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FINSLER METRICS AND ACTION POTENTIALS
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(Communicated by Michael Handel)

ABSTRACT. We study the behavior of Mané’s action potential ®; associated
to a convex superlinear Lagrangian, for k bigger than the critical value ¢(L).
We obtain growth estimates for the action potential as a function of k. We
also prove that the action potential can be written as ®x(z,y) = Dp(z,y) +
fy) — f(z) where f is a smooth function and Dp is the distance function
associated to a Finsler metric.

1. INTRODUCTION

Let M be a closed riemannian manifold with riemannian metric (v, v). Consider
the mechanical Lagrangian

L:TM — R,

(2,0) = 50, 0)2 ~ U()

where U(z) is a differentiable function on M called the potential.

It is well known that, on a fixed level of energy e, bigger than the maximum of U
the lagrangian flow is conjugate to the geodesic flow with metric 2(e — U(z)) (v, v).
Moreover the reduced action of the Lagrangian is the distance for this metric. Either
or both of these statements are known as the Maupertuis principle. See the books
0, 2] or [5].

Consider now a general convex superlinear Lagrangian L : TM — R. This means
that L restricted to each T, M has positive definite Hessian and

lim M =00
|[v|—o00 |U|
uniformly on x € M.

It was proven in [4] that for large energy values the lagrangian flow is conjugate
to the flow of a Finsler metric. See below for the precise statement. In Theorem /[l
we prove a generalization of the other statement of the Maupertuis principle. This
was motivated by discussions with R. Montgomery about the presentation in [5],
which also motivated Theorem 21

Let H : T*M — R be the Hamiltonian associated to L and let £: TM — T*M
be the Legendre transform (z, v) — 0L/0v(x,v). Since M is compact, the extremals
of L give rise to a complete flow ;s : TM — T M called the Euler-Lagrange flow of
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the Lagrangian. Using the Legendre transform we can push forward ¢; to obtain
another flow ¢} which is the Hamiltonian flow of H with respect to the canonical
symplectic structure of T*M. Recall that the energy F : TM — R is defined by

oL
E = — w—1L .
(,0) = 2= (@, 0)0 ~ L(a,v)
Since L is autonomous, F is a first integral of the flow ;.
Recall that the action of the Lagrangian L on an absolutely continuous curve
v : a,b] — M is defined by

b
A(y) = / Liv(t), (1)) d.

Given two points x and y in M and T > 0 denote by Cr(z,y) the set of absolutely
continuous curves 7 : [0, 7] — M, with 7(0) = z and v(T') = y. For each k € R we
define the action potential @y : M x M — R by

Op(z,y) = inf{ALr(7) s v € | Crla,y)}.

T>0

The critical value of L, which was introduced by Mané in [6], is the real number
¢(L) defined as the infimum of k& € R such that for some x € M, ®(x,z) > —o0.
For k > ¢(L), we have that ®y(x,y) > —oo for every z,y and it is a Lipschitz
function that satisfies the triangle inequality.

For any k > ¢(L) the flow on the energy level k is conjugate to the geodesic flow
of an appropriately chosen Finsler metric on M (see [4]).

Given a Finsler metric v/F and an absolutely continuous curve v we can define
its Finsler length as

o) = [ VFG).

Observe that since the Finsler metric is homogeneous of degree one, the definition
does not depend on the parameterization of the curve. Finally we define the Finsler
distance as

Dp(z,y) = inf{lr(7)}
where the infimum is taken over all absolutely continuous curves joining x and y.

Theorem 1. If k is bigger than the critical value, then there exist a Finsler metric
V'F and a C™ real valued function f on M such that ®y(x,y) = Dr(z,y) + f(y) —
f(x). Moreover if k is bigger than —inf L, then we can choose f = 0.

As a consequence of Theorem [l] we have that there is a neighborhood V' of the
diagonal A in M x M, such that @y is differentiable in V' \ A.
For z,y fixed and T > 0 define

S(T) = inf{AL(y) = v € Cr(z,y)}-

It is easily shown that S(T) is continuous. Although S(T') is not necessarily
convex, its Legendre transform:

S*(e) = max(eT — S(T))

T>0
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is a well defined convex function and coincides with the Legendre transform of the
convex hull S of S. Notice that

(1) Op(z,y) = —5"(—k)

and so the domain of S* is dom S* = (—o0, —c(L)]. It follows from the definition
of the action potential that g(k) = ®(z,y) is nondecreasing and so is S*.
Theorem 2. For all x,y in M we have that:

(a) g grows slower than any linear function; that is,

(b) The right derivative of g at ¢(L) is infinite.
(¢) limp_oo S(T)/T = —c¢(L).

2. PROOFS

Proof of Theorem [@ It is well known that if f is a convex function of a real variable,
then
(1) If € int(domf), then both one side derivatives exist and f’ (z) < f! ().
(2) If z € domf is a boundary point, then the corresponding one side derivative
exists.

