PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 11, Pages 3201–3203 S 0002-9939(00)05437-X Article electronically published on May 18, 2000

A CO-FROBENIUS HOPF ALGEBRA WITH A SEPARABLE GALOIS EXTENSION IS FINITE

M. BEATTIE, S. DĂSCĂLESCU, AND Ş. RAIANU

(Communicated by Ken Goodearl)

ABSTRACT. If H is a co-Frobenius Hopf algebra over a field, having a Galois H-object A which is separable over A^{coH} , its ring of coinvariants, then H is finite dimensional.

Let H be a Hopf algebra over a field k and (A, ρ) a right H-comodule algebra such that A is H-Galois over its ring of coinvariants A^{coH} . If H is a group algebra kG so that then A is strongly graded, it is well known that if A is separable over A_e , its ring of coinvariants, then the group G is finite. We show in this note that this result holds for all co-Frobenius Hopf algebras H.

Recall that H is co-Frobenius if H^{*rat} , the rational submodule of H^* as a (left or right) H^* -module, is nonzero. If H^{*rat} is nonzero, it is dense in H^* . A right Hcomodule algebra A is right H-Galois if the canonical map can: $A \otimes_{A^{coH}} A \to A \otimes H$, $a \otimes b \mapsto \sum ab_0 \otimes b_1$, is a bijection. Any right *H*-comodule *M* is a left *H*^{*}-module via $p \cdot m = \sum m_0 \langle p, m_1 \rangle$ for $p \in H^*$, $m \in M$. Also H^* and H^{*rat} are right *H*modules via $(p \leftarrow h)(f) = \langle p, hf \rangle$ for $p \in H^*$ or H^{*rat} and $h, f \in H$. Details about *H*-Galois objects with H co-Frobenius can be found in [1].

Lemma 1. Suppose H is a Hopf algebra such that $H = \bigoplus_{\lambda \in I} H_{\lambda}$ where H_{λ} is a left H-subcomodule. Then if A is a right H-Galois object, $A = \bigoplus_{\lambda \in I} A_{\lambda}$ where $A_{\lambda} = \{a | a \in A, \ \rho(a) \in A \otimes H_{\lambda}\} \text{ and } A_{\lambda} \neq 0 \text{ for all } \lambda \in I.$

Proof. Let $p_{\lambda} \in H^*$ be the projection defined by $p_{\lambda}(h) = 0$ if $h \in H_{\mu}, \ \mu \neq \lambda$, and $p_{\lambda}(h) = \epsilon(h)$ for $h \in H_{\lambda}$. Then $p_{\lambda} \cdot H = \{\sum h_1 p_{\lambda}(h_2) | h \in H\} = H_{\lambda}$ since if $h \in H_{\mu}, \ \mu \neq \lambda, \ p_{\lambda} \cdot h = 0, \text{ but if } h \in H_{\lambda}, \ p_{\lambda} \cdot h = \sum h_1 \epsilon(h_2) = h.$ Now, $p_{\lambda} \cdot A = \{\sum a_0 p_{\lambda}(a_1) | a \in A\}$ and so for $a \in A$,

$$\rho(p_{\lambda} \cdot a) = \sum a_0 \otimes a_1 p_{\lambda}(a_2) = \sum a_0 \otimes p_{\lambda} \cdot a_1 \in A \otimes H_{\lambda}$$

so that $p_{\lambda} \cdot A \subseteq A_{\lambda}$. Clearly if $a \in A_{\lambda}$, $p_{\lambda} \cdot a = a$ so $A_{\lambda} = p_{\lambda} \cdot A$, and $A = \bigoplus_{\lambda \in I} A_{\lambda}$. Since A is Galois, the canonical map can from $A \otimes_{A^{coH}} A$ to $A \otimes H$, $a \otimes b \longrightarrow$

©2000 American Mathematical Society

 $[\]sum ab_0 \otimes b_1$ is a bijection and thus $A_\lambda \neq 0$ for all $\lambda \in I$.

Received by the editors August 12, 1998 and, in revised form, January 15, 1999.

¹⁹⁹¹ Mathematics Subject Classification. Primary 16W30.

