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FINSLER METRICS AND ACTION POTENTIALS

RENATO ITURRIAGA AND HÉCTOR SÁNCHEZ-MORGADO

(Communicated by Michael Handel)

Abstract. We study the behavior of Mañé’s action potential Φk associated
to a convex superlinear Lagrangian, for k bigger than the critical value c(L).
We obtain growth estimates for the action potential as a function of k. We
also prove that the action potential can be written as Φk(x, y) = DF (x, y) +
f(y) − f(x) where f is a smooth function and DF is the distance function
associated to a Finsler metric.

1. Introduction

Let M be a closed riemannian manifold with riemannian metric 〈v, v〉. Consider
the mechanical Lagrangian

L : TM → R,

(x, v) 7→ 1
2
〈v, v〉x − U(x)

where U(x) is a differentiable function on M called the potential.
It is well known that, on a fixed level of energy e, bigger than the maximum of U

the lagrangian flow is conjugate to the geodesic flow with metric 2(e−U(x))〈v, v〉.
Moreover the reduced action of the Lagrangian is the distance for this metric. Either
or both of these statements are known as the Maupertuis principle. See the books
[1], [2] or [5].

Consider now a general convex superlinear Lagrangian L : TM → R. This means
that L restricted to each TxM has positive definite Hessian and

lim
|v|→∞

L(x, v)
|v| =∞,

uniformly on x ∈M.
It was proven in [4] that for large energy values the lagrangian flow is conjugate

to the flow of a Finsler metric. See below for the precise statement. In Theorem 1
we prove a generalization of the other statement of the Maupertuis principle. This
was motivated by discussions with R. Montgomery about the presentation in [5],
which also motivated Theorem 2.

Let H : T ∗M → R be the Hamiltonian associated to L and let L : TM → T ∗M
be the Legendre transform (x, v) 7→ ∂L/∂v(x, v). SinceM is compact, the extremals
of L give rise to a complete flow ϕt : TM → TM called the Euler-Lagrange flow of
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the Lagrangian. Using the Legendre transform we can push forward ϕt to obtain
another flow ϕ∗t which is the Hamiltonian flow of H with respect to the canonical
symplectic structure of T ∗M . Recall that the energy E : TM → R is defined by

E(x, v) =
∂L

∂v
(x, v).v − L(x, v).

Since L is autonomous, E is a first integral of the flow ϕt.
Recall that the action of the Lagrangian L on an absolutely continuous curve

γ : [a, b]→M is defined by

AL(γ) =
∫ b

a

L(γ(t), γ̇(t)) dt.

Given two points x and y in M and T > 0 denote by CT (x, y) the set of absolutely
continuous curves γ : [0, T ]→M , with γ(0) = x and γ(T ) = y. For each k ∈ R we
define the action potential Φk : M ×M → R by

Φk(x, y) = inf{AL+k(γ) : γ ∈
⋃
T>0

CT (x, y)}.

The critical value of L, which was introduced by Mañé in [6], is the real number
c(L) defined as the infimum of k ∈ R such that for some x ∈ M , Φk(x, x) > −∞.
For k ≥ c(L), we have that Φk(x, y) > −∞ for every x, y and it is a Lipschitz
function that satisfies the triangle inequality.

For any k > c(L) the flow on the energy level k is conjugate to the geodesic flow
of an appropriately chosen Finsler metric on M (see [4]).

Given a Finsler metric
√
F and an absolutely continuous curve γ we can define

its Finsler length as

lF (γ) =
∫ √

F (γ̇).

Observe that since the Finsler metric is homogeneous of degree one, the definition
does not depend on the parameterization of the curve. Finally we define the Finsler
distance as

DF (x, y) = inf{lF (γ)}

where the infimum is taken over all absolutely continuous curves joining x and y.

Theorem 1. If k is bigger than the critical value, then there exist a Finsler metric√
F and a C∞ real valued function f on M such that Φk(x, y) = DF (x, y) + f(y)−

f(x). Moreover if k is bigger than − inf L, then we can choose f = 0.