(3) Ifx <y, filz) < fL(y).
Define

rang 0f = U [f2(2), £ (2)].

ze€domf
It is proved in [§], Section 24, that
int(domf*) C rang df C domf*.

Therefore
rang 95* = dom S$** = dom S = (0, ).
Thus
T
em—oco €
and

S (—c¢(L)) = lim S7(e) = .
Y(eln)) = tim 576 =0
From equation (), items (a) and (b) follow.
By the same kind of arguments limy_,o. S(T')/T = —c(L), and then
T
—c¢(L) < liminf 5 )

T—o0

To prove the other inequality, let © be an ergodic minimizing probability, that is,
an invariant ergodic probability for the lagrangian flow ¢, such that

m:z/Ldug/LdV
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for any invariant probability v. Mather proved that such measures exist (see [7]).
Let 8 € TM be a regular point for p, such that

1 T
Jim 2 [ L) =m.

Let m : TM — M be the natural projection. Comparing with the curve v obtained
by joining « and 7 () with a short curve, then following the curve mp;(#) and then
joining w7 (0) and y with a short curve, we have that for any given ¢ > 0 and T'
large enough

S(T) < (m+¢e)T +0(1).

So
S(T
lim sup S(T) < (m+e).
T—oo T
Item (c) now follows from the fact due to Mané [6l B] that m = —c(L). O

Proof of Theorem [l We begin with the last statement. Note that L + k is bigger
than zero if and only if H(x,0) < k. Indeed

H(z,p) = max (pv - L(z,v));
then
H(z,0) = UrenTi)i/I(—L(a:,v)) = _vénl"lj}\/l([/(x,v)).

So if k is bigger than —inf L, then H~!(—oo, k) contains the zero section of
T*M.

Now define a new Hamiltonian G on T*M minus the zero section such that G
takes the value y on H~!(k) and such that G(x, \p) = \2G(z,p) for all positive .
Since G is positively homogeneous of degree two and convex in p, it follows that
the Legendre transform F associated to G is the square of a Finsler metric.

Since by definition G~ (u) = H~1(k), it follows that the Hamiltonian flows of G
and H coincide up to reparameterization on the energy level G=!(u) = H~!(k) and
therefore the Euler-Lagrange solutions of L with energy k are reparameterizations
of geodesics of VF.

We claim that for an appropriate choice of  and if E(z,v) = k, then

VF(z,v) =L +Ek.

It is proved in [6, [3] that for k greater than the critical value and for any x,y
in M there exists v such that Ay r(y) = ®r(x,y). Moreover v is a solution of
the Euler-Lagrange equation and has energy k. Also, if k > ¢(L), every curve can
be reparameterized to have energy k and the Finsler length does not depend on
the reparameterization. By the definitions of both Dpr and ®j, we may restrict
ourselves to curves with energy k& and Theorem [l follows in this case.

Proof of the claim. Since G is homogeneous of degree 2 it follows from Euler’s for-
mula that F' and G take the same value at Legendre related points.
Define A(z, p) such that H(z, %) = k; then G(z,p) = puA?(z,p). We have

OH, p. ., OH, p. . _,0\
2 _ — _— —) - =
) 5y (N = @ ) e =
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and

OH

3 indiniall O S

Q w8y

Suppose now that F(xz,v) = k and let P(z,v) = 0L/0v; then by definition we
have

Az, P(z,v)) = 1,
Gz, P(z,v)) = p,
OH
a_p(x7 (l‘, U)) = v,
and so
oH oL
(x. P .pP — =
. P.) - Pla) = v
(4) =L+k
> 0.
Hence from (B) we have
oG 2v
a—p(l‘,P($7U>)— m

Since OG/dp is homogeneous of degree one and from ) v - P(x,v) is positive,
we obtain

1
%(x, V" P(z,v)P(x,v)) = v.
So v is related to v - P(x,v)P(z,v) with respect to the Legendre transform of F.
Hence

F(z,v) = Gz,

Soif =4,

oL

F =v-—.

(x,v) =v 5
Now let k be bigger than ¢(L). Then by a corollary in [4] there exists a C*
real valued function f on M, such that H(x,df;) < k. Define as in [4] Hyr(z,p) =
H(z,p+ df;). The Hamiltonian flows are conjugate by v (x,p) = (z,p — df,). The
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Legendre transformation Lgr of Hgr is

Lgf(z,v) = pngag&(pv — Hf(z,p))
= pg%ﬂa;%(pv—]{(%p‘kdfx))
= pg%%‘)](w((p — dfy)v — H(z,p))
= L(z,v) — dfyv.
It turns out that
E(Ly) = E(L),
C(Ldf) = C(L)v
Py (Lap)(z,y) = Pw(L)(z,y) — f(y) + f().

So

as the zero section is contained in Hcgcl(—oo, k), Lqs + k is positive and there is

a Finsler metric such that

So

[1]
[2]

[3]

[4]

[5]

[6]

[7]

@i (Lag)(x,y) = Dr(z,y).

P (L)(x,y) = Dr(z,y) + f(y) — f(2).
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