The first author's research was partially supported by NSERC.

The last two authors thank Mount Allison University for their kind hospitality.

If H is co-Frobenius, then H has a direct sum decomposition of left subcomodules

$$H = \bigoplus_{\lambda \in I} E(M_{\lambda}) = \bigoplus_{\lambda \in I} H_{\lambda}$$

where the M_{λ} 's are the simple left subcomodules of H and the $E(M_{\lambda})$'s their injective envelopes. By [4, Theorem 3], the $E(M_{\lambda})$ are finite dimensional k-spaces. Thus H is finite dimensional if and only if I is finite.

Also since H is co-Frobenius, then H is semiperfect as a coalgebra, and the results of [2, Theorem 2.4] apply. In particular, for $H_{\lambda} = E(M_{\lambda})$, the maps $p_{\lambda} \in H^*$ defined in Lemma 1 lie in H^{*rat} and the family of finite sums of the p_{λ} is a set of local units for H^{*rat} .

Theorem 2. If H is co-Frobenius and A is H-Galois and separable over A^{coH} , then H is finite dimensional.

Proof. Suppose that I is infinite. Let $\sum a_i \otimes b_i \in A \otimes_{A^{coH}} A$ be the separability idempotent for the extension A/A^{coH} ; then

$$\sum a_i b_i = 1$$
 and $\sum c a_i \otimes b_i = \sum a_i \otimes b_i c$ for all $c \in A$.

Since the maps p_{λ} can be used to build a set of local units $\sum_{j=1}^{n} p_{\lambda_j}$ for H^{*rat} , then if $f \in H^{*rat}$,

$$f = \sum_{\lambda \in F} f p_{\lambda}$$

for some finite subset F of I.

Let W be the finite dimensional subspace of H generated by the b_{i_1} and $p_W \in H^{*rat}$ a map equal to ϵ on W. The maps $p_W \leftarrow b_{i_1}$ are elements of H^{*rat} , and thus there is associated to each a finite subset F of I as above. Let λ_0 be an element of I which does not lie in any of these finite sets. In other words, $p_W \leftarrow b_{i_1}$ is zero on H_{λ_0} for all b_i .

Let $0 \neq c \in A_{\lambda_0}$ and applying $Id \otimes \rho$ to $\sum ca_i \otimes b_i = \sum a_i \otimes b_i c$, we obtain

$$\sum ca_i \otimes b_{i_0} \otimes b_{i_1} = \sum a_i \otimes b_{i_0} c_0 \otimes b_{i_1} c_1.$$

Now apply $M \cdot (Id \otimes Id \otimes p_W)$, M the multiplication in H, to both sides of the above equality and obtain

$$c = \sum c a_i b_{i_0} p_W(b_{i_1}) = \sum a_i b_{i_0} c_0 (p_W - b_{i_1})(c_1) = 0,$$

which is a contradiction. Thus I is finite, and H is finite dimensional.

Corollary 3. If A/A^{coH} is separable and H-Galois, H co-Frobenius, then the equivalent conditions of [3, Proposition 1.8] hold.

References

- M. Beattie, S. Dăscălescu and S. Raianu, Galois extensions for co-Frobenius Hopf algebras, J. Algebra 198 (1997), 164–183. MR 99c:16034
- [2] M. Beattie, S. Dăscălescu, L. Grünenfelder and C. Năstăsescu, Finiteness conditions, co-Frobenius Hopf algebras and quantum groups, J. Algebra 200 (1998), 312–333. MR 99c:16035

3202

- M. Cohen and D. Fischman, Semisimple extensions and elements of trace 1, J. Algebra 149 (1992), 419–437. MR 93c:16038
- [4] B. Lin, Semiperfect coalgebras, J. Alg. 49 (1977), 357-373. MR 58:16749

Department of Mathematics and Computer Science, Mount Allison University, Sackville, New Brunswick, Canada E4L $1\rm E6$

E-mail address: mbeattie@mta.ca

University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO-70109 Bucharest 1, Romania

E-mail address: sdascal@al.math.unibuc.ro

University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO-70109 Bucharest 1, Romania

E-mail address: sraianu@al.math.unibuc.ro