Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Sets of minimal Hausdorff dimension for quasiconformal maps
HTML articles powered by AMS MathViewer

by Jeremy T. Tyson PDF
Proc. Amer. Math. Soc. 128 (2000), 3361-3367 Request permission

Abstract:

For any $1\le \alpha \le n$, there is a compact set $E\subset \mathbb {R}^n$ of (Hausdorff) dimension $\alpha$ whose dimension cannot be lowered by any quasiconformal map $f:\mathbb {R}^n\to \mathbb {R}^n$. We conjecture that no such set exists in the case $\alpha <1$. More generally, we identify a broad class of metric spaces whose Hausdorff dimension is minimal among quasisymmetric images.
References
  • C. J. Bishop. Non-removable sets for quasiconformal and locally bi-Lipschitz mappings in $\mathbf {R}^3$. preprint.
  • C. J. Bishop. Quasiconformal mappings which increase dimension. Ann. Acad. Sci. Fenn. Ser. A I Math. to appear.
  • Marc Bourdon, Au bord de certains polyèdres hyperboliques, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 119–141 (French, with English and French summaries). MR 1324127, DOI 10.5802/aif.1450
  • Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
  • F. W. Gehring and J. Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. (2) 6 (1973), 504–512. MR 324028, DOI 10.1112/jlms/s2-6.3.504
  • Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747
  • Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
  • Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
  • Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI 10.5186/aasfm.1989.1424
  • Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI 10.2307/1971484
  • P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
  • J. Tyson. Assouad dimension and quasisymmetric mappings. in preparation.
  • Jeremy Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525–548. MR 1642158
  • Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
  • William P. Ziemer, Extremal length and $p$-capacity, Michigan Math. J. 16 (1969), 43–51. MR 247077
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C65, 28A78
  • Retrieve articles in all journals with MSC (2000): 30C65, 28A78
Additional Information
  • Jeremy T. Tyson
  • Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
  • Address at time of publication: Department of Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794-3651
  • MR Author ID: 625886
  • Email: jttyson@math.lsa.umich.edu, tyson@math.sunysb.edu
  • Received by editor(s): October 15, 1998
  • Received by editor(s) in revised form: January 15, 1999
  • Published electronically: May 18, 2000
  • Additional Notes: The results of this paper form part of the author’s doctoral dissertation at the University of Michigan. The author was supported by a National Science Foundation Graduate Research Fellowship and a Sloan Doctoral Dissertation Fellowship.
  • Communicated by: Albert Baernstein II
  • © Copyright 2000 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 128 (2000), 3361-3367
  • MSC (2000): Primary 30C65; Secondary 28A78
  • DOI: https://doi.org/10.1090/S0002-9939-00-05433-2
  • MathSciNet review: 1676353