x− y = u− v. We have as above

u =
∑
r∈R

γrar, v =
∑
s∈S

δsas,

where γr, δs > 0, |R| ≤ κ, |S| ≤ κ, R ∩ S = ∅. Then∑
I

αiai −
∑
J

βjaj −
∑
R

γrar +
∑
S

δsas = 0.(2)

Let

M = {1, 2, . . . , 2κ + 1}.
By Proposition (∗) all the coefficients in (2) are (after reduction) equal to some

number c.
If c ≥ 0, then from (2) J ∪R is contained in I ∪ S, so I ⊃ R and S ⊃ J . Since

|S|+ |I| ≤ 2κ < |M |, this implies I ∪ J ∪R ∪ S 6= M , thus c = 0.
If c ≤ 0, then in the same way it follows that R ⊃ I, J ⊃ S and I∪J∪R∪S 6= M ,

hence c = 0.
The single possibility for this is I = R, J = S. But then (2) implies that∑

I

αiai =
∑
R

γrar,
∑

J

βjaj =
∑
S

δsas.

So, x = u, y = v, i.e. ϕ is “mono”.
2) We shall show that ϕ(U) contains O in its interior.
Let w ∈ R2κ be a vector with a small norm. Then it may be written in the form

w = λ1a1 + λ2a2 + · · ·+ λ2κa2κ,

where we assume that λ1 ≤ λ2 ≤ · · · ≤ λ2κ.
Clearly,

aκ = −a1 − · · · − aκ−1 − aκ+1 − · · · − a2κ+1

and, substituting above,

w = (λ1 − λκ)a1 + · · ·+ (λκ−1 − λκ)aκ−1

+ (λκ+1 − λκ)aκ+1 + · · ·+ (λ2κ − λκ)a2κ − λκa2κ+1.

Set

x = (λκ+1 − λκ)aκ+1 + · · ·+ (λ2κ − λκ)a2κ,

y = (λκ − λ1)a1 + · · ·+ (λκ − λκ−1)aκ−1 + λκa2κ+1.

Then w = x − y, where x, y ∈ O([∆2κ]κ−1), since x and y are of small norm and
the coefficients are nonnegative. Note also that [x] ∩ [y] = {O}, thus (x, y) ∈ U .



YANG INDEX OF THE DELETED PRODUCT 889

So w = ϕ(x, y), hence w ∈ ϕ(U). We proved that ϕ(U) contains O in its interior.
Note finally, that ϕ(U) is star-like, as follows immediately from the definition of ϕ.

The lemma is proved.

Proof of Lemma 2. Here we prove that M2κ is a manifold. Recall that

M2κ = {(x, y) ∈ Y 2
κ |[x] ∩ [y] 6= ∅},

where Yκ = [∆2κ+2]κ. It is clear that M2κ is subdivided in a natural way to prisms
of the form σi × σj , where σi, σj ⊂ Yκ are nonintersecting simplexes. We shall
prove that the star of each vertex of M2κ is homeomorphic to R2κ. It suffices to
check it for an arbitrary vertex (a1, a2). Clearly,

St(a1, a2) = {(x, y) ∈ Y 2
κ |[x] 3 a1, [y] 3 a2, [x] ∩ [y] = ∅}.

We shall embed Yκ in R2κ+1 as follows: Let {a3, . . . , a2κ+3} be the vertices of
the standard simplex ∆2κ in R2κ and a1 = l2κ+1, a2 = −l2κ+1, where l2κ+1 is a
unit vector orthogonal to R2κ. The points {a1, . . . , a2κ+3} are in general position
in R2κ+1, consequently we may embed there Yκ = [∆2κ+2]κ with vertices ai. Let
p : R2κ+1 → R2κ denote the orthogonal projection. We have

p(Yκ) = O([∆2κ]κ−1).

It is easy to see that (x, y) ∈ St(a1, a2) if and only if (p(x), p(y)) ∈ U , where U
is defined by (1). Then the map P (x, y) = (p(x), p(y)) is a homeomorphism and
according to Lemma 3, U is homeomorphic to R2κ. Therefore St(a1, a2) ≈ R2κ.

III. Proof of Lemma 1

Here we shall construct in R2κ a set M of 2κ + 3 points such that #κ(M) = 1.
Let ∆2κ = [a1, . . . , a2κ+1] be the standard simplex in R2κ. Set

A = λ(a1 + · · ·+ aκ) + δaκ+1,

where 0 < δ < λ and κλ + δ < 1.
We shall show that the set

M = {O, a1, . . . , a2κ+1, A}
meets the case. Note first that A lies in the interior of ∆2κ, since κλ + δ < 1.
Consider two κ-dimensional simplexes σ1 and σ2 with vertices in M without a
common vertex. If some of them contain neither O, nor A, then σ1∩σ2 = ∅. Indeed,
suppose that O, A /∈ σ1. Then σ1 ⊂ ∂∆2κ and σ1∩σ2 = σ1∩ (σ2∩∂∆2κ) = ∅. The
last equality holds, since σ2 ∩ ∂∆2κ is a simplex in ∂∆2κ without common vertices
with σ1.