As a consequence of Theorem 1 we have that there is a neighborhood V of the
diagonal ∆ in M ×M , such that Φk is differentiable in V \∆.

For x, y fixed and T > 0 define

S(T ) = inf{AL(γ) : γ ∈ CT (x, y)}.

It is easily shown that S(T ) is continuous. Although S(T ) is not necessarily
convex, its Legendre transform:

S∗(e) = max
T>0

(eT − S(T ))
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is a well defined convex function and coincides with the Legendre transform of the
convex hull S of S. Notice that

Φk(x, y) = −S∗(−k)(1)

and so the domain of S∗ is domS∗ = (−∞,−c(L)]. It follows from the definition
of the action potential that g(k) = Φk(x, y) is nondecreasing and so is S∗.

Theorem 2. For all x, y in M we have that:
(a) g grows slower than any linear function; that is,

lim
k→∞

g(k)
k

= 0.

(b) The right derivative of g at c(L) is infinite.
(c) limT→∞ S(T )/T = −c(L).

2. Proofs

Proof of Theorem 2. It is well known that if f is a convex function of a real variable,
then

(1) If x ∈ int(domf), then both one side derivatives exist and f ′−(x) ≤ f ′+(x).
(2) If x ∈ domf is a boundary point, then the corresponding one side derivative

exists.
(3) If x < y, f ′+(x) ≤ f ′−(y).

Define

rang ∂f =
⋃

x∈domf

[f ′−(x), f ′+(x)].

It is proved in [8], Section 24, that

int(domf∗) ⊂ rang ∂f ⊂ domf∗.

Therefore

rang ∂S∗ = domS∗∗ = domS = (0,∞).

Thus

lim
e→−∞

S∗(e)
e

= 0

and

S∗
′

− (−c(L)) = lim
e→−c(L)

S∗
′

− (e) =∞.

From equation (1), items (a) and (b) follow.
By the same kind of arguments limT→∞ S(T )/T = −c(L), and then

−c(L) ≤ lim inf
T→∞

S(T )
T

.

To prove the other inequality, let µ be an ergodic minimizing probability, that is,
an invariant ergodic probability for the lagrangian flow ϕt such that

m :=
∫
Ldµ ≤

∫
Ldν
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for any invariant probability ν. Mather proved that such measures exist (see [7]).
Let θ ∈ TM be a regular point for µ, such that

lim
T→∞

1
T

∫ T

0

L(ϕt(θ))dt = m.

Let π : TM →M be the natural projection. Comparing with the curve γ obtained
by joining x and π(θ) with a short curve, then following the curve πϕt(θ) and then
joining πϕT (θ) and y with a short curve, we have that for any given ε > 0 and T
large enough

S(T ) ≤ (m+ ε)T +O(1).

So

lim sup
T→∞

S(T )
T
≤ (m+ ε).

Item (c) now follows from the fact due to Mañé [6, 3] that m = −c(L).

Proof of Theorem 1. We begin with the last statement. Note that L + k is bigger
than zero if and only if H(x, 0) < k. Indeed

H(x, p) = max
v∈TxM

(pv − L(x, v));

then

H(x, 0) = max
v∈TxM

(−L(x, v)) = − min
v∈TxM

(L(x, v)).

So if k is bigger than − inf L, then H−1(−∞, k) contains the zero section of
T ∗M .

Now define a new Hamiltonian G on T ∗M minus the zero section such that G
takes the value µ on H−1(k) and such that G(x, λp) = λ2G(x, p) for all positive λ.
Since G is positively homogeneous of degree two and convex in p, it follows that
the Legendre transform F associated to G is the square of a Finsler metric.

Since by definition G−1(µ) = H−1(k), it follows that the Hamiltonian flows of G
and H coincide up to reparameterization on the energy level G−1(µ) = H−1(k) and
therefore the Euler-Lagrange solutions of L with energy k are reparameterizations
of geodesics of

√
F .

We claim that for an appropriate choice of µ and if E(x, v) = k, then√
F (x, v) = L+ k.

It is proved in [6, 3] that for k greater than the critical value and for any x, y
in M there exists γ such that AL+k(γ) = Φk(x, y). Moreover γ is a solution of
the Euler-Lagrange equation and has energy k. Also, if k > c(L), every curve can
be reparameterized to have energy k and the Finsler length does not depend on
the reparameterization. By the definitions of both DF and Φk, we may restrict
ourselves to curves with energy k and Theorem 1 follows in this case.

Proof of the claim. Since G is homogeneous of degree 2 it follows from Euler’s for-
mula that F and G take the same value at Legendre related points.

Define λ(x, p) such that H(x, pλ) = k; then G(x, p) = µλ2(x, p). We have

∂H

∂p
(x,

p

λ
)λ−1 − ∂H

∂p
(x,

p

λ
) · p λ−2 ∂λ

∂p
= 0(2)
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and

∂G

∂p
= 2µλ

∂λ

∂p
.

Multiplying (2) by 2µλ3 we then get

∂H

∂p
(x,

p

λ
) · p ∂G

∂p
= 2G(x, p)

∂H

∂p
(x,

p

λ
).(3)

Suppose now that E(x, v) = k and let P (x, v) = ∂L/∂v; then by definition we
have

λ(x, P (x, v)) = 1,
G(x, P (x, v)) = µ,

∂H

∂p
(x, P (x, v)) = v,

and so

∂H

∂p
(x, P (x, v)) · P (x, v) = v

∂L

∂v

= L+ k

> 0.

(4)

Hence from (3) we have

∂G

∂p
(x, P (x, v)) =

2v
v · P (x, v)

.

Since ∂G/∂p is homogeneous of degree one and from (4) v · P (x, v) is positive,
we obtain

∂G

∂p
(x,

1
2
v · P (x, v)P (x, v)) = v.

So v is related to 1
2v · P (x, v)P (x, v) with respect to the Legendre transform of F .

Hence

F (x, v) = G(x,
1
2
v · P (x, v)P (x, v))

=
(v · P (x, v))2

4
G(x, P (x, v))

=
(v · P (x, v))2

4
µ.

So if µ = 4, √
F (x, v) = v · ∂L

∂v
.

Now let k be bigger than c(L). Then by a corollary in [4] there exists a C∞

real valued function f on M , such that H(x, dfx) < k. Define as in [4] Hdf (x, p) =
H(x, p+ dfx). The Hamiltonian flows are conjugate by ψ(x, p) = (x, p− dfx). The
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Legendre transformation Ldf of Hdf is

Ldf(x, v) = max
p∈T∗xM

(pv −Hdf (x, p))

= max
p∈T∗xM

(pv −H(x, p+ dfx))

= max
p∈T∗xM

((p− dfx)v −H(x, p))

= L(x, v)− dfxv.
It turns out that

E(Ldf ) = E(L),
c(Ldf) = c(L),

Φk(Ldf )(x, y) = Φk(L)(x, y)− f(y) + f(x).

So as the zero section is contained in H−1
df (−∞, k), Ldf + k is positive and there is

a Finsler metric such that

Φk(Ldf )(x, y) = DF (x, y).

So

Φk(L)(x, y) = DF (x, y) + f(y)− f(x).

References

[1] R. Abraham & J. Marsden. Foundations of Mechanics. Addison-Wesley, 1985. MR 81e:58025
[2] V.I. Arnold. Mathematical Methods of Classical Mechanics. Graduate Texts in Math., 60.

Springer, 1989. MR 96c:70001
[3] G. Contreras, J. Delgado, R. Iturriaga, Lagrangian flows: the dynamics of globally minimiz-

ing orbits II, Bol. Soc. Bras. Mat. Vol. 28, N.2, (1997) 155-196. MR 98i:58093
[4] G. Contreras, R. Iturriaga, G. P. Paternain, M. Paternain. Lagrangian graphs, minimizing
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