So, we may suppose that

σ1 = [O, ai1 , . . . , aiκ ], σ2 = [A, aj1 , . . . , ajκ ],

where all the vertices are different. Suppose that σ1 and σ2 intersect; then we have

λ1ai1 + · · ·+ λκaiκ = µ0λ(a1 + · · ·+ aκ) + µ0δaκ+1 + µ1aj1 + · · ·+ µκajκ ,(3)

where λi ≥ 0,
∑

λi ≤ 1, µj ≥ 0,
∑

µj = 1.
Note that µ0 > 0, since σ1 and σ2 may intersect only in an interior point of ∆2κ.
Send all the members of (3) to the right-hand side, then each ai appears (after

reduction) with some coefficient ν(ai). According to Proposition (∗) we should have

ν(a1) = ν(a2) = · · · = ν(a2κ+1).(4)
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Let us note that exactly one ai is not a vertex of either σ1 or of σ2. There are 3
possibilities about ai.

1) i ≥ κ + 2. Then ν(ai) = 0 and hence ν(aj) = 0 for any j. But there exists
some j ≤ κ + 1 such that aj is a vertex of σ2. Then the examination of (3) gives
ν(aj) > 0, in contradiction with (4).

2) i ≤ κ. Then ν(ai) = µ0λ > 0. This implies that for j ≥ κ + 2 all the aj are
in the right-hand side of (3), otherwise we would have ν(aj) ≤ 0, in contradiction
with (4). Then aκ+1 takes part in the left-hand side with coefficient λκ+1 ≥ 0.
Therefore

ν(aκ+1) = µ0δ − λκ+1 = ν(ai) = µ0λ,

so µ0(δ − λ) = λκ+1 ≥ 0, which contradicts the condition δ < λ.
3) i = κ + 1, i.e. aκ+1 is not a vertex of σ1 ∪ σ2. In this case we should have

σ1 = [O, a1, . . . , aκ], σ2 = [A, aκ+2, . . . , a2κ+1].

Really, if we suppose that aj ∈ σ1 for some j ≥ κ + 2, then aj takes part
in the left-hand side of (3) with coefficient λj ≥ 0, thus ν(aj) = −λj , though
ν(aκ+1) = µ0δ > 0, in contradiction with (4).

We shall prove that σ1 and σ2 intersect in an interior point. We are looking for
a solution of

λ1a1 + · · ·+ λκaκ = µ0λ(a1 + · · ·+ aκ) + µ0δaκ+1

+ µκ+2aκ+2 + · · ·+ µ2κ+1a2κ+1
(5)

with λi, µj ≥ 0,
∑

λi ≤ 1,
∑

µj = 1.
It is straightforward to check that the numbers

λ1 = λ2 = · · · = λκ =
λ− δ

1 + δκ
, µ0 =

1
1 + δκ

,

µκ+2 = · · · = µ2κ+1 =
δ

1 + δκ

satisfy (5), since it reduces to the identity
∑

ai = 0. This means that σ1 and σ2

intersect in an interior point. Therefore #κ(M) = 1.

IV. Concluding remarks

There is a natural generalization of the spaces Yκ. Let as above Yκ = [∆2κ+2]κ

and consider the join

Xκ = Yκ1 ∗ Yκ2 ∗ · · · ∗ Yκp

where κ = κ1 + · · ·+κp +p−1. It is not difficult to see that the spaces Xκ also have
indexX∗

κ = 2κ. It is shown in [1] that Xκ is a κ-minimal complex, in the sense that
it is not embeddable in R2κ but each of its proper subcomplexes is embeddable in
R2κ. Cohomological obstructions for embedding in R2κ are discussed in [5] and [6].

For a graph Γ the question of computing index Γ∗ is in fact solved in [6]:
We have index Γ∗ = 2 if and only if Γ is nonplanar. Furthermore, index Γ∗ = 1

if and only if Γ is planar, but not embeddable in R1. Otherwise index Γ∗ = 0.
Another interesting phenomenon in the case of graphs is the following fact. Let

M(Γ) = {(x, y) ∈ Γ2|[x] ∩ [y] = ∅}.
Then M(Γ) is homeomorphic to a closed surface if and only if Γ is one of the two
Kuratowski graphs K5 and K3,3. Moreover, M(K5) is a sphere with 6 handles and
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M(K3,3) is a sphere with 4 handles. This can be shown by computing the Euler
characteristic of these spaces and by checking that they are both orientable.

I thank the referee for pointing my attention to papers [5] and [6].